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Estimation of Elastic Compliance Matrix of Rock Mass
Containing Penny-Shaped Fractures
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Abstract: In geotechnical engineering, fracture fillings or rough fracture surfaces often resist deformation and enhance the equivalent elastic
moduli of fractured rock masses. In this study, the normal stiffness and shear stiffness of penny-shaped fractures were incorporated into the
open-fracture model to account for the normal and shear resistance of fracture fillings. Based on the derived displacements of a penny-shaped
fracture incorporating fracture stiffness, the compliance matrices of two special fracture distributions, the parallel distribution and random dis-
tribution, were obtained. The analytical results show that three-dimensional (3D) models predicted larger elastic moduli than the correspond-
ing two-dimensional (2D) models, and models considering fracture stiffness predicted larger elastic moduli than the open-fracture models.
Elastic moduli were underestimated by 30–40% in a 2D open-fracture model comparedwith the result of the corresponding 3Dmodel. The dif-
ference in elastic moduli between 2D and 3D models was found to decrease when the fracture stiffness was considered. In the present study,
the difference was less than 15%.DOI: 10.1061/(ASCE)GM.1943-5622.0001385.© 2019 American Society of Civil Engineers.
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Introduction

The elastic compliance matrix of a fractured rock mass is an impor-
tant parameter in the stability analysis of civil and mining structures
built in or on rock masses. Several methods are commonly used to
estimate the elastic moduli of fractured rock masses, including in
situ tests (Bieniawski 1978), empirical methods based on rock-mass
classification (Palmstrøm 1996; Barton 2002; Zhang and Einstein
2004; Hoek and Diederichs 2006), numerical methods based on
explicit fracture representation (Kulatilake et al. 1993; Min and Jing
2003; Esmaieli et al. 2010; Yang et al. 2014; Gutierrez and Youn
2015; Farahmand et al. 2018), and analytical methods (Amadei and
Goodman 1981; Cai and Horii 1992; Hu and Huang 1993; Huang
et al. 1995; Li 2001; Wang and Huang 2009; Agharazi et al. 2012;
Yang et al. 2016, 2018). Analytical solutions have the advantage of
being compact, clear, and straightforward.

The equivalent elastic constants of fractured bodied are studied
extensively in the framework of the energy-equivalence method or
the strain-average method (Budiansky and O’Connell 1976; Horii
and Nemat-Nasser 1983; Oda et al. 1984; Hudson 1994; Grechka
2005; Saenger et al. 2004; Takekawa et al. 2014). An important step
in the process is to calculate the energy loss or the additional strain
produced by a single isolated fracture, in which the fracture resis-
tances are the key. The fracture resistances are treated in different
ways in different fracture models:
1. For persistent fractures, the normal stiffness and shear stiffness

of fractures are commonly set as finite values to represent the
compressive and shear resistances (Amadei and Goodman
1981; Huang et al. 1995; Wang and Huang 2009; Agharazi
et al. 2012).

2. For nonpersistent fractures, the fracture is mostly assumed to
be liquid filled in geophysics, relating to the seismic characteri-
zation of the fractured reservoir (Bakulin et al. 2000; Berryman
2007; Hall and Wang 2012; Saxena and Mavko 2015), or is
assumed to be a gas filled in geotechnics, where the fracture
stiffness is zero (Budiansky and O’Connell 1976; Kemeny and
Cook 1986).
The open-fracture model in geotechnics is suitable for frac-

tures under tensional stress (Hu and Huang 1993) or stress suffi-
ciently small so as not to produce contact between the opposite
fracture surfaces (Budiansky and O’Connell 1976). For fractures
under compression, closure effects and slip friction of fracture
surfaces may cause load-induced anisotropy in elastic moduli,
and the closed fracture, whose stiffness is infinitely great, is then
taken into account (Horii and Nemat-Nasser 1983; Kachanov
1993).

Compared to the ideal situations in which the stiffness of non-
persistent fractures is zero or infinitely great, the normal stiffness
and shear stiffness of nonpersistent fractures are finite values in
practical engineering because of the mismatch of fracture surfaces
and/or the fracture fillings, which may be naturally formed or man-
ually produced during construction processes, such as grouting and
shotcrete. Considering the finite stiffness of two-dimensional (2D)
nonpersistent fractures, Yang et al. (2016) analytically studied the
displacement jumps of fractures and the directional elastic moduli
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of the fractured rock mass. Furthermore, the compliance matrices of
rock masses containing 2D nonpersistent fractures were derived
based on the energy-equivalence method and the strain-average
method (Yang et al. 2018). However, these studies were limited to
2D rectilinear fractures and rock masses. For three-dimensional
(3D) nonpersistent fractures and rock masses, the effects of fracture
stiffness are still not included in the analytical estimation of equiva-
lent compliance matrices.

