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Abstract: The vector-sum method (VSM) is advanced by considering the vector characteristics. As a cost of this advantage, a predefined
global sliding direction is required, which has been a key issue for the application of the VSM. Although the VSM has been steadily refined
since its initial version in 2008, limited progress on this issue has been achieved, and the global sliding direction is still prespecified by assump-
tion. In the aim of solving this issue, this article proposes a rigorous analytical solution based on the principle of potential energy minimization.
In addition, the VSM is improved by comparing the resisting moment with the drivingmoment at the moment center, which can be determined
by the shape of the slip surface. Finally, this method is verified to be feasible by three classical earthen slopes with different soil composition.
Compared with the solutions found by the rigorous Morgenstern-Price method with the half-sine function as the interslice force function, the
calculated results demonstrate that the proposed method can accurately estimate slope stability. DOI: 10.1061/(ASCE)GM.1943-
5622.0001436.© 2019 American Society of Civil Engineers.
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Introduction

Slope stability problems focus on the safety factor and the corre-
sponding critical slip surface. Many methods have been developed
to perform slope stability analyses, including the conventional
limit-equilibrium method (LEM) (Bishop 1955; Morgenstern and
Price 1965; Spencer 1967; Janbu 1973; Fredlund and Krahn 1977),
the strength-reduction method (SRM) (Zienkiewicz et al. 1975;
Griffiths and Lane 1999), and the limit-analysis method (LAM)
(Sloan 2013). To date, the LEM and the SRM are the most widely
used in practical slope engineering. Considering the sliding body as

rigid body, LEMs divide the sliding body into many slices, and
many assumptions are made to make the stability problem statically
determinate. Based on the limit state of the slices, the safety factor
can be iteratively computed under these assumptions, which focus
on the magnitude, the direction, and the position of forces acting on
the interface of slices (Zhu et al. 2003; Chakraborty and Goswami
2016). Moreover, for three-dimensional (3D) problems, more
assumptions are required than in the two-dimensional (2D) method,
and an accurate safety factor of the slope can be obtained using a
rigorous 3D LEM satisfying all six equilibrium conditions of the
sliding body (e.g., Zhu and Qian 2007; Zheng 2012; Zhou and
Chen 2013). However, the safety factor obtained by nonrigorous
methods satisfying partial equilibrium conditions of the sliding
body may be not accurate enough to meet the engineering require-
ments (e.g., Lam and Fredlund 1993; Cheng and Yip 2007).
Therefore, scholars and engineers performing slope stability anal-
yses must have a thorough mastery of soil mechanics and soil
strength and the ability and patience to test and judge the results
of their analyses in order to avoid mistakes and misuse (e.g.,
Duncan 1996).

For the widespread finite-element (FE) method in slope stability
analysis, there are several methods to compute the safety factor.
The popular one is the strength-reduction method (SRM). This
method was used early on by Zienkiewicz et al. (1975), and it has
since made great progress over the world (e.g., Cheng et al. 2007;
Shen and Karakus 2014). Although the SRM can simply and auto-
matically locate the critical slip surface, the inherent theoretical
defects in the SRM will yield a result that is not reliable enough
(e.g., Tang et al. 2016), which cannot guarantee that the safety fac-
tor with its corresponding slip surface is the global optimal solution
rather than a suboptimal solution and tends to reach premature non-
convergence under some complex conditions.

In addition to the SRM, there are three other ways of defining the
safety factor and finding the critical slip surface based on the stress
of the sliding body, and themost popular definition of the safety fac-
tor is based on the strength along the slip surface (e.g., Zou et al.
1995; Stianson et al. 2011). These methods find the critical slip

1Associate Professor, State Key Laboratory of Geomechanics and
Geotechnical Engineering, Wuhan Institute of Rock and Soil Mechanics,
Chinese Academy of Science, Xiaohongshan, Wuchang, Wuhan 430071,
China (corresponding author). Email: mwguo@whrsm.ac.cn

2Associate Professor, State Key Laboratory of Geomechanics and
Geotechnical Engineering, Wuhan Institute of Rock and Soil Mechanics,
Chinese Academy of Science, Xiaohongshan, Wuchang, Wuhan 430071
China. Email: cgli@whrsm.ac.cn

3Professor, State Key Laboratory of Geomechanics and Geotechnical
Engineering, Wuhan Institute of Rock and Soil Mechanics, Chinese
Academy of Science, Xiaohongshan, Wuchang, Wuhan 430071, China.
Email: slwang@whrsm.ac.cn

4Associate Professor, Univ. of Waterloo, Dept. of Civil and
Environmental Engineering, Waterloo, ON, Canada N2L3G1. Email: shunde
.yin@uwaterloo.ca

5State Key Laboratory of Geomechanics and Geotechnical Engineering,
Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Science,
Xiaohongshan, Wuchang, Wuhan 430071, China. Email: liusj2016@163
.com

6Professor, State Key Laboratory of Geomechanics and Geotechnical
Engineering, Wuhan Institute of Rock and Soil Mechanics, Chinese
Academy of Science, Xiaohongshan, Wuchang, Wuhan 430071, China.

