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Summary

With the development of the generalized/extended finite element method for
fracture problems, the accurate and efficient integration of singular enrichment
functions has been an open issue, especially for the 3D case. In this paper,
we reveal the near singularities caused by distorted integral patch/cell shape
numerically and theoretically during the implementation of generalized Duffy
transformation, and the Duffy-distance transformation is developed step by
step for the 2D and 3D vertex singularities. Meanwhile, the 3D conformal pre-
conditioning strategy is constructed to eliminate the near singularity caused
by element shape distortion during the iso-parametric transformation, which
enables the Duffy-distance transformation to be applicable for arbitrary shaped
tetrahedral elements. As a result, the near singularities can be fully or partly can-
celed depending on the order of singularity. The implementation of the proposed
scheme in existing codes is straightforward. Numerous numerical examples
for arbitrary shaped triangles and tetrahedrons are presented to demonstrate
its robustness and efficiency, along with comparisons to the generalized Duffy
transformation.
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1 INTRODUCTION

In standard finite element method (FEM), shape functions are usually based on polynomials, and the Gauss quadrature is
widely used to integrate polynomial functions exactly with an appropriate number of evaluation points. However, it is not
able to provide fast and accurate integration for fracture problems due to the need to integrate singular functions at the
crack tip. The development of the generalized FEM (GFEM)1,2 and the extended FEM (XFEM)3-5 presents an elegant and
efficient solution to this issue, as well as the numerical manifold method.6-9 The fundamental idea of these methods is to
enrich the approximation space with a priori knowledge of local solution space via the partition of unity method,10 such
as the asymptotic property of displacement field (ie, u∼r1/2) around the crack tip in the linear elastic fracture mechanics
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(LEFM). In consequence, the strain-displacement matrix contains the O(1∕
√

r) singularity, and therefore, some entries
in the element stiffness matrix have O(1∕

√
r) and O(1/r) singularities, which are very harmful for the convergence of

integrations. Similarly, some other orders of O(1/r𝛼) singularities have also been addressed for different situations in
literature, such as HRR crack-tip field,11 hydraulic fracture,12 and parametric enrichment for singular problems.13

Standard Gauss quadrature fails to evaluate these integrals owing to its discontinuity and various orders of singu-
larities. To obtain accurate numerical integration of such integrals, subdivision into conforming subdomains and high
order Gauss quadrature is necessary,4,5 which lead to increase of computational cost. Therefore, numerous efforts have
been devoted to this critical problem,14-31 among which the variable transformation methods seem to be more promis-
ing due to their accuracy and straightforward implementation, such as the well-known Duffy transformation20 and the
polar coordinate transformation. The determination of the transformation Jacobian plays the role to cancel or weaken the
singularity. Laborde et al21 triangulate the element with the singular point inside and then applied the Duffy transforma-
tion to integrate singular functions for each subdomain. Mousavi and Sukumar22,23 show that the Duffy transformation
is efficient for O(1/r) singularity, but not as efficient for O(1/r𝛼) singularity when 𝛼 ≠ 1, and then generalize the Duffy
transformation to power singularities of the form O(1/r𝛼) for triangles and pyramids. Moreno et al24-26 present a general
and systematic framework for singular transformations, with specific treatment of the radial and angular variables for
3D case. Béchet et al27 utilize an improved polar coordinate by incorporating a parabolic transformation and propose a
superposition technique to integrate on elements that are not containing the singularity. Park et al28 use another varietal
polar coordinate mapping proposed by Nagarajan and Mukherjee29 and generate it into 3D crack problems. Minnebo30

presents extensions of the existing Duffy and parabolic transformations to integrate singular functions in 3D, taking into
account all configurations of singularity location. However, the accurate and efficient integration of singular enrichment
functions has still been an open issue in the GFEM/XFEM literature,31 especially for the 3D case.

Unlike the weak vertex singularity, less attention has been devoted in current literature to the near singularities caused
by distorted integral patch/cell shape, which have been well addressed in the boundary element method (BEM).32-39 In
this paper, we reveal the near singularities caused by distorted integral patch/cell shape numerically and theoretically
during the implementation of generalized Duffy transformation, and the Duffy-distance transformation is developed step
by step for the 2D and 3D vertex singularities. Meanwhile, the 3D conformal preconditioning strategy is constructed
to eliminate the near singularity caused by element shape distortion during the iso-parametric transformation, which
enables the Duffy-distance transformation to be applicable for arbitrary shaped tetrahedral elements. This paper is orga-
nized as follows. The existing widely used variable transformation methods are briefly reviewed and tested in Section 2.
The near singularities caused by distorted integral patch/cell shape are discovered in Section 3 and Section 4, respec-
tively, as well as the construction of Duffy-distance transformation. Section 5 gives the extension of 3D Duffy-distance
transformation to arbitrary shaped tetrahedrons. The meaningful 3D conformal preconditioning strategy is deduced in
Section 6. Each section is accompanied with numerical verifications to demonstrate its robustness and efficiency. The
paper ends with summaries and some remarks. For generalization, vertex singularities with 𝛼 = 1 or 1/2 for LEFM are
selected as paradigms. The relative errors are calculated with error = ∣Inum−Iref∣

Iref
, where the subscripts “num” and “ref” refer

to the numerical and reference solutions, respectively. Besides, the abbreviations ‘DT’, ‘DDT’, and ‘CDDT’ used in figures
denote the generalized Duffy transformation, the Duffy-distance transformation, and the Duffy-distance transformation
with conformal preconditioning strategy, respectively.

2 BASIC MAPPINGS

In this section, the widely used variable transformation methods, such as the Duffy transformation, the parabolic transfor-
mation, and the polar coordinate transformation, are briefly reviewed and tested in details with emphasis on the sensitivity
to integral patch shape. Besides, both the parabolic transformation and the polar coordinate transformation are extended
to a general form applicable for various orders of vertex singularity.

2.1 Duffy transformation
The well-known Duffy transformation20 firstly maps an arbitrary triangular patch in space-xy to the standard right-angled
triangle in space-𝜉𝜂, with the singular vertex 1 located at the origin (Figure 1A-B), and then, by using the transformation
𝜉 = u, 𝜂 = uv, the standard triangle is further cast into a unit quadrilateral [0, 1] × [0, 1], with singular vertex located at
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FIGURE 1 Duffy transformation

edge 14 (Figure 1B-C). Easily to confirm that the determinant of Jacobian matrix of Duffy transformation is ∣JDuffy ∣ = 2Au,
A is the area of triangleΔ123. Moreover, the square distance from arbitrary point insideΔ123 to point 1 can be expressed as

r2 =
2∑

k=1

(
xk − x(1)k

)2

=
2∑

k=1

[
−𝜉x(1)k + (𝜉 − 𝜂) x(2)k + 𝜂x(3)k

]2

= u2
2∑

k=1

[
(1 − v) x(2)k + 𝑣𝑥

(3)
k − x(1)k

]2

= u2
2∑

k=1

(
x(E)k − x(1)k

)2

= u2r2
1E,

(1)

in which the linear interpolation term (1 − v) x(2)k +𝑣𝑥
(3)
k actually represents arbitrary point x(E) on edge 23, and r1E denotes

the vector from singularity point 1 to point E. Consequently, the Jacobian of Duffy transformation can fully cancel the
singularity of type O(1/r). However, for power singularities of the form O(1/r𝛼), the Duffy transformation behaves poorly
due to the appearance of irrational term u1 − 𝛼 . Mousavi and Sukumar22 generalized the Duffy transformation as 𝜉 = u𝛽 ,
𝜂 = u𝛽v to power singularity of the form f(x, y)/r𝛼 with r = u𝛽 ∣ r1E∣ and ∣JDuffy ∣ = 2A𝛽u2𝛽 − 1. The integrals with O(1/r𝛼)
vertex singularity can be expressed as