In this article, the mean normal and shear displacements of a
penny-shaped fracture considering fracture stiffness are first
derived. Then, the general expressions of a compliance matrix
for a rock mass containing penny-shaped fractures are obtained
in the framework of the strain-average method. Compliance mat-
rices of two special fracture distributions, the parallel and ran-
dom distribution, are further derived. Finally, the errors of elas-
tic moduli are estimated between the derived 3D fracture model,
the 3D open-fracture model, and the corresponding 2D fracture
models.

Displacement of Penny-Shaped Fractures
Considering Fracture Stiffness

From the theory of linear-elastic fracture mechanics, the normal dis-
placement of a penny-shaped fracture is given by Eq. (1) (Gross and
Seelig 2006),

u ¼ 2 1� y 0ð Þs n

pG0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
(1)

Eq. (1) is valid for open fractures. When the normal stiffness of a
fracture is considered, the normal compliance is reduced because
the stress sn in Eq. (1) is reduced to an effective value s e. So, for a
penny-shaped fracture considering normal stiffness, the normal dis-
placement is

u ¼ 2 1� y 0ð Þs e

pG0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
(2)

where s e ¼ s n � s k; s k ¼ 2Knu; and Kn = normal stiffness of the
fracture.

From Eq. (2), it can be seen that the displacement along the frac-
ture radius is complicated, and it is cumbersome to obtain the mean
displacement, which will be used to estimate the compliance tensor
of the rock mass. The displacement can be assumed to be uniform
for a 2D rectilinear fracture when the fracture stiffness is considered
(Yang et al. 2016). In this article, the displacement along the frac-
ture radius is also assumed to be uniform for a 3D penny-shaped
fracture. Thus, s k and s e are uniform from the equations s k ¼
2Knu and s e ¼ s n � s k.

The mean displacement �u of a fracture is estimated from Eq. (2)
as

�u ¼ 1
A

ð
A
udA ¼ 4 1� y 0ð Þa

3pG0
� s e (3)

Also,

s e ¼ s n � s k ¼ s n � 2Kn�u (4)

Substituting Eq. (4) into Eq. (3), the mean normal displacement
of a penny-shaped fracture considering normal stiffness can be
obtained as

�u ¼ B1s n (5)

where B1 ¼ 4 1� y 0ð Þa½ �= 8Kn 1� y 0ð Þaþ 3pG0½ �.
Following the same procedure, the mean shear displacement of a

penny-shaped fracture considering shear stiffness is

�v ¼ B2t s (6)

where B2 ¼ 8 1� y 0ð Þa½ �= 16Ks 1� y 0ð Þaþ 3pG0 2� y 0ð Þ½ �.
The mean displacements in Eqs. (5) and (6) reduce to the classic

analytical results for an open fracture by setting the normal stiffness
and shear stiffness to zero.

ComplianceMatrix of RockMass Containing Penny-
Shaped Fractures

For an elastic body containing fractures, the average strain tensor is
related to the average stress tensor through an elastic compliance
tensorDijkl as follows:

ɛij ¼ Dijkls kl i; j; k; l ¼ 1; 2; 3ð Þ (7)

Dijkl consists of two parts: the firstMijkl depends on the elasticity
of intact rock without any fractures, whereas the second Cijkl repre-
sents the correction factor related to the existing fractures

Dijkl ¼ Mijkl þ Cijkl (8)

Using the divergence theorem, Horii and Nemat-Nasser (1983)
proved thatCijkl satisfies the following:

Cijkls kl ¼ 1
V

ð
2A allð Þ

1
2

uinj þ ujnið ÞdA (9)

where V = total volume of the fractured body; 2A allð Þ = total surface
area of all fractures (every fracture consists of two surfaces, each of
which has an area A); ui; uj (i; j ¼ 1; 2; 3) are the components of a
displacement vector; and ni; nj = components of a unit vector nor-
mal to fracture surfaces.