Note. This manuscript was submitted on April 13, 2018; approved on
December 31, 2018; published online on April 12, 2019. Discussion pe-
riod open until September 12, 2019; separate discussions must be submit-
ted for individual papers. This paper is part of the International Journal
of Geomechanics, © ASCE, ISSN 1532-3641.

© ASCE 04019058-1 Int. J. Geomech.

 Int. J. Geomech., 2019, 19(6): 04019058 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
ot

tin
gh

am
 T

re
nt

 U
ni

ve
rs

ity
 o

n 
04

/1
4/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)GM.1943-5622.0001436
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001436
mailto:mwguo@whrsm.ac.cn
mailto:cgli@whrsm.ac.cn
mailto:slwang@whrsm.ac.cn
mailto:shunde.yin@uwaterloo.ca
mailto:shunde.yin@uwaterloo.ca
mailto:liusj2016@163.com
mailto:liusj2016@163.com


surface based on the definition of the safety factor through global opti-
mization algorithms (e.g., Li and Chu 2011; Jurado-Piña and Jimenez
2015). Although these methods have a clear physical meaning for a
circular or straight-line slip surface (e.g., Tang et al. 2016), some
scholars (e.g., Zheng et al. 2006; Ge 2008) doubt their clarity when
the critical slip surface is a noncircular slip surface because of the
direction of vectors. For a noncircular slip surface, the definition of
the safety factor is neither the vector sum of forces nor a projection of
the algebraic sum of forces along a particular direction.

Considering the vector characteristics of force, Ge (2008) firstly
put forward the vector-summethod (VSM), for which the safety fac-
tor is defined as the ratio of total resisting force to total driving force
on the global sliding direction. It is known that the current stress state
of the engineering object can be easily achieved from numerical
analysis with any complex conditions (Lu et al. 2018a, b) and consti-
tutive models (e.g., Tan et al. 2013, 2018), and in the past few years,
this method has been developed based on the actual stress of the
slope (Wu 2013; Liu et al. 2017; Fu et al. 2017). However, in the pre-
vious studies, only the force equation was considered, and the global
sliding direction was still assumed based on the sliding failure mech-
anism. In this article, the global sliding direction is theoretically
determined by the principle of potential energy minimization instead
of being assumed. Moreover, the safety factor by the moment equa-
tion is established to improve the VSM. Finally, three classical soil
slopes with reference solutions are used to verify the rationality and
reliability of the proposed method.

Global Sliding Direction

In the previous research for VSM (Ge 2008), the global sliding direc-
tion was assumed by the shear stress under the critical state of the
slope (Fig. 1). At the limiting state, there exists a list of sliding shear
stress vectors distributed tangentially along the potential slip surface.
The composition of these vectors yields the total sliding shear stress,
which is equal to the total resisting shear stress but has a contrary
sign. In consequence, if theMohr-Coulomb yield criterion is used and
the rule for the positive direction of normal stress in elastic mechanics
is adopted, the global sliding direction d can be assumed by

d ¼

ð
l
c� s nc tan wð Þdrdl���ð

l
c� s nc tan wð Þdrdl

��� (1)

where dr = unit direction of sliding shear stress at any point on the
slip surface; c and w = cohesion and friction angle of the material,
respectively; s nc = normal stress at any point on the slip surface;
and l = potential slip surface.

In this article, however, the global sliding direction is theoreti-
cally deduced and determined by the principle of minimum poten-
tial energy. The process is as follows.

Fig. 2 presents a simple slope. The unit weight of the slope is g , the
stress vector at any Point M of the slip surface acting on the bedrock
from the sliding body is rM, and n is the normal direction at PointM.
Therefore, the force equation for the sliding body can be given byð

A
bdA ¼

ð
L
rMdL (2)

rM ¼ r � n (3)

where b = body force; and r = stress tensor.