∫∫
𝑓 (x, 𝑦)

r𝛼
dxdy = ∫∫

𝑓 (u, v)|r1E|𝛼 2𝛽𝐴𝑢2𝛽−1−𝛼𝛽dudv, (2)

where f(x, y) is a smooth polynomial function. For 𝛼 < 2, the coefficient 𝛽 is selected as the minimum integer so that
the exponent 2𝛽 − 1 − 𝛼𝛽 is a positive integer. Even though the generalized Duffy transformation seems to be optimal,
numerical tests below show that the accuracy is yet very sensitive to the patch shape since the appearance of term |r1E|𝛼 .

Example 2.1 (Sensitivity of generalized Duffy transformation to inclined angle).
To examine the performance of generalized Duffy transformation, taking triangular patches with nodes (0, 0), (1, 0),
and (cos𝜃, sin 𝜃) as examples, 𝜃 is the inclined angle at singular point 1, and the relative errors of generalized Duffy
transformation for 1/r𝛼(𝛼 = 1 or 1/2) are plotted in Figure 2. As it can be easily seen, the accuracy decreases dramati-
cally as 𝜃 becomes larger. For integral patches with big obtuse angles proximal to 180◦, the distance ∣r1E∣ from singular
point to opposite side varies acutely, leading to near singularity in Equation (2).

2.2 Parabolic transformation
The parabolic transformation utilized by Minnebo30 can be decomposed into the generalized Duffy transformation with
𝛽 = 2 (Figure 3A-C) and a sinh transformation in v-direction (Figure 3C-D) with v = 0.5 (1 + sinh ṽ), ṽ ∈ [ln(

√
2 −

1, ) ln(
√

2 + 1)], resulting in 𝜉 = u2, 𝜂 = 0.5u2(1 + sinh ṽ), which is only suitable for 𝛼 = 1 or 1/2. Additionally, it can be
modified into the following general form to accommodate various orders of singularity:{

𝜉 = u𝛽

𝜂 = 0.5u𝛽 (1 + sinh ṽ) ,
(3)
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FIGURE 2 Sensitivity of generalized Duffy transformation to inclined angle. A, 𝛼 = 1; B, 𝛼 = 1/2 [Colour figure can be viewed at
wileyonlinelibrary.com]

x

y

(A) (B) (D)

u

ṽ
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FIGURE 3 Decomposition of parabolic transformation

with ∣ Jparab ∣= 𝐴𝛽u2𝛽−1 cosh ṽ, and the integrals with O(1/r𝛼) vertex singularity can be transformed as

∫∫
𝑓 (x, 𝑦)

r𝛼
dxdy = ∫∫

𝑓 (u, ṽ)|r1E|𝛼 𝐴𝛽u2𝛽−1−𝛼𝛽 cosh ṽ𝑑𝑢𝑑ṽ. (4)

Example 2.2 (Sensitivity of parabolic transformation to inclined angle).
To assess the promotion of the v-directional sinh transformation in parabolic transformation, the same triangular
patches as 2.1 are tested with 𝛼 = 1 or 1/2, and the relative errors of parabolic transformation are given in Figure 4.
We can observe that the closer 𝜃 approaches to 90◦, the more accurate results can be obtained compared to the Duffy
transformation (see Figure 2), especially, for 𝛼 = 1, 2× 2 Gauss points can achieve the machine precision when 𝜃 = 90◦.
Therefore, the appearance of term cosh ṽ in Equation (4) can partly weaken the near singularity caused by patch shape,
which will be proved theoretically in Section 3.

2.3 Polar coordinate transformation
The conventional polar coordinate transformation establishes a local polar coordinate system with the origin centered
at the singular point via x = 𝜌 cos 𝜃, y = 𝜌 sin 𝜃, and the singularity of type O(1/r) can be canceled by the Jacobian 𝜌.
Similar to the Duffy transformation, the accuracy is also very sensitive to the patch shape. To overcome this shortcoming,
Béchet et al27 constructed an improved polar coordinate transformation as{

𝜌 = r0(1+u)2

4 cos 𝜃
𝜃 = sin−1 tanh v,

(5)

wileyonlinelibrary.com
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FIGURE 4 Sensitivity of parabolic transformation to inclined angle. A, 𝛼 = 1; B, 𝛼 = 1/2

where r0 is the orthogonal distance from the opposite side to the singular point, which also gives the reference angle for 𝜃.
Equation (5) is suitable for 𝛼 = 1 or 1/2 and can also be rewritten into a general form as{

𝜌 = r0(1+u)𝛽

2𝛽 cos 𝜃
𝜃 = sin−1 tanh v,

(6)

with 𝑑𝑟 = 𝛽r0(1+u)𝛽−1

2𝛽 cos 𝜃
𝑑𝑢 and d𝜃 = cos 𝜃dv, and the integrals with O(1/r𝛼) vertex singularity can be transformed as

∫∫
𝑓 (x, 𝑦)

r𝛼
dxdy = ∫∫ 𝑓 (𝜌, 𝜃) 𝜌1−𝛼d𝜌d𝜃 = ∫∫ 𝑓 (u, v)

𝛽r2−𝛼
0 (1 + u)2𝛽−1−𝛼𝛽

2(2−𝛼)𝛽cos1−𝛼𝜃
dudv. (7)

As we can see, for 𝛼 = 1, the singularity can be totally eliminated, whereas, for 𝛼 ≠ 1, the accuracy depends on the term
cos𝛼 − 1𝜃.

Example 2.3 (Sensitivity of polar coordinate transformation to inclined angle).
To validate the effectiveness of polar coordinate transformation, the same triangular patches as 2.1 are tested with 𝛼= 1
or 1/2, and the relative errors of polar coordinate transformation are presented in Figure 5. As expected, 2 × 2 Gauss
points can always achieve the machine precision for 𝛼 = 1, and for 𝛼 = 1/2, in spite of the sensitivity to patch shape,
the polar coordinate transformation delivers higher accuracy compared to the Duffy and parabolic transformations
(see Figure 2 and Figure 4).

3 2D DUFFY-DISTANCE TRANSFORMATION

In the earlier section, we have discovered the defect of Duffy transformation. Sequentially, the near singularity hidden in
patch shape will be revealed theoretically in this section, and also the Duffy-distance transformation will be constructed
to damp out the near singularity, along with the Duffy-sinh transformation as a byproduct, which is the general form of
previously mentioned parabolic transformation in Section 2.2.