For each flat, penny-shaped fracture, ni; nj are constant along its
surface. The contribution of each fracture on Cijkl is derived by Oda
et al. (1984) as

1
2V

ð
2A

uinj þ ujnið ÞdA ¼ A
2V

d inj þ d jnið Þ (10)

where d i =mean displacement jump, defined by

d i ¼ 1
A

ð
2A
uidS ¼ 2�ui (11)

Thus, in a rock mass containing m Vð Þ penny-shaped fractures,
Cijkl can be estimated by summing the contributions of all fractures
inside volumeV from Eq. (9), as follows:

Cijkls kl ¼ A
2V

Xm Vð Þ

k¼1

d inj þ d jnið Þ (12)

To express the term d inj þ d jni in Eq. (12), two coordinate
systems are defined in Fig. 1. The local coordinate system (n, s, t)
is defined on the fracture surface: n is normal to the fracture sur-
face, and s and t are in-surface axes. The rotation matrix a is

© ASCE 06019007-2 Int. J. Geomech.
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used to translate d n; d s; d t(d n ¼ d 10 ; d s ¼ d 20 ; d t ¼ d 30 in the
local coordinate system) to d i; d j (i; j ¼ 1; 2; 3) in the global
coordinate system. The rotation matrix b is used to express

s n; t s; t t (sn ¼ s1010 ; t s ¼ s 1020 ; t t ¼ s1030 ) in Eqs. (5) and (6)
from s ij in the global coordinate system. Thus, d inj þ d jni can
be expressed as

d inj þ d jni ¼ aik0d k0nj þ ajl0d l0ni ¼ ai10d 10 þ ai20d 20 þ ai30d 30ð Þnj þ aj10d 10 þ aj20d 20 þ aj30d 30
� �

ni

¼ 2 B1ai10s 1010 þ B2ai20s1020 þ B2ai30s 1030ð Þnj þ 2 B1aj10s1010 þ B2aj20s1020 þ B2aj30s1030
� �

ni

¼ 2 B1 ai10nj þ aj10nið Þb 10kb 10l þ B2 ai20nj þ aj20nið Þb 10kb 20l þ B2 ai30nj þ aj30nið Þb 10kb 30l
� �

s kl

(13)

From Eqs. (12) and (13), the elastic compliance tensor for arbi-
trarily distributed penny-shaped fractures can be obtained.

Rock Masses Containing Sets of Penny-Shaped
Fractures

Summation and Transformation of the Fracture Compliance
Tensor
For rock masses containing several sets of fractures, the fracture
compliance tensor [Cijkl in Eq. (8)] can be determined by the sum-
mation of the compliance tensors for each fracture set (Fracture Set
1, Fracture Set 2, …, Fracture Set N) in the global coordinate sys-
tem, as follows:

Cijkl ¼ Cset1
ijkl þ :::þ CsetN

ijkl (14)

For each fracture set, the compliance tensor in the local coordi-
nate system can be transferred to the global coordinate system. In

practical usage, the compliance tensor is often expressed as a 6� 6
compliance matrix (S), as shown in Eq. (15). Accordingly, a 6� 6
matrix [T in Eq. (16)] is introduced for the transformation of the
compliance matrix between the global and local coordinate systems
(Min and Jing 2003). The meanings of the symbols in T are given in
Table 1. Eq. (17) shows the transformation formula, where S and S0

are the compliance matrix in the global and local coordinate sys-
tems, respectively.

ɛxx

ɛyy

ɛzz

ɛyz

ɛxz

ɛxy

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

s xx

s yy

s zz

t yz

t xz

t xy

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(15)

T ¼

l21 m2
1 n21 2m1n1 2n1l1 2l1m1

l22 m2
2 n22 2m2n2 2n2l2 2l2m2

l23 m2
3 n23 2m3n3 2n3l3 2l3m3

l2l3 m2m3 n2n3 m2n3 þ n2m3 n2l3 þ l2n3 l2m3 þ m2l3

l3l1 m3m1 n3n1 m3n1 þ n3m1 n3l1 þ l3n1 l3m1 þ m3l1

l1l2 m1m2 n1n2 m1n2 þ n1m2 n1l2 þ l1n2 l1m2 þ m1l2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(16)

S ¼ TS0T�1 (17)

Elastic Compliance Matrix of One Set of Parallel Fractures
For one set of parallel penny-shaped fractures, the fracture compli-
ance tensor (Cijkl) can be obtained easily from Eqs. (12) and (13) by
setting the local coordinate system (n, s, t) to coincide with the global
coordinate system (x, y, z), as presented in Fig. 2. Furthermore, the
fracture compliance matrix S can be obtained by comparing compo-
nents of S from Eq. (15) and components ofCijkl from its tensor form
ɛij ¼ Cijkls kl. For one set of fractures, presented in Fig. 2, the results
of S11, S55, and S66 are obtained and presented in Eqs. (18)–(20).
The other components in S are zero. Thus, the fracture compliance

matrix for one set of penny-shaped fractures considering fracture
stiffness is expressed in Eqs. (18)–(21).