To demonstrate the deduction process, the sliding body with the
specified slip surface is considered, and the rock or soil material
under the sliding body is considered as the bedrock. Assuming the
global sliding direction is d, when the slope is about to slide, it only
slides along the potential slip surface because of the restriction of
the bedrock. Then, the displacement of the slope can be expressed
as

ds ¼ d� dn ¼ d� dnn (4)

Therefore, when the displacement of the slope is ds, the change
of potential energy can be given by

P ¼ P0 þ
ð
S
rM � dsdS (5)

Then, the first-order variation can be written as

∂P
∂d

¼ 0 (6)

Eq. (6) can also be considered as

∂
∂u i

ð
S
rM � dsdS ¼ 0 (7)

where d ¼ d u ið Þ; u i = independent variation of sliding direction
for the 2D problem; and i is equal to 1, but for the 3D problem, it is
equal to 1 and 2.

Based on Eq. (7), for the 2D problem, the sliding direction can
finally be obtained as Eq. (8); the deduction process is presented in
Appendix I.

tan u ¼

ð
l
nxnysMx þ n2y � 1

� �
sMy

� �
dlð

l
nxnysMy þ n2x � 1

� �
sMx

� �
dl

(8)

where sMx and sMy = components of rM on the x- and y-axes.
FromEq. (8), it can be concluded that the global sliding direction

can be theoretically determined by the stress state and shape of the
slip slope.

Sliding

shear

stress 

Sliding

body

Fig. 1. Sliding shear stress at critical state.

M

M�
n

Fig. 2. Simple slope.
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Examination Example

To verify the global sliding direction determined by the principle of
potential energy, Fig. 3 gives a simple sliding block. It is known that
the sliding direction u is along the inclined plane. In Fig. 3, the grav-
ity load is only considered on the block, and the inclined angle isa.

According to Eq. (8), the components of normal direction on the
x- and y-axes can be obtained as nx ¼ sina and ny ¼ �cosa.
Similarly, the components of gravity load on the x- and y-axes can
be expressed as sMx ¼ 0 and sny ¼ �G. Then, the sliding direction
can be calculated by

tan u ¼ n2y � 1

nxny
¼ cos2a� 1

sina cosa
¼ �sin2a

sina cosa
¼ �tana (9)

From Eq. (9), the sliding direction u is equal to p þ a, which is
the same direction along the inclined plane and proves that the
global sliding direction by the principle of minimum potential
energy is the same as the real solution for this block.

Vector-SumMethod

Because of the direction of force, the total resisting force and driv-
ing force of the potential sliding body generally have different
directions. Due to different directions for both force vectors, they
need to be compared in a certain direction to obtain the safety factor.
Assuming there exists a global sliding direction standing for the
sliding tendency of the whole sliding body, the original definition of
safety factor is only with respect to the force vector equation, and
the global sliding direction is just from the assumption of the sup-
posed stress state of slope (Liu et al. 2017; Fu et al. 2017). In this
section, based on the global sliding direction theoretically deduced
previously, this method is supplemented by the moment equation.
Based on the force vectors distributed along the potential slip sur-
face, the sum of the resisting moment can be obtained at certain
moment point, and similarly, the sum of the driving moment can
also be calculated at the samemoment point.

Force Vector Equation

Eq. (10) is the expression of the safety factor by force vector equa-
tion in the VSM, where Ff is the safety factor by force equation, R
is the total resisting force on global sliding direction d (Fig. 4), T is
the corresponding total driving force on the same sliding direction,
lAB is the potential slip surface, rM is the driving stress at any Point
M on the slip surface under the normal condition, and r0M is the
resisting stress at PointM under the critical condition.

Ff ¼ R
T
¼

ð
l
r0Mdl � � d

!� �
ð
l
rMdl � d

(10)

To clearly explain Eq. (10), the compositions of the driving force
and resisting force are explained in the following sections.

Driving Force

Fig. 5(a) presents the stress state of a simple slope under the normal
condition. In Fig. 5(a), PH and PV are the total horizontal and verti-
cal forces externally acting on potential sliding body, which belong

to the forces on the macroscale; d is the global sliding direction; and
rn and rs are, respectively, the normal and shear stress acting on the
bedrock by the sliding body at any Point M on the potential slip sur-
face, which belong to the stresses on the microscale for the sliding
body. Thus, the total forces acting on the bedrock by the sliding
body can be expressed as

Ð
l rs þ rnð Þdl. According to the static bal-

ance state of the potential sliding body, Eq. (11) can be obtained
based on the forces on the macroscale and stresses on the
microscale. ð

l
rs þ rnð Þdl ¼ PH þ PV (11)

From Eq. (11), it can be seen that the forces on microscaleÐ
l rs þ rnð Þdl on the potential slip surface can be considered as the

��

'n�
'��

'M�

M��n

Fig. 4. Normal stress state of slope.