Recalling Equation (1), there exists a one-dimensional linear mapping for edge 23, ie, x(E)k = (1 − v) x(2)k + 𝑣𝑥
(3)
k , as

described in the inset of Figure 6. The following relations can be easily obtained via the Taylor expansion:

x(E)k − x(1)k = x(E)k − x(P)k + x(P)k − x(1)k

= 𝑑𝑥k

𝑑𝑣

|||x=x(P)
(v − vP) + |r1P|nk (P) ,

(8)

where point P is the projection point from point 1 to edge 23 with minimum distance ∣r1P∣, vP is the local coordinate of
point P, and nk(P) represents the components of unit outward normal at point P. If point P is located to the right of point 2
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FIGURE 5 Sensitivity of polar coordinate transformation to inclined angle. A, 𝛼 = 1; B, 𝛼 = 1/2
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FIGURE 6 Mapping of edge 23 to 1D linear element

in the inset of Figure 6, vP should be negative, ie, vP = − ∣ r2P ∣ / ∣ r23∣, otherwise vP = ∣ r2P ∣ / ∣ r23∣. Then, the square
distance from singularity point 1 to arbitrary point E on edge 23 can be written as

r2
1E =

2∑
k=1

(
x(E)k − x(1)k

)2

=
2∑

k=1

(
𝑑𝑥k

𝑑𝑣

|||x=x(P)

)2

(v − vP)2 + r2
1P

= J2
P
[
(v − vP)2 + d2] .

(9)

Note that the Jacobian JP = ∣ r23∣ for straight line, and d = ∣ r1P ∣ / ∣ r23∣. Taking the triangular patches in 2.1 as example,
we give the variation curves of term 1/[(v− vP)2 + d2] in Equation (9) as plotted in Figure 7. Obviously, the near singularity
with big obtuse inclined angle can be observed.

In order to damp out the near singularity caused by Equation (9), the distance transformation33,34 in v-direction is
introduced as ⎧⎪⎨⎪⎩

v = 1
2

(
eṽ − d2e−ṽ) + vP

ṽ = ln
[√

(v − vP)2 + d2 + (v − vP)
]
,

(10)

with 𝑑𝑣 =
√
(v − vP)2 + d2dṽ. Plugging Equations (9) and (10) into Equation (2), we have

∫∫
𝑓 (x, 𝑦)

r𝛼
dxdy = ∫∫

𝑓 (u, v)|r23|𝛼[(v − vP)2 + d2
]𝛼∕2 2𝐴𝛽u2𝛽−1−𝛼𝛽dudv

= ∫∫
𝑓 (u, ṽ)|r23|𝛼 2𝐴𝛽u2𝛽−1−𝛼𝛽

[(
eṽ − d2e−ṽ

2

)2

+ d2

](1−𝛼)∕2

𝑑𝑢𝑑ṽ.

(11)
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We can conclude that, from Equation (11), for 𝛼 = 1, the singularity can be totally eliminated, whereas, for 𝛼 ≠ 1, the
accuracy still depends on the patch shape slightly.

As an alternative choice, we can also employ the sinh transformation35,36 in v-direction as{
v = vP + d sinh ṽ
ṽ = arc sinh v−vP

d
,

(12)

and, correspondingly,

∫∫
𝑓 (x, 𝑦)

r𝛼
dxdy = ∫∫

𝑓 (u, v)|r23|𝛼[(v − vP)2 + d2
]𝛼∕2 2𝐴𝛽u2𝛽−1−𝛼𝛽dudv

= ∫∫
𝑓 (u, ṽ)|r23|𝛼 2𝐴𝛽u2𝛽−1−𝛼𝛽d(1−𝛼)cosh(1−𝛼)ṽ𝑑𝑢𝑑ṽ.

(13)

Actually, the parabolic transformation in Section 2.2 can be seen as a special case of the Duffy-sinh transformation
with vP = 0.5 and d = 0.5. That is why it can achieve machine precision with 2 × 2 Gauss points only for 𝜃 = 90◦ in
Figure 4A. Numerical tests show that the Duffy-distance and Duffy-sinh transformations can get almost the same results
(see Figure 8 and Figure 9).
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FIGURE 9 Sensitivity of Duffy-sinh transformation to inclined angle. A, 𝛼 = 1; B, 𝛼 = 1/2

101 102
10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

R
el

at
iv

e 
er

ro
r

Total number of integration points

DT,  = 1

 DT,  = 1/2

 DDT,  = 1

 DDT,  = 1/2

FIGURE 10 Comparisons of generalized Duffy and Duffy-distance transformations [Colour figure can be viewed at wileyonlinelibrary.com]

Example 3.1 (Comparisons of generalized Duffy and Duffy-distance transformations).
To verify the effectiveness of Duffy-distance transformation, the same triangular patches as 2.1 are tested with 𝛼 = 1
or 1/2, and the relative errors for both the Duffy-distance and Duffy-sinh transformations are presented in Figure 8
and Figure 9. It can be easily seen that 2 × 2 Gauss points can always achieve the machine precision for 𝛼 = 1, and
for 𝛼 = 1/2, more accurate results can be obtained compared to the generalized Duffy transformation (see Figure 2),
which are almost consistent with the improved polar coordinate transformation (see Figure 5). Moreover, an extremely
distorted triangular patch with nodes (0, 0), (1, 0) and (0.1 cos 150◦, 0.1 sin 150◦) is concerned, and the superiority of
Duffy-distance transformation can be observed obviously in Figure 10.

4 3D DUFFY-DISTANCE TRANSFORMATION

In this section, the generalized Duffy transformation is extended to 3D tetrahedral cells, as well as its sensitivity to the
shape of tetrahedrons, including the cell height and base triangle shape. In order to circumvent these defects, the 3D
Duffy-distance transformation is formulated step by step in details, along with numerous numerical verifications.

wileyonlinelibrary.com
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4.1 3D Duffy transformation
Considering an arbitrary 3D tetrahedron, as shown in Figure 11, the singular vertex lies at point 1, and the base triangle
Δ234 is set to be anticlockwise from the opposite view of singular point. Firstly, mapping the tetrahedron in space-xyz
into space-𝜉𝜂𝜁 via the iso-parametric transformation with the singular point located at the origin, and then the extension
of Duffy transformation can be implemented using 𝜉 = u𝛽 , 𝜂 = u𝛽v, 𝜁 = u𝛽vw with ∣JDuffy ∣ = 6Vtet𝛽u3𝛽 − 1v, Vtet denotes
the signed volume of tetrahedron. Moreover, the square distance from arbitrary point inside the tetrahedron to singular
point 1 can be expressed as

r2 =
3∑

k=1

(
xk − x(1)k

)2

=
3∑

k=1

[
−𝜉x(1)k + (𝜉 − 𝜂) x(2)k + (𝜂 − 𝜁 ) x(3)k + 𝜁x(4)k

]2

= u2𝛽
3∑

k=1

[
(1 − v) x(2)k + (v − 𝑣𝑤) x(3)k + 𝑣𝑤𝑥

(4)
k − x(1)k

]2

= u2𝛽
3∑

k=1

(
x(T)k − x(1)k

)2

= u2𝛽r2
1T.