S11 ¼ C1111 ¼ 8rp 1� y 0ð Þa3
8Kn 1� y 0ð Þaþ 3pG0

(18)

S55 ¼ C1313 þ C1331 ¼ 8rp 1� y 0ð Þa3
16Ks 1� y 0ð Þaþ 3pG0 2� y 0ð Þ (19)

S66 ¼ C1212 þ C1221 ¼ 8rp 1� y 0ð Þa3
16Ks 1� y 0ð Þaþ 3pG0 2� y 0ð Þ (20)

© ASCE 06019007-3 Int. J. Geomech.
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Sparallel ¼

S11
0

0
0

S55
S66

0
BBBBBB@

1
CCCCCCA

(21)

Eqs. (18)–(21) reduce to the result of open fractures by setting
Kn ¼ Ks ¼ 0 (Kachanov 1993). For persistent fractures, Eqs. (18)–
(21) reduce to the closed-form results of Amadei and Goodman
(1981) by setting the fracture density as r ¼ L=dð Þ= pa2Lð Þ� �

¼
1=pa2d
� �

and the fracture radius a as infinitely large.

Comparison of Elastic Moduli of One Set of Fractures between
3D and 2DModels
First, consider parallel penny-shaped fractures of a given ra-
dius a (Fig. 2); the intersection of a penny-shaped fracture
with the x,z cutting plane is a chord (2D fracture) of length 2
a2D. Because the 3D fractures are uniformly distributed in
space, the fractures close to the x,z cutting plane within a cer-
tain distance (in the special case as illustrated in Fig. 2, the
distance is a) should intersect the cutting plane, and the dis-
tance rd of the chord to the fracture center is uniformly distrib-
uted. Thus, the number of 3D fractures intersecting the cutting
plane with the square L2 is 2L2ar , and the 2D fracture density
(defined as the number of 2D fractures per square meter) can
be obtained as

r 2D ¼ 2L2ar=L2 ¼ 2ar (22)

where rd is related to a2D by the relation a2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2d

q
. The aver-

age half length of the chords ha2Di is derived in Eq. (23), which is a
special case of Berkowitz and Adler’s (1998) result.

ha2Di ¼
ða
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2d

q
a

drd ¼ pa
4

(23)

Using Eqs. (22) and (23) and the compliance matrix of 2D non-
persistent fractures (Yang et al. 2018), the compliance matrix of the
corresponding 2D trace map can be estimated.

A case study was performed on a rock mass, and the parame-
ters of the material are listed in Table 2. The obtained directional
elastic moduli in the x,z-plane are plotted in Fig. 3. The elastic
moduli of the 3D open-fracture model and the results of the corre-
sponding 2D models are also plotted in Fig. 3 for comparison.
The results show that the elastic modulus was equal to the value
of intact rock in the orientation parallel to the fracture surface
(z-axis) and decreased quickly when the orientation deviated
from the z-axis. Compared with the open-fracture model, the pro-
posed model considering fracture stiffness predicted larger elastic
moduli, especially in the p=4 angular range around the fracture
normal direction (x-axis; Fig. 3). The elastic moduli of the corre-
sponding 2Dmodels present a similar evolution to the 3D models,
but the values of elastic moduli are smaller than those of the 3D
models. The 2D open-fracture model underestimated the elastic
moduli by 31% compared with the corresponding the 3D model.
With consideration of the fracture stiffness, the underestimation
percentage was 11%.

Rock Masses Containing Randomly Distributed Penny-
Shaped Fractures

For randomly distributed penny-shaped fractures, the number of
fractures (dN) having unit normal vectors oriented inside a small
solid angle dX (Fig. 4) around n is Vr=2pð ÞdX. Thus, Eq. (10)
becomes

A
2V

d inj þ d jnið ÞdN ¼ ra2

4
d inj þ d jnið ÞdX (24)

Integrating Eq. (24) over 0 � X=2 � 2p , it becomes the right
side of Eq. (9) because all fractures are taken into account. Using
Eq. (13) results inpenny-shaped fracture

Fig. 1. Global coordinate system (x, y, z) and local coordinate system
(n, s, t).