�

�
x

Fig. 3. Sliding block along certain inclined plane.
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B
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��
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B

(a)

(b)

c

Fig. 5. Critical stress state at Point M on the slip surface: (a) driving
stresses; and (b) resisting stresses.
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forces on the macroscale, including all external loads acting on the
potential sliding body. From the view of the forces on the macro-
scope, the total driving forces T should be the projection of all exter-
nal loads PV þ PHð Þ on the global sliding direction d. Then, the
total driving forces T can be given by

T ¼ PV1PHð Þ � d (12)

From Eqs. (11) and (12), the total driving forces can be consid-
ered as

T ¼
ð
l
rs þ rnð Þdl � d (13)

Eq. (13) is the expression of total sliding forces, which is just the
denominator of Eq. (10). For the VSM, the component of total driv-
ing force T is the projection of all the loads on the macroscale in the
global sliding direction, which is the essential difference from con-
ventional methods in slope stability analysis.

Resisting Force

The critical stress state of the slope presented in Fig. 5(b) is consid-
ered as an example. In Fig. 5(b), rnc and rsc are the driving normal
and shear stress under the critical state at any Point M, which is
shown in black color, and r0nc and r0sc(gray color) are the resisting
normal and shear stresses.

At the moment the slope fails, the stress state is hard to deter-
mine. However, a reasonable assumption can be made to obtain the
stress under the critical state based on the failure mechanism of a
landslide. As is known, the internal stress can automatically adjust
to mobilize the maximum resisting capacity when the slope is about
to slide along a certain slip surface. In consequence, for the slope in
Fig. 4, if the slope is about to slide along the slip surface LAB, the
resisting force along the slip surface would be mobilized to be the
maximum value. Assuming that the strength of rock and soil mate-
rial complies with the Mohr-Coulomb yield criterion, the shear
strength at PointM under the limiting state can be given by

kr0sck ¼ cþ kr0nck tan w (14)

With respect to the direction of resisting shear stress, at the limit-
ing state, it is opposite to the direction of slip. Thus, in Fig. 4, at
Point M, only the normal stresses r0nc and rnc cannot be directly
obtained at the limiting state. Here, it is assumed the normal stresses
keep constant along the slip surface during the evolution process
from the normal to limiting state.

kr0nck5 krnk (15)

The maximum resisting force and driving force are the pair of
action and reaction. From Eqs. (13)–(15), the safety factor based on
force equation can be given by

Ff ¼

ð
l

cþ krnk tan wð Þ rs
krsk þ rn

� �
dl � dð

l
rs þ rnð Þdl � d

(16)

It can be seen that completely different from the popular LEM
and SRM, this method is a new approach to assess slope stability
from the vector characteristics of force and the global mechanics
analysis of the potential sliding body. Moreover, it has clear

physical meaning, and based on the current stress state of the slope,
the safety factor can be directly computed through stress integration
along potential slip surface rather than iterative computing.

Moment Equation

Fig. 6 presents a simple slope for moment calculation, where M is
any point on the slip surface, rM (black color) is the driving stress
vector, and r0M (gray color) is the resisting stress vector. Here, Point
O is assumed as the moment center, and the coordinate of the center
is (a, b) in Fig. 6.

According to the definition of moment, the safety factor by the
moment equation can be given by

Fm ¼ �Mr

Md
¼

�
ð
l
r� r0M
� �

dlð
l
r� rMð Þdl

(17)

where Fm = safety factor by the moment equation;Mr = total resist-
ing moment along the slip surface; and Md = corresponding total
driving moment.

The stress components of resisting plane stress can be assumed
as s 0

Mx on the x-axis and s 0
My on the y-axis; correspondingly, the

stress components of driving plane stress can be taken as sMx and
sMy. Furthermore, the coordinates of Point M on the slip surface are
considered as (x, y) in the x–y-coordinate system. Thus, Eq. (17) can
be simplified as the following scalar expressions:

Fm ¼ �Mr

Md
¼

ð
l

y� bð Þ � s 0
Mx � x� að Þ � ss 0

My

	 

dlð

l
x� að Þ � sMy � y� bð Þ � sMx

	 

dl

(18)

The deduced process is given in Appendix II, and Eq. (18) is the
scalar expression for the moment equation in the 2D problem.
Based on the previous mechanical analysis for a potential sliding
body, the safety factor by the moment equation can be easily calcu-
lated if themoment center is already determined.