(14)

We should remark that based on the mapping 𝜂 = v and 𝜁 = vw, the interpolation term (1 − v) x(2)k +(v − 𝑣𝑤) x(3)k +𝑣𝑤𝑥
(4)
k

actually represents arbitrary point x(T) on base triangle Δ234, and r1T denotes the vector from singular point 1 to point T.
In consequence, the integrals with O(1/r𝛼) vertex singularity can be transformed as

∫∫∫
𝑓 (x, 𝑦, z)

r𝛼
dxdydz = ∫∫∫

𝑓 (u, v,w)
r𝛼1T

6𝛽Vtetu3𝛽−1−𝛼𝛽vdudvdw. (15)

For 𝛼 < 3, the coefficient 𝛽 is selected as the minimum integer to ensure that the exponent 3𝛽 − 1 − 𝛼𝛽 is a positive
integer. Similar to the 2D case, the 3D Duffy transformation will also be sensitive to the shape of tetrahedron due to
the appearance of term ∣r1T∣. In order to discover the influence factors of tetrahedron shape, a simple decomposition of
r2

1T = r2
1P+r2

PT is introduced, where point P denotes the projection point from point 1 to base triangle Δ234 with minimum
distance ∣r1P∣, and the value of ∣rPT∣ depends directly on the shape of base triangle. Therefore, these two aspects will be
investigated in details, and for convenience and simplicity, tetrahedrons satisfying the condition of r12 ⟂Δ234 are chosen
as examples.

Example 4.1 (Sensitivity of 3D Duffy transformation to cell height).
To demonstrate the influence of cell height, tetrahedrons with nodes (0, 0, h), (0, 0, 0), (0, 1, 0), and (1, 1, 0) are taken
as examples. The cell height h varies as 1.0, 0.5, 0.2, 0.1, and 0.05, and the relative errors of Duffy transformation for
1/r𝛼(𝛼 = 1 or 1/2) are presented in Figure 12. As it can be seen, the accuracy drops sharply as h becomes smaller,
which is evident to illustrate the influence of cell height.
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FIGURE 11 3D Duffy transformation [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 12 Sensitivity of 3D Duffy transformation to cell height. A, 𝛼 = 1; B, 𝛼 = 1/2

4.2 Near singularity hidden in cell height
To uncover the source of shape influence theoretically, firstly, the tetrahedron satisfying the condition of r12 ⟂ Δ234 is
mapped into a triangular prism using 𝜉 = u𝛽 , 𝜂 = u𝛽v, 𝜁 = u𝛽w, as shown in Figure 13. Then, a local polar coordinate
system centered at projection point x(2) is established at plane u= 1, ie, v= 𝜌 cos 𝜃, w= 𝜌 sin 𝜃 with 𝜃 ∈

[
0, 𝜋

4

]
, 𝜌 ∈

[
0, 1

cos 𝜃

]
.

The following relations can be obtained via the Taylor expansion:

x(T)k − x(2)k = 𝜕xk

𝜕v
|||x=x(2)

v + 𝜕xk

𝜕w
|||x=x(2)

w

= 𝜌

(
𝜕xk

𝜕v
|||x=x(2)

cos 𝜃 + 𝜕xk

𝜕w
|||x=x(2)

sin 𝜃

)
,

(16)

in which the partial derivative terms can be calculated using the chain rule. In addition, the square distance from arbitrary
point x(T) inside base triangle Δ234 to projection point 2 can be written as

r2
2T =

3∑
k=1

(
x(T)k − x(2)k

)2

= 𝜌2
3∑

k=1

(
𝜕xk

𝑑𝑣

|||x=x(2)
cos 𝜃 + 𝜕xk

𝑑𝑤

|||x=x(2)
sin 𝜃

)2

= 𝜌2A2 (𝜃)

(17)

with

A (𝜃) =

√√√√ 3∑
k=1

(
𝜕xk

𝜕v
|||x=x(2)

cos 𝜃 + 𝜕xk

𝜕w
|||x=x(2)

sin 𝜃

)2

. (18)
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Finally, the square distance from arbitrary point x(T) inside base triangle Δ234 to singular point 1 can be rewritten as

r2
1T = r2

12 + r2
2T

= r2
12 + 𝜌2A2 (𝜃)

= A2 (𝜃)
(
𝜌2 + d2) , (19)

where d = ∣ r12 ∣ /A(𝜃) can be regarded as the characteristic height of tetrahedrons for vertex singularity problem. From
Equation (19), we can clearly see the near singularity caused by d, which is related to the cell height of tetrahedrons
and A(𝜃).

To damp out the near singularity, we introduce the following distance transformation33,34 used in BEM:{
𝜌 (�̃�, 𝜃) =

√
e2�̃� − d2

�̃� (𝜌, 𝜃) = 1
2

log
(
𝜌2 + d2) , (20)

with 𝑑𝜌 = 𝜌2+d2

𝜌
d�̃� = e2�̃�

𝜌
d�̃�, and correspondingly, Equation (15) can be changed as

∫∫∫
𝑓 (x, 𝑦, z)

r𝛼
dxdydz = ∫∫∫

𝑓 (u, v,w)
r𝛼1T

6𝛽Vtetu3𝛽−1−𝛼𝛽dudvdw

= ∫∫∫
𝑓 (u, 𝜌, 𝜃)

A𝛼 (𝜃)
𝜌(

𝜌2 + d2
)𝛼∕2 6Vtet𝛽u3𝛽−1−𝛼𝛽dud𝜌d𝜃

= ∫∫∫
𝑓 (u, �̃�, 𝜃)

A𝛼 (𝜃)
6Vtet𝛽u3𝛽−1−𝛼𝛽e(2−𝛼)�̃�dud�̃�𝑑𝜃.

(21)

From Equation (21), we can conclude that, for 𝛼 = 2, the near singularity caused by characteristic height can be fully
eliminated, whereas, for 𝛼 ≠ 2, exponential precision can be expected. It is worth to note that the distance transformation

in radial direction can be also replaced by 𝜌 (�̃�, 𝜃) =
√
�̃�2 − d2 for 𝛼 = 1 with 𝑑𝜌 =

√
𝜌2+d2

𝜌
d�̃� and 𝜌 (�̃�, 𝜃) =

√(
3
2
�̃�

) 4
3 − d2

for 𝛼 = 1/2 with 𝑑𝜌 =
4√
𝜌2+d2

𝜌
d�̃�, which will be more accurate. Here, this version of Duffy-distance transformation is

named as 3D initial Duffy-distance transformation because the near singularity caused by distorted base shape has not
been taken into account, which is denoted as “DDT0” in figures.

Example 4.2 (Sensitivity of 3D initial Duffy-distance transformation to cell height).
To validate the effect of distance transformation, tetrahedrons in 4.1 are tested for 1/r𝛼(𝛼 = 1 or 1/2), and the relative
errors of 3D initial Duffy-distance transformation are presented in Figure 14. For convergence of comparisons, the
results of 3D Duffy transformation as h = 1.0, which is the most accurate case in Figure 12, are remained. It can be
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FIGURE 14 Sensitivity of 3D initial Duffy-distance transformation to cell height. A, 𝛼 = 1; B, 𝛼 = 1/2
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easily seen that the 3D initial Duffy-distance transformation tends to be more accurate with higher convergence rate
for all values of h.