Table 1. Symbols for the directional cosines in rectangular x,y,z-axes and
n,s,t-axes

Axis

Axis

x y z

n l1 l2 l3
s m1 m2 m3

t n1 n2 n3

(East)

(North)

(Upper)

Fig. 2. Rock mass containing one set of penny-shaped fractures (the
fractures are parallel with the y,z-plane).

© ASCE 06019007-4 Int. J. Geomech.
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Cijkl ¼ ra2

2

ð
X=2

B1 ai10nj þ aj10nið Þb 10kb 10l þ B2 ai20nj þ aj20nið Þ � b 10kb 20l þ B2 ai30nj þ aj30nið Þb 10kb 30l
� �

dX (25)

ComponentC1111 is related to the elastic modulus, as follows:

C1111 ¼ ra2

2

ð
X=2

B1 a110n1 þ a110n1ð Þb 101b 101 þ B2 a120n1 þ a120n1ð Þb 101b 201 þ B2 a130n1 þ a130n1ð Þb 101b 301
� �

dX

¼ ra2

2

ð
X=2

2B1n1a110b
2
101 þ 2B2n1a120b 101b 201 þ 2B2n1a130b 101b 301

� �
dX

¼ ra2
Ð p=2
0 sin u du

Ð 2p
0 dw B1 sin 4u cos 4w þ B2 sin 2u cos 2u cos 4w þ B2 sin 2u sin 2w cos 2w

� �

¼ rpa2
2
5
B1 þ 4

15
B2

	 

(26)

Submitting B1 and B2 into Eq. (26), the effective elastic modulus
of randomly distributed penny-shaped fractures is obtained as

1
E
¼ 1

E0
þ 16rp 1� y 20

� �
a3

80Kn 1� y 20
� �

aþ 15pE0

þ 64rp 1� y 20
� �

a3

480Ks 1� y 20
� �

aþ 45pE0 2� y 0ð Þ (27)

For open fractures (Kn ¼ Ks ¼ 0), Eq. (27) confirms the result
of Kemeny and Cook (1986), as follows:

Table 2. Parameters of intact rock and fractures

Property Value

Elastic modulus (GPa) 50
Poisson’s ratio 0.25
Fracture dip/dip angle (degrees) 90/90
Fracture normal stiffness (GPa/m) 50
Fracture shear stiffness (GPa/m) 10
Penny-shaped fracture density (m3) 1
Penny-shaped fracture radius (m) 1

x

y

z

ϕ

θ
sin
d

d dθ θ ϕ
Ω=

1r =

n

Fig. 4. Half-unit sphere to define the solid angle dX.

  10GPa

  20GPa

  40GPa

  50GPa

30°

60°

90°(z-axis)

120°

150°

180° 0°(x-axis)

  30GPa

3D, Kn=Ks=0
3D,Kn=50, Ks=10

2D,Kn=Ks=0

2D,Kn=50, Ks=10

45°

Fig. 3. Comparison of elastic moduli of rock mass containing one set of fractures.
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1
E
¼ 1

E0
þ 16ra3 1� y 20

� �
10� 3y 0ð Þ

45E0 2� y 0ð Þ (28)

The relationships between a 3D fracture network and the
corresponding 2D trace maps were systematically analyzed by
Berkowitz and Adler (1998). For randomly distributed penny-
shaped fractures, the deduced 2D fracture density (r2D) and average
half-trace length (ha2Di) are

r2D ¼ pra
2

(29)

ha2Di ¼ pa
4

(30)

The elastic modulus of 2D fractured rock masses containing
fracture stiffness is (Yang et al. 2016)

1
E
¼ 1

E0
þ r2Dpa22D

4
3

Knpa2D þ E0
þ 1
Kspa2D þ E0

	 

(31)