Similar to the global sliding direction, the moment center is also
a key issue for the moment equation [Eq. (18)]. Thus, for the VSM,
the global sliding direction andmoment center should be reasonably
determined, or else the safety factor might be negative, which does
not make sense. With respect to the center of the moment, it is diffi-
cult to determine theoretically, and in this article, it is recommended
to be determined by the geometric shape of the potential slip sur-
face, which is explained in detail in the next section.

Classic Examples

In the previous section, the force and moment equations of the
VSM are demonstrated in detail. To verify the VSM, this method is

M

'�M

(a, b) 

r

�M

Fig. 6. Simple slope for the moment calculation.
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applied to classic examples with specified slip surfaces, which have
reference solutions for the slope stability.

Here, the FE method is used to get the stress field of the slope
composed of elastic or elastoplastic materials. The ideal elastoplastic
constitutive model, Mohr-Coulomb yield criterion, and nonassoci-
ated flow rule are used in the elastoplastic FE analysis; in addition,
the dilation angle is assumed to be zero during elastoplastic FE com-
puting. In the first two slope examples, only the self-weight of the
earthen mass is considered, and for the third case, the pore pressure
using the phreatic line inside the slope is taken into account. As is
known, the primary characteristics of the FE method are embodied
in the element stiffness matrix, which contains the geometric and
material behavior information that indicates the resistance of the ele-
ment to deformation when subjected to loading. The displacement
of the node is first obtained by solving a matrix equation, whereas
the stress, as the secondary quantity, is just expressed in terms of
nodal displacement. Although the stresses at the boundary of the ele-
ments are discontinued with low accuracy, there are several recovery
procedures for smoothed stress in the FE method to obtain reliable
stresses on the boundary of elements (Lo and Lee 1998). After
obtaining the node stress at the boundary of the element, the stress at
any position within an element can be calculated by

s ¼
Xn
i¼1

Nis i (19)

Ni ¼ 1=4 � 1þ j ijð Þ 1þ h ihð Þ (20)

where n = number of nodes of the element; Ni = shape function of
the nodal point i; s i = corresponding nodal stress; (j h ) = local
coordinate at any position in an isoparametric element; and
(j ih i) = local coordinate of Node i in a four-node isoparametric ele-
ment (Bathe 1996). It was found that any stress-smoothing tech-
nique is reliable (Lo and Lee 1998) and has almost no effect on the
results by the VSM, and the errors from different smoothing techni-
ques can be ignored.

Homogeneous Slope

This example is a slope stability benchmark example (Donald and
Giam 1992) by Australia Computer Association and Design
Society (ACADS), and the standard safety factor of the slope is 1.0
(i.e., the slope is a critical slope).

Calculating Conditions
The geometry of the slope is presented in Fig. 7, and the material
properties of the homogenous slope are provided in Table 1. For

computing conditions, the elastic model was adopted because this
example is a critical slope, for which the standard safety factor is
1.00, as recognized by ACADS. For the boundary conditions, the
bottom was fixed, and the lateral boundaries were normally re-
stricted. With respect to the slip surface, the specified critical slip
surface was utilized by rigorous the Morgenstern-Price method
with the half-sine function as the interslice force function (Fig. 7).
The calculating model of the FE analysis is presented in Fig. 8, and
the total element number was 636.

Results and Analysis
First, according to the force equation [Eq. (11)], the global sliding
direction of slope should be determined in advance. Based on the
approaches of global sliding direction [Eqs. (1) and (8)] and the lim-
iting stress state of the slope, the global sliding direction with differ-
ent approaches can be calculated, and then the safety factor with the
force vector equation can be computed.

For the moment equation of the VSM, the center of the moment
should be determined before calculating the safety factor by the
moment equation. The safety factor by the moment equation
expresses the possibility of the rotation to the center of the moment
for the sliding body, so the center of the moment is very closely
related to the shape of the potential slip surface, on which the

Fig. 7. Geometric model of standard example (unit: m).

Table 1.Material parameters

Parameter Value

c (kPa) 3.0
w (degrees) 19.6
g (kN·m–3) 20.0
E (kPa) 1.0� 104

m 0.25
c (degrees) 0

Fig. 8. Calculated model of FE analysis.

© ASCE 04019058-5 Int. J. Geomech.

 Int. J. Geomech., 2019, 19(6): 04019058 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
ot

tin
gh

am
 T

re
nt

 U
ni

ve
rs

ity
 o

n 
04

/1
4/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



forces acting on the sliding body are distributed. Therefore, the
geometric shape of a slip surface can be utilized to determine
the center of the moment. For a slip surface with any shape, it is
not difficult to define a circle using the key points on the slip sur-
face, and then the center of the circle can be considered as the cen-
ter of the moment.