Example 4.3 (Sensitivity of 3D initial Duffy-distance transformation to base triangle shape).
To reveal the influence of base triangle shape, both the inclined angle and the aspect ratio at point 3 are concerned,
respectively. Firstly, taking tetrahedrons with nodes (0, 0, 0.1), (0, 0, 0), (0, 1, 0), and (sin𝜃,1 − cos 𝜃, 0) as examples,
𝜃 is the inclined angle at point 3, the relative errors of 3D initial Duffy-distance transformation for 1/r𝛼(𝛼 = 1 or 1/2)
are presented in Figure 15. We can observe that the accuracy decreases obviously as 𝜃 tends to be a sharp angle. Then,
tetrahedrons with nodes (0, 0, 0.1), (0, 0, 0), (0, 1, 0), and (a, 1, 0) are tested, the aspect ratio varies from 1.0 to 10.0,
the relative errors of 3D initial Duffy-distance transformation are plotted in Figure 16. Obviously, the accuracy drops
dramatically with the increase of a.
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FIGURE 15 Sensitivity of 3D initial Duffy-distance transformation to inclined angle of base triangle. A, 𝛼 = 1; B, 𝛼 = 1/2
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4.3 Near singularity hidden in base triangle shape
Recalling Equation (21), the term A(𝜃) is directly related to the base triangle shape, we assume u1 and u2 being the two
line vectors of Jacobian matrix at projection point x(2), ie,

u1 =
[
𝜕x
𝜕v
|||x=x(2)

,
𝜕𝑦

𝜕v
|||x=x(2)

,
𝜕z
𝜕v
|||x=x(2)

]
(22)

u2 =
[
𝜕x
𝜕w
|||x=x(2)

,
𝜕𝑦

𝜕w
|||x=x(2)

,
𝜕z
𝜕w
|||x=x(2)

]
. (23)

Then, Equation (18) can be rewritten as

A (𝜃) =

√√√√ 3∑
k=1

(
𝜕xk

𝜕v
|||x=x(2)

cos 𝜃 + 𝜕xk

𝜕w
|||x=x(2)

sin 𝜃

)2

=
√

u2
1cos2𝜃 + u2

2sin2𝜃 + u1 · u2 sin 2𝜃

=
√

1
2
(
u12 + u22

)
+ 1

2
(
u12 − u22

)
cos 2𝜃 + u1 · u2 sin 2𝜃

=
√

1
2
(
u12 + u22

)
[1 + 𝜇 sin (2𝜃 + 𝜑)]

(24)

with
𝜆 = |u1||u2| , cos 𝛾 = u1 · u2|u1| |u2| (25)

𝜑 = arctan 𝜆2 − 1
2𝜆 cos 𝛾

, 𝜇 =

√
1 − 4sin2𝛾

(𝜆 + 𝜆−1)2 . (26)

Actually, u1 = r23 = [x3 − x2, y3 − y2, z3 − z2] and u2 = r34 = [x4 − x3, y4 − y3, z4 − z3], hence 𝜆 and 𝛾 represent the
aspect ratio and the supplementary angle of the inclined angle at point 3, rather than point 2. We can conclude that, from
Equations (24)-(26), for base triangles with distorted shape, such as large aspect ratio, peak angle or large obtuse angle at
point 3, 𝜇 → 1, if sin(2𝜃 + 𝜑) → − 1 simultaneously, A(𝜃) → 0, resulting in another near singularity.38,39 That is why the
precision decreases in example 4.3.

It is worthy to note that, if

∣ u1 ∣=∣ u2 ∣, u1 • u2 = 0. (27)

A(𝜃) in Equation (24) will be a constant, A(𝜃)= ∣u1 ∣ = ∣u2∣. In order to satisfy the aforementioned conditions, a conformal
preconditioning strategy38,39 is developed to eliminate the near singularity caused by distorted base triangle shape.

Considering an arbitrary base triangle as shown in Figure 17, firstly, the triangle in space-xyz is mapped into a
right-angled unit triangle in space-vw by the iso-parametric transformation, and then the unit triangle is further cast into
a new triangle in space-ṽw̃ by the inverse interpolation

x̃ =
4∑

i=2
𝜙i (v,w) x̃(i) (28)
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FIGURE 17 Conformal preconditioning strategy for base triangle
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with

𝜙2 (v,w) = 1 − v, 𝜙3 (v,w) = v − w, 𝜙4 (v,w) = w, (29)

where x̃(i) is the node coordinates of new triangle. Plugging Equation (29) into Equation (28) yields[
ṽ
w̃

]
= T

[ 1
v
w

]
, T =

[
ṽ(2) ṽ(3) − ṽ(2) ṽ(4) − ṽ(3)
w̃(2) w̃(3) − w̃(2) w̃(4) − w̃(3)

]
. (30)

To obtain a linear mapping from space-vw to space-ṽw̃, (ṽ(2), w̃(2)) is set to be (0, 0). Note that only two equations can
be constructed in Equation (27), here, we can assume (ṽ(3), w̃(3)) = (1, 0)(or another case with (ṽ(4), w̃(4)) = (0, 1)), and the
transformation matrix T can be rewritten as

T =
[

1 ṽ(4) − 1
0 w̃(4)

]
, T−1 = 1

∣ T ∣

[
w̃(4) 1 − ṽ(4)

0 1

]
. (31)

Correspondingly, the two line vectors of Jacobian matrix at projection point x̃(2) in space space-ṽw̃ can be further
transformed as

(ũ1, ũ2) = (u1,u2)T−1 = 1
∣ T ∣

[
w̃(4)u1

(
1 − ṽ(4)

)
u1 + u2

]
. (32)

Solving Equation (27) with ũ1 and ũ2, we have (ṽ(4), w̃(4)) = ( 𝜆+cos 𝛾
𝜆

,± sin 𝛾

𝜆
). For the case w̃(4) = − sin 𝛾

𝜆
, the area of triangle

Δ234 in space-ṽw̃ is negative, in other words, the new triangle is clockwise. Therefore, w̃(4) = sin 𝛾

𝜆
is selected as the final

solution with

T =

[
1 cos 𝛾

𝜆

0 sin 𝛾

𝜆

]
, T−1 =

[
1 − cos 𝛾

sin 𝛾

0 𝜆

sin 𝛾

]
. (33)

After applying the conformal preconditioning strategy, a constant A (𝜃) can be obtained. Then, the local polar coordinate
system is established in transformed space-ṽw̃ with ṽ = 𝜌 cos 𝜃 and w̃ = 𝜌 sin 𝜃, and Equation (21) can be rewritten as

∫∫∫
𝑓 (x, 𝑦, z)

r𝛼
dxdydz = ∫∫∫

𝑓 (u, v,w)
r𝛼1T

6𝛽Vtetu3𝛽−1−𝛼𝛽dudvdw

= ∫∫∫
𝑓 (u, ṽ, w̃)

r𝛼1T
6𝛽Vtetu3𝛽−1−𝛼𝛽 ||T−1|| 𝑑𝑢𝑑ṽdw̃

= ∫∫∫
𝑓 (u, 𝜌, 𝜃)

A𝛼 (𝜃)
𝜌

(𝜌2 + d2)𝛼∕2 6Vtet𝛽u3𝛽−1−𝛼𝛽 ||T−1|| dud𝜌d𝜃.