To estimate the compliance of fractured rock, a rock mass
containing randomly distributed penny-shaped fractures is con-
sidered here, and the mechanical parameters of the materials
were chosen from the previously studied case (Table 2). Figs. 5(a
and b) present the variation of elastic moduli with fracture den-
sity r and fracture radius a, respectively. The models considering
fracture stiffness predicted larger elastic moduli than the open-
fracture models, and the 3D models predicted larger elastic

moduli than the corresponding 2Dmodels. As presented in Fig. 5(a),
the maximum decrease of the elastic moduli from 3D to 2D open
fracture model was 36%, and it was 13% for the resistant-fracture
model. As presented in Fig. 5(b), the maximum decreases were 40%
and 11% for the open-fracture model and resistant-fracture model,
respectively. These results imply that when the 2D outcrop trace
map and 2D open-fracture model are used to estimate the equivalent
elastic modulus of rock masses, the elastic modulus will be underes-
timated by 30–40% compared with the 3D model result. If fracture
stiffness is considered, the difference between the 2D and 3D results
will decrease. As fracture stiffness increases, the 2D result will grad-
ually approach the 3D result. For the present study, the difference
between 2D and 3D results was less than 15%.

Conclusions

1. In geotechnical engineering, the fracture fillings or rough frac-
ture surfaces often resist deformation. In this study, the normal
and shear stiffness of fractures were incorporated into the open-
fracture model to account for the normal and shear resistance of
fractures. The displacements of penny-shaped fractures incor-
porating fracture stiffness were derived. As fracture stiffness
reduced to zero, the displacements reduced to the theoretic
results of an open fracture.

2. The elastic compliance tensor of arbitrarily distributed fractures
was derived based on the proposed fracture-displacement expres-
sions. The compliance matrices of two special fracture distribu-
tions, the parallel and random distribution, were obtained. Using
the parallel distribution result, the elastic compliance matrix of
rock masses containing several sets of penny-shaped fractures
can be estimated by summation of the compliance matrix of each
fracture set in the global coordinate system.

3. By analyzing 3D fracture networks and corresponding 2D trace
maps, the elastic moduli between 3D and 2D models were com-
pared. The elastic moduli of open fractures were also studied to
investigate the influence of fracture stiffness. The results show
that 3D models predicted larger elastic moduli than the corre-
sponding 2D models, and models considering fracture stiffness
predicted larger elastic moduli than open-fracture models. The
elastic moduli from 2D open-fracture models were underesti-
mated by 30–40% relative to the 3D models. The difference in
elastic moduli between 2D and 3D models was found to
decrease with consideration of fracture stiffness. In the present
study, the difference was less than 15%.

4. The simplified fracture model adopted in the present study does
not consider the complexity of real fracture shapes (Zhang and
Einstein 2010), the nonlinearity of fracture deformation behav-
ior (Bandis et al. 1983), and the interaction between neighbor-
ing fractures (Kachanov 1993). The derived expressions will be
improved in the future to estimate the compliance matrix of
rock masses in the nonelastic range.
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Notation

The following symbols are used in this paper:
A ¼ area of penny-shaped fracture;
a ¼ radius of penny-shaped fracture;

a2D ¼ half length of 2D fracture;
Cijkl ¼ components of elastic compliance tensor of

fractures;
Dijkl ¼ components of elastic compliance tensor of

rock mass;
d ¼ spacing of parallel persistent fractures;
E ¼ effective deformation modulus of fractured

rock mass;
E0 ¼ Young’s modulus of intact rock;
G0 ¼ shear modulus of intact rock;
Kn ¼ fracture normal stiffness;
Ks ¼ fracture shear stiffness;

Mijkl ¼ components of elastic compliance tensor of
intact rock;

ni; nj ¼ components of fracture normal vector;
r ¼ distance from fracture center to a point in the

fracture surface;
S ¼ compliance matrix of fractures;
T ¼ transformation matrix;

u,v ¼ normal and shear displacement of fracture face;
�u,�v ¼ average normal and shear displacement of

fracture face;
ui; uj ¼ components of fracture displacement;

V ¼ volume of the fractured body;
a,b ¼ rotation matrix;

d i; d j ¼ mean displacement jump of fracture;
�0 ¼ Poisson’s ratio of intact rock;
r ¼ density of penny-shaped fractures, defined as

the number of fracture central points per unit
volume;

r2D ¼ density of 2D fractures, defined as the number
of fracture central points per unit square;

s e ¼ effective normal stress acting on fracture faces;
s k ¼ normal stress acting on fracture due to frac-

ture stiffness;
s n ¼ resolved normal stress on fracture plane from

far-field stress; and
t s ¼ resolved shear stress on fracture plane from

far-field stress.
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