Table 2 provides the calculated results of the VSM. It can be
seen that the global sliding angle using the assumption of Eq. (1) is
the same as that by the principle of minimum potential energy
[Eq. (8)], which proves that the theoretical basis of the previous
assumption is perfectly sound. As provided in Table 2, the safety
factors are consistent with the reference solution. For the force
equation, it is 0.998, which is slightly less than the reference safety
factor of 1.0, and it is 1.014 for the moment equation, which is
slightly more than 1.0.

For the center of the moment, it is straightforward to use the
points on the slip surface for defining a circle. The circle center can
be considered as the center of the moment. Fig. 9 presents the simu-
lated result using only three key points on slip surface, and the circle
center is at the location (41.17, 35.15). Additionally, as a compari-
son, most points on the slip surface were used to simulate a circle,
which is presented in Fig. 10. The moment center is at the location
(41.14, 35.09), which is almost at the same location as the center
using only three points on the slip surface. It can be concluded that
for a circular slip surface, any three points can be used to reasonably
decide the center of themoment.

Nonhomogeneous Slope with Circular Slip Surface

This example is from the Talbingo Dam in Australia and was
also collected by ACADS. Fig. 11 presents the geometry of the
dam; the dashed line is the specified circular slip surface. Table 3
gives the locations of key points in Fig. 11. Based on the key
locations of the dam, the center of the circular slip surface was
confirmed at (100.3, 290) by ACADS, and the radius of the circle
is 278.8m (Chen 2003). According to the key locations of the
dam, the calculated model with FE analysis was established
(Fig. 12).

Table 4 provides the parameters of the rockfill materials. For the
boundary conditions of the calculated model, only the bottom was
fixed, and other boundaries were free. Based on the process of the
VSM, the safety factors can be obtained by the force and moment
equations in this method, as provided in Table 5. Because the VSM
is based on only the stress state of the dam, the elastic stress state
and elastoplastic stress state with the dilation angle 0°can be used to
estimate the stability of the dam. The calculated results show that
the plastic zone only occurred in the shallow skin of the dam, and

Fig. 9. Simulated circle based on any three points on slip surface.

Fig. 10. Simulated circle based onmost points on slip surface.

Table 2. Calculated results with the VSM

Equation Results Value

Force equation Safety factor 0.998
Global sliding angle by Eq. (10) (degrees) 25.14
Global sliding angle by Eq. (24) (degrees) 25.14

Moment equation Safety factor 1.014
Center of moment (41.14, 35.09)

Reference answer Safety factor 1.00

Note: Sliding angle is the angle between the sliding direction and the hori-
zontal line.

Fig. 11. Geometry of the Talbingo Dam.

© ASCE 04019058-6 Int. J. Geomech.
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the safety factors are consistent using both the elastic stress state
and elastoplastic stress state of the dam. Table 5 provides the results
under the elastic stress state.

From the calculated results, it can be seen that the safety factor
with the moment equation is 2.33, slightly greater than the reference
solution of 2.29 given by ACADS. However, the safety factor with
the force equation is approximately 2.497, remarkably greater than
the reference solution. For this dam, the safety factor with the
moment equation controls the stability rather than that by the force
equation. Furthermore, the global sliding directions are also the
same by both the previous assumption and the principle of mini-
mum potential energy.

Slope with a Subhorizontal Weak Band and Varying
Phreatic Line

This problem was originally studied by Giam and Donald (1989)
with a slope incorporating a thin, steeply dipping weak soil layer
and a variable water table. Additionally, it is an unstable slope with
a factor of safety less than 1.0. In 2014, with the aim of using a
strength-reduction FE program for this problem, the slope was
updated, and the loading from the crest was removed; moreover, the
strength of the weak band was increased to create an initially stable
slope (Matthews et al. 2014).

Calculating Conditions
This slope was used to test the ability of the proposed procedure for
a noncircular slip surface. The geometry, phreatic line, and strata
are presented in Fig. 13. Based on the geometry of this slope, the
calculated model of the FE analysis was established (Fig. 14), with
a total element number of 1,744. For the boundary conditions of the
calculated model, the bottom was fixed, the lateral was pinned, and
the other boundaries were free. Table 6 provides the parameters of
the slope materials.

Results and Analysis
According to the theory of the VSM in the previous section, the
stress state of the slope using FE analysis has to be obtained, and for
this slope, the ideal elastoplastic constitutive model, Mohr-
Coulomb yield criterion, and nonassociated flow rule were used in
the elastoplastic FE analysis. Due to the influence of a weak band
inside the slope, the stability of this slope is controlled by a non-
circular slip surface. The critical noncircular slip surface was
determined by the previous study presented in Fig. 15, and the
key points along the slip surface from the crest to the front edge
are listed in Table 7. The calculated results are provided in
Table 8. It can be seen that the global sliding angle is 24.56°, the
center of the moment is at the location (30.68, 46.19) (Fig. 16),
and the safety factors using the force and moment equations are
1.097 and 1.153.