(34)

Note that the conformal preconditioning strategy transforms the right-angled unit triangle in Figure 17B into a new
triangle in space-ṽw̃, which is similar to the original shape. Hence, we should take into account the near singularity caused
by distorted patch shape during the polar coordinate transformation (as illustrated in Section 2.3). Before applying the
distance transformation, the following mapping is utilized:

𝜌 = r0𝜌

cos 𝜃
, (35)

where r0 is the orthogonal distance from the opposite side to the singular point, which also gives the reference angle for 𝜃.
And correspondingly, Equation (17) can be rewritten as

r2
1T = A2 (𝜃)

(
𝜌2 + d2)

= A2 (𝜃)

(
r2

0𝜌
2

cos2𝜃
+ d2

)

= A2 (𝜃)
r2

0

cos2𝜃

(
𝜌

2 + d̃ 2
)
,

(36)
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with d̃ = d cos 𝜃∕r0. After plugging the distance transformation 𝜌 (�̃�, 𝜃) =
√

e2�̃� − d̃ 2, Equation (34) can be rewritten as

∫∫∫
𝑓 (x, 𝑦, z)

r𝛼
dxdydz = ∫∫∫

𝑓 (u, 𝜌, 𝜃)
A𝛼 (𝜃)

𝜌(
𝜌2 + d2

)𝛼∕2 6Vtet𝛽u3𝛽−1−𝛼𝛽 ||T−1|| dud𝜌d𝜃

= ∫∫∫
𝑓
(

u, 𝜌, 𝜃
)

A𝛼 (𝜃)
𝜌(

𝜌
2 + d̃ 2

)𝛼∕2 6Vtet𝛽u3𝛽−1−𝛼𝛽r2−𝛼
0 cos𝛼−2𝜃 ||T−1|| 𝑑𝑢𝑑𝜌𝑑𝜃

= ∫∫∫
𝑓 (u, �̃�, 𝜃)

A𝛼 (𝜃)
6Vtet𝛽u3𝛽−1−𝛼𝛽r2−𝛼

0 cos𝛼−2𝜃e(2−𝛼)�̃� ||T−1|| 𝑑𝑢𝑑�̃�𝑑𝜃.
(37)

When 𝛼 < 2, the term cos𝛼 − 2 in Equation (37) reflects the near singularity caused by distorted patch shape during the
polar coordinate transformation, and easily to know, we can employ the 𝜃-directional transformation 𝜃 = sin−1 tanh 𝜃 in
Equation (6) with 𝑑𝜃 = cos 𝜃𝑑𝜃 to weaken the near singularity, which is optimal for 𝛼 = 1. As an alternative choice, we
can also introduce the improved sigmoidal transformation37-39 as

𝜃 = 𝜋

2
(2𝜎 − 1) , 𝜎 = 𝜃m

𝜃m +
(
1 − 𝜃

)m , (38)

with 𝑑𝜃 = 𝜋𝑚𝜃m−1(1−𝜃)m−1

[𝜃m+(1−𝜃)m]2
d𝜃, and correspondingly, Equation (37) can be rewritten as

∫∫∫
𝑓 (x, 𝑦, z)

r𝛼
dxdydz = ∫∫∫

𝑓 (u, �̃�, 𝜃)
A𝛼 (𝜃)

6Vtet𝛽u3𝛽−1−𝛼𝛽r2−𝛼
0 cos𝛼−2𝜃e(2−𝛼)�̃� ||T−1|| 𝑑𝑢𝑑�̃�𝑑𝜃

= ∫∫∫
𝑓
(

u, �̃�, 𝜃
)

A𝛼
(
𝜃
) 6Vtet𝛽u3𝛽−1−𝛼𝛽r2−𝛼

0 cos𝛼−2𝜃e(2−𝛼)�̃�
𝜋𝑚𝜃m−1(1 − 𝜃

)m−1[
𝜃m +

(
1 − 𝜃

)m
]2
||T−1|| 𝑑𝑢𝑑�̃�d𝜃.

(39)

The effect of the improve sigmoidal transformation is to cluster Gauss points toward 𝜃 = ± 𝜋

2
, and the degree of move-

ment depends on the exponent m. Numerical tests show that the two transformations in 𝜃-direction can get similar results.
In this paper, for all the results listed later, the improved sigmoidal transformation with m = 2 is used to demonstrate its
feasibility.

Example 4.4 (Sensitivity of 3D Duffy-distance transformation to base triangle shape).
To prove the effect of 3D Duffy-distance transformation for tetrahedrons with distorted base shape, tetrahedrons in
Example 4.3 are tested for 1/r𝛼(𝛼 = 1 or 1/2), and the relative errors of 3D Duffy-distance transformation with/without
the improved sigmoidal transformation are presented in Figures 18 to 20, respectively. Clearly, for distorted base tri-
angles with large aspect ratio, or peak or large obtuse angles at point 3, the 3D Duffy distance transformation can
always exert remarkable improvement with higher convergence rate.

5 EXTENSION TO ARBITRARY SHAPED TETRAHEDRONS

Up to now, the aforementioned 3D Duffy-distance transformation is only suitable for tetrahedrons satisfying the condition
of r12 ⟂ Δ234. To extend to arbitrary shaped tetrahedrons, subdivision into several subtetrahedrons with the projection
point P from singular vertex to base triangle is necessary. Assuming that the projection point is located inside the base
triangle, as shown in Figure 21, the original tetrahedral cell is divided into three subcells, ie, 1P23, 1P34, and 1P42. If one
of the area of these three base triangles ΔP23, ΔP34, and ΔP42 is smaller than a tolerance, the projection point is located
on one edge of base triangle. If two, the projection point lies on one vertex of base triangle. In each case, only subcells
with nonzero area of base triangle should be calculated. Especially, when the projection point is located outside of base
triangle, if the order of base triangle is clockwise from the opposite view of singular vertex, the corresponding signed
volume in Jacobian for this subcell will be negative, hence the superposition rule can be satisfied automatically. Therefore,
the subdivision scheme is appropriate for all positions of projection point. In this section, to demonstrate the robustness
and efficiency of Duffy-distance transformation, arbitrary shaped tetrahedrons are tested with comparisons to the Duffy
transformation, including tetrahedrons with different cell heights and distorted base triangles, as well as various locations
of projection point.
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FIGURE 18 Sensitivity of 3D Duffy-distance transformation to inclined angle of base triangle (without the improved sigmoidal
transformation). A, 𝛼 = 1; B, 𝛼 = 1/2

FIGURE 19 Sensitivity of 3D Duffy-distance transformation to inclined angle of base triangle. A, 𝛼 = 1; B, 𝛼 = 1/2

Example 5.1 (Tetrahedrons with different heights).
To verify the sensitivity of 3D Duffy-distance transformation to cell height, tetrahedrons with nodes (0.25, 0.25, h), (0,
0, 0), (0, 1, 0), and (1, 0, 0) are tested for 1/r𝛼(𝛼 = 1 or 1/2) with h taking as 0.5, 0.1, and 0.05, and the projection point
is set to be located at (0.25, 0.25, 0). The relative errors for both the Duffy and Duffy-distance transformations are
presented in Figure 22. It can be easily observed that, as h = 0.5, the Duffy transformation can get slightly better results
than the Duffy-distance transformation, whereas, for h = 0.1 or 0.05, the Duffy-distance transformation is obviously
superior to the Duffy transformation. In contrast to the Duffy transformation, almost the same convergence rate can
be achieved with the Duffy-distance transformation for all values of h.