The calculated results for this slope with different methods are
summarized in Table 9. From these results, it can be seen that for a
noncircular slip surface, the safety factor determined by the FE
analysis is slightly greater than that by any other method, and the
safety factors by the proposed method are in good agreement with

Table 3. Coordinates of key points

Number of points X (m) Y (m)

1 0.0 0.0
2 315.5 162.0
3 319.5 162.0
4 321.6 162.0
5 327.6 162.0
6 386.9 130.6
7 394.1 130.6
8 453.4 97.9
9 460.6 97.9
10 515 65.3
11 521.1 65.3
12 577.9 31.4
13 585.1 31.4
14 648 0.0
15 168.1 0.0
16 302.2 130.6
17 200.7 0.0
18 311.9 130.6
19 307.1 0.0
20 331.3 130.6
21 328.8 146.1
22 310.7 0.0
23 333.7 130.6
24 331.3 146.1
25 372.4 0.0
26 347.0 130.6

Fig. 12. Calculated model of FE analysis.

Table 4.Materials parameters

Material c (kPa) w (°) c (°) g (kN·m–3) E [kPa (� 104)] m c (°)

Enrockment 0.0 45 0.0 20.4 5.0 0.30 0
Filter layer 0.0 45 0.0 20.4 5.0 0.30 0
Inverted layer 0.0 45 0.0 20.4 4.0 0.30 0
Core 85.0 23 0.0 18.1 1.0 0.44 0

Table 5. Calculated results with the VSM

Equation Result Value

Force equation Safety factor 2.497
Global sliding angle by Eq. (10) (degrees) 18.66
Global sliding angle by Eq. (24) (degrees) 18.66

Moment equation Safety factor 2.33
Center of moment (100.3, 290)

Reference answer Safety factor 2.29

Note: Sliding angle is the angle between the sliding direction and the hori-
zontal line.

© ASCE 04019058-7 Int. J. Geomech.
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those by the rigorous Morgenstern-Price method. It can be con-
cluded that any method in Table 9 can assess the stability of this
slope.

Discussion

1. In the conventional methods for slope stability analysis, the
safety factor of the slope is calculated using the iterative algo-
rithm in a force equilibrium or moment equilibrium equation.
However, considering the vector characteristics of force, the
VSM can directly assess the stability of the slope using force
and moment equations based on the global sliding direction
and the center of the moment. Although the calculated results
of classic examples verified the VSM for the 2D problem, fur-
ther study of 3D problems is necessary.

2. For the FE strength-reduction technique in slope stability anal-
ysis, much computational time is demanded because reiterative
computing with different strength parameters is required until

Fig. 13. Geometry of the slope with a subhorizontal weak band and varying phreatic line.

Fig. 14. FE calculated model of the slope.

Table 6.Material parameters

Material
Cohesion
[c (kPa)]

Friction
angle
[w (°)]

Dilation
angle
[c (°)]

Density
[g (kN·m–3)]

Young’s
modulus
[E (kPa)]

Poisson’s
ratio
(m )

Soil 1 20.0 28.5 0.0 18.84 1.0e2 0.30
Soil 2 10.0 15.0 0.0 18.84 1.0e2 0.30

Fig. 15. Noncircular slip surface determined byMatthews et al. (2014).

Table 7. Coordinates of key points for noncircular slip surface

X (m) Y (m)

22.69 17.75
26 16.25
27.90 16.20
46 21.20
49.80 22.80
56 30

Table 8. Calculated results with the VSM for noncircular slip surface

Equation Result Value

Force equation Safety factor 1.097
Global sliding angle by Eq. (10) (degrees) 20.555
Global sliding angle by Eq. (24) (degrees) 20.555

Moment equation Safety factor 1.153
Center of moment (30.68, 46.19)

© ASCE 04019058-8 Int. J. Geomech.
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the slope reaches the critical state, and assessment of the stabil-
ity is thus a time-consuming process, especially in a 3D prob-
lem with complex conditions. The VSM can overcome this
drawback because the stress field is easily obtained by numeri-
cal analysis and because of the simple calculation of the safety
factor based on the stress field of the slope. However, it is still
necessary to search the critical slip surface, just like in the
methods based on the stress state of the sliding body mentioned
in the Introduction.