Example 5.2 (Various locations of projection point).
In addition, in order to validate the feasibility to various locations of projection point, tetrahedrons with nodes (a, a,
0.1) (0, 0, 0) (0, 1, 0) and (1, 0, 0) are tested for 1/r𝛼(𝛼 = 1 or 1/2) with a varying along the line from (0, 0, 0.1) to (0.5,
0.5, 0.1), and the cell height is fixed as 0.1. For convenient comparison, 103 and 3 × 73 Gauss points are used for the
Duffy and Duffy-distance transformations, respectively. The relative errors for various locations of projection point
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FIGURE 20 Sensitivity of 3D Duffy-distance transformation to aspect ratio of base triangle. A, 𝛼 = 1; B, 𝛼 = 1/2 [Colour figure can be
viewed at wileyonlinelibrary.com]
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FIGURE 21 Subdivision scheme [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 22 Sensitivity to different cell heights. A, 𝛼 = 1; B, 𝛼 = 1/2

are plotted in Figure 23, and the Duffy-distance transformation is apparently superior to the Duffy transformation.
The closer the projection point approaches the center of base triangle, the more accurate results can be obtained.

Example 5.3 (Tetrahedrons with distorted base triangle).
To examine the sensitivity of 3D Duffy-distance transformation to distorted base triangle, distorted triangle with nodes
(0, 0, 0) (cos120◦, sin120◦, 0) and (1, 0, 0) is selected as the base of tetrahedrons with fixed height h= 0.1. The projection
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FIGURE 24 Convergence curves for tetrahedron with distorted base triangle. A, 𝛼 = 1; B, 𝛼 = 1/2 [Colour figure can be viewed at
wileyonlinelibrary.com]

point is set to be located inside or outside of the base triangle, ie, x(P) = (0.15, 0.25, 0) or x(P) = (0.5, 0.5, 0), respectively.
The relative errors for 1/r𝛼(𝛼 = 1 or 1/2) are given in Figure 24. As it can be seen, the Duffy-distance transformation
can always get more accurate results with higher convergence rate regardless of the distorted base shape.

6 3D CONFORMAL PRECONDITIONING STRATEGY

Numerical integrations over tetrahedral elements with singular point inside are often encountered in the GFEM/XFEM.
These tetrahedral elements are firstly divided into three tetrahedral cells in local space-𝜉𝜂𝜁 with the singular point being
one vertex, and then the proposed Duffy-distance transformation can be utilized for each tetrahedral cell. However,
numerical tests on arbitrary shaped tetrahedral elements show that the desired precision as the Duffy-distance transfor-
mation cannot be obtained unless the tetrahedral elements is similar to the standard unit tetrahedron with nodes (0, 0, 0),
(1, 0, 0), (0, 1, 0) and (0, 0, 1), and the accuracy varies depending heavily on the distortion of element shape. Therefore, we
infer that the iso-parametric transformation from global space-xyz to local space-𝜉𝜂𝜁 may bring another near singularity
owing to the distorted element shape, which will be discovered theoretically in this section.

Considering an arbitrary tetrahedral element with singular point inside, the tetrahedral element is firstly mapped
into the standard unit tetrahedron with the iso-parametric transformation (Figure 25A-B), and then a local spherical
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FIGURE 25 3D conformal preconditioning strategy

coordinate system centered at the singular point x(S) can be established via⎧⎪⎨⎪⎩
𝜉 = 𝜉(S) + 𝜌 sin𝜙 cos 𝜃
𝜂 = 𝜂(S) + 𝜌 sin𝜙 sin 𝜃

𝜁 = 𝜁 (S) + 𝜌 cos𝜙.
(40)

The following relations can be obtained via the Taylor expansion:

xk − x(s)k = 𝜕xk

𝜕𝜉

|||x=x(S)

(
𝜉 − 𝜉(S)

)
+ 𝜕xk

𝜕𝜂

|||x=x(S)

(
𝜂 − 𝜂(S)

)
+ 𝜕xk

𝜕𝜁

|||x=x(S)

(
𝜁 − 𝜁 (S)

)
= 𝜌

(
𝜕xk

𝜕𝜉

|||x=x(S)
sin𝜙 cos 𝜃 + 𝜕xk

𝜕𝜂

|||x=x(S)
sin𝜙 sin 𝜃 + 𝜕xk

𝜕𝜁

|||x=x(S)
cos𝜙

)
= 𝜌Ak (𝜙, 𝜃)

(41)

with

Ak (𝜙, 𝜃) =
𝜕xk

𝜕𝜉

|||x=x(S)
sin𝜙 cos 𝜃 + 𝜕xk

𝜕𝜂

|||x=x(S)
sin𝜙 sin 𝜃 + 𝜕xk

𝜕𝜁

|||x=x(S)
cos𝜙. (42)

Then, the square distance from arbitrary point to the singular point can be written as

r2 =
3∑

k=1

(
xk − x(S)k

)2
= 𝜌2A2 (𝜙, 𝜃) (43)

with

A (𝜙, 𝜃) =

{ 3∑
k=1

A2
k (𝜙, 𝜃)

}1∕2

. (44)

Note that A(𝜙, 𝜃) is directly related to the shape of tetrahedral elements, we assume u1, u2, and u3 being the three line
vectors of Jacobian matrix at singular point x(S), ie,

u1 =
[
𝜕x
𝜕𝜉

|||x=x(S)
,
𝜕𝑦

𝜕𝜉

|||x=x(S)
,
𝜕z
𝜕𝜉

|||x=x(S)

]
= [x2 − x1, 𝑦2 − 𝑦1, z2 − z1] = r12 (45)

u2 =
[
𝜕x
𝜕𝜂

|||x=x(S)
,
𝜕𝑦

𝜕𝜂

|||x=x(S)
,
𝜕z
𝜕𝜂

|||x=x(S)

]
= [x3 − x1, 𝑦3 − 𝑦1, z3 − z1] = r13 (46)

u3 =
[
𝜕x
𝜕𝜁

|||x=x(S)
,
𝜕𝑦

𝜕𝜁

|||x=x(S)
,
𝜕z
𝜕𝜁

|||x=x(S)

]
= [x4 − x1, 𝑦4 − 𝑦1, z4 − z1] = r14. (47)

Then, A(𝜙, 𝜃) can be rewritten as

A (𝜙, 𝜃) =

√√√√ 3∑
k=1

(
𝜕xk

𝜕𝜉

|||x=x(S)
sin𝜙 cos 𝜃 + 𝜕xk

𝜕𝜂

|||x=x(S)
sin𝜙 sin 𝜃 + 𝜕xk

𝜕𝜁

|||x=x(S)
cos𝜙

)2

=

√√√√u2
1sin2𝜙cos2𝜃 + u2

2sin2𝜙sin2𝜃 + u2
3cos2𝜙

+ u1 ·u2sin2𝜙 cos 2𝜃 + u1 ·u3 sin 2𝜙 cos 𝜃 + u2 ·u3 sin 2𝜙 sin 𝜃
.

(48)



LV ET AL. 57

Similar to the 2D case in Section 4.3, in order to get a constant A(𝜙, 𝜃), the following conditions{
∣ u1 ∣=∣ u2 ∣=∣ u3 ∣
u1 • u2 = u1 • u3 = u2 • u3 = 0

(49)

should be satisfied, resulting in A(𝜙, 𝜃) = ∣ u1 ∣ = ∣ u2 ∣ = ∣ u3∣, and the corresponding 3D conformal preconditioning
strategy from space-𝜉𝜂𝜁 to space-𝜉�̃�𝜁 (Figure 25B-C) can be constructed by the inverse interpolation

x̃ =
4∑

i=1
𝜙i (v,w) x̃(i) (50)

with
𝜙1 = 1 − 𝜉 − 𝜂 − 𝜁, 𝜙2 = 𝜉, 𝜙3 = 𝜂, 𝜙4 = 𝜁, (51)

where x̃(i) is the node coordinates of new tetrahedron. Substituting Equation (51) into Equation (50) yields[
𝜉
�̃�

𝜁

]
= T

⎡⎢⎢⎢⎣
1
𝜉
𝜂
𝜁

⎤⎥⎥⎥⎦ , T =
⎡⎢⎢⎢⎣
𝜉(1) 𝜉(2) − 𝜉(1) 𝜉(3) − 𝜉(1) 𝜉(4) − 𝜉(1)

�̃�(1) �̃�(2) − �̃�(1) �̃�(3) − �̃�(1) �̃�(4) − �̃�(1)

𝜁 (1) 𝜁 (2) − 𝜁 (1) 𝜁 (3) − 𝜁 (1) 𝜁 (4) − 𝜁 (1)

⎤⎥⎥⎥⎦ . (52)

To obtain a linear mapping,
(
𝜉(1), �̃�(1), 𝜁 (1)

)
is set to be (0, 0, 0). In addition, we assume node 2 and 3 are in the same

place of 𝜁 = 0, and
(
𝜉(2), �̃�(2), 𝜁 (2)

)
= (1, 0, 0). Consequently, node 4 should be

(
0, 0, 𝜁 (4)

)
because u1 · u3 = u2 · u3 = 0, and

the transformation matrix T will degenerate as[
𝜉
�̃�

𝜁

]
= T

[
𝜉
𝜂
𝜁

]
, T =

⎡⎢⎢⎣
1 𝜉(3) 0
0 �̃�(3) 0
0 0 𝜁 (4)

⎤⎥⎥⎦ , T−1 = 1
∣ T ∣

⎡⎢⎢⎣
�̃�(3)𝜁 (4) −𝜉(3)𝜁 (4) 0

0 𝜁 (4) 0
0 0 �̃�(3)

⎤⎥⎥⎦ . (53)

The three line vectors of Jacobian matrix at singular point x(S) in Equations (45)-(47) will be further transformed as

(ũ1, ũ2, ũ3) = (u1,u2,u3)T−1 = 1
∣ T ∣

[
�̃�(3)𝜁 (4)u1,−𝜉(3)𝜁 (4)u1 + 𝜁 (4)u2, �̃�

(3)u3
]
. (54)

Solving the remaining conditions in Equation (49), ie, ∣ ũ1 ∣=∣ ũ2 ∣=∣ ũ3 ∣ and ũ1 · ũ2 = 0, we have⎧⎪⎪⎨⎪⎪⎩
𝜉(3) = cos 𝛾12

𝜆′12

�̃�(3) = ± sin 𝛾12
𝜆′12

𝜁 (4) = ± 1
𝜆13

⇒

⎧⎪⎪⎨⎪⎪⎩
𝜉(3) = cos 𝛾12

𝜆′12

�̃�(3) = sin 𝛾12
𝜆′12

𝜁 (4) = 1
𝜆13

or

⎧⎪⎪⎨⎪⎪⎩
𝜉(3) = cos 𝛾12

𝜆′12

�̃�(3) = − sin 𝛾12
𝜆′12

𝜁 (4) = − 1
𝜆13

(55)

with

𝜆12 = ∣ u1 ∣
∣ u2 ∣

, 𝜆13 = ∣ u1 ∣
∣ u3 ∣

, cos 𝛾12 = u1 · u2

∣ u1||u2 ∣
. (56)

Finally, two groups of solution in Equation (55) can be determined by introducing the node order condition. For the
first case, the final transformation matrix T can be written as

T =
⎡⎢⎢⎢⎣

1 cos 𝛾12
𝜆12

0
0 sin 𝛾12

𝜆12
0

0 0 1
𝜆13

⎤⎥⎥⎥⎦ , T−1 =
⎡⎢⎢⎢⎣

1 − cos 𝛾12
sin 𝛾12

0
0 𝜆12

sin 𝛾12
0

0 0 𝜆13

⎤⎥⎥⎥⎦ . (57)

Example 6.1 (Tetrahedral element with distorted shape).
To prove the effect of 3D conformal preconditioning strategy, a distorted tetrahedral element with nodes (0, 0,
0), (cos120◦,sin120◦, 0), (1, 0, 0), and (0,0,5) are tested with 𝛼 = 1 or 1/2, and the singular point is assigned at
(𝜉(S), 𝜂(S), 𝜁 (S)) = (0.3, 0.3, 0.3), which is close to the center of Δ234. The relative errors for the 3D Duffy-distance trans-
formation with/without conformal preconditioning strategy are presented in Figure 26. We can conclude that, with
the increase of evaluation points, the 3D Duffy-distance transformation with conformal preconditioning strategy can
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FIGURE 26 Convergence curves for tetrahedron element with distorted shape [Colour figure can be viewed at wileyonlinelibrary.com]
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get more accurate results with higher convergence rate compared to those without conformal preconditioning strat-
egy. Therefore, the 3D conformal preconditioning strategy can enable the 3D Duffy-distance transformation to be
applicable for arbitrary shaped tetrahedral elements.

Example 6.2. (Various locations of singular point).
In addition, we also investigate the sensitivity to various locations of singular point. The same tetrahedral element

in 6.1 is adopted with singular point (𝜉(S), 𝜂(S), 𝜁 (S)) moving along the line from (0, 0, 0) to (1/3, 1/3, 1/3), and 4× 3× 143

Gauss points are used, where 4 and 3 represent the total number of tetrahedral cells and subcells, respectively. The
relative errors for the 3D Duffy-distance transformation with/without conformal preconditioning strategy are given
in Figure 27. Without any doubt, the 3D Duffy-distance transformation with conformal preconditioning strategy is
an optimal choice, and the closer the singular point approaches the center of Δ234, the more accurate results can be
obtained.

7 SUMMARIES

In this paper, the near singularities caused by distorted integral patch/cell shape during the implementation of gener-
alized Duffy transformation are discovered numerically and theoretically. In order to damp out the near singularities,
the Duffy-distance transformation is developed for the 2D and 3D vertex singularities. Meanwhile, the 3D conformal
preconditioning strategy is constructed to eliminate the near singularity caused by element shape distortion during the
iso-parametric transformation, which enables the Duffy-distance transformation to be applicable for arbitrary shaped

wileyonlinelibrary.com
wileyonlinelibrary.com


LV ET AL. 59

tetrahedral elements. Numerous numerical examples for arbitrary shaped triangles and tetrahedrons are presented to
demonstrate its robustness and efficiency, along with comparisons to the generalized Duffy transformation.

For the 2D case, the near singularities are caused by the distorted integral patch shape, and the distance transforma-
tion in v-direction is introduced to damp out the singularity. Numerical results show that, for integrals of type O(1/r),
2 × 2 Gauss points are enough to achieve the machine precision, whereas, for 𝛼 ≠ 1, remarkable improvement can be
observed. As a byproduct, the so-called parabolic transformation is generalized into the Duffy-sinh transformation, which
is equivalent to the proposed Duffy-distance transformation.

For the 3D case, the near singularities