3. The global sliding direction is the key issue in the VSM. In this
study, the global sliding direction was deduced by the principle
of minimum potential energy, which provides a rigorous theory
to solve this issue. In addition, for the three cases shown previ-
ously, it is very interesting that the sliding directions found by the
previous assumption are the same as those found by this theory.
Because the ultimate stress state of the slope is unknown, it has to
be assumed based on the potential sliding failure mode and me-
chanical characteristics under the ultimate state in practical engi-
neering [Eq. (1)]. Meanwhile, as shown in Eq. (9), the sliding
direction deduced by this theory still depends on the stress state
and the geometric shape of the slope. Therefore, this interesting
phenomenon is rooted in the same ultimate stress state of the
slope from practical engineering knowledge and the potential
sliding failure mode of the slope. Thus, a thorough mastery of the
potential sliding failure mode and mechanism of the slope is of
significance to perform the slope stability analysis.

Conclusion

1. Compared with existing methods in slope stability analysis,
the highlight of the proposed VSM is that it considers both the
magnitude and direction of the force in the global sliding
direction rather than only the scalar characteristics of the force

as in other methods. Moreover, this method directly compares
the projection of the total resisting force with the total sliding
force in the global sliding direction and compares the resisting
moment with the driving moment at the center of the moment.
It thus has clear physical meaning for a slip surface of any
shape and can be used to compute the factor of safety explic-
itly. Additionally, the slope with complex conditions can
be directly assessed by this method based on only the actual
stress state of the slope found by any numerical analysis
method.

2. This article emphasizes the sliding direction using the principle
of minimum potential energy, which supplies rigorous theory
for the global sliding direction. In addition, the moment equa-
tion of the VSM is still put forward, which improves this
method.

3. The VSM was applied in classic examples with specified slip
surfaces. The calculated results show that the safety factors of
the VSM are consistent with the reference solutions, which
demonstrates the accuracy of the VSM.

Appendix I. Deduced Process of Sliding Direction

In Eq. (2), b is the body force, and r is the stress tensor. For a 2D
problem, they can be expressed as

b ¼ 0
g

� �
(21)

r ¼
rx sxy

sxy ry

" #
(22)

And for a 3D problem, they can be expressed as

b ¼
0

0

g

2
664

3
775 (23)

r ¼
rx sxy sxz

sxy ry syz

sxz syz rz

2
664

3
775 (24)

Fig. 16. Center of moment using key points.

Table 9. Comparison of results with different methods for the slope

Method Safety factor

FE analysis 1.181
Limit-equilibrium method 1.112
Vector-sum method

Force equation 1.097
Moment equation 1.153
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For a 2D problem, the global sliding direction can be expressed
by the sliding angle u as

d ¼
cos u

sin u

" #
(25)

where u = sliding angle, defined as the inclined angle from the x-
axis to the global sliding direction. Then, the displacement of the
slope ds can be expressed as

ds ¼ d� dnn ¼
cos u

sin u

" #
� nx ny

	 
 cos u

sin u

" # !
nx

ny

" #

(26)

That is

ds ¼ d� dnn ¼
1� n2x �nxny

�nxny 1� n2y

2
4

3
5 cos u

sin u

" #
(27)

Eq. (27) is substituted into Eq. (7), giving

ð
l
sMx sMy
	 
 n2x � 1 nxny

nxny n2y � 1

2
4

3
5 sin u

�cos u

" #
dl ¼ 0 (28)

where sMx and sMy = components of rM on the x- and y-axes. The
equation can be simplified, and the sliding direction can be finally
obtained as Eq. (9).

Appendix II. Deduced Process of Moment Equation

According to the definition of a moment, the magnitude of the
moment of the acting force at a certain point is directly propor-
tional to the distance from the point to the force. It is defined as the
cross product of the acting force vector F and the distance vector
r, and based on the right-hand rule, the moment can be calculated
by

M ¼ r� F (29)

where distance vector r = vector from the moment point to the act-
ing point of the force. For the simple slope in Fig. 6, the resisting
moment at Point M on a slip surface can be calculated as

Mr ¼ r� r0M (30)

Similarly, the driving moment at Point S can be obtained by

Md ¼ r� rM (31)

For a 2D problem, the scalar expression can be deduced. Thus,
Eqs. (27) and (28) can be simplified as the following scalar
expressions:

Mr ¼ r� r0M ¼ s 0
My � x� að Þ � s 0

Mx � y� bð Þ (32)

MSd ¼ r� rS ¼ s sy � x� að Þ � s sx � y� bð Þ (33)

Therefore, the safety factor by the moment equation can be
finally obtained as Eq. (19).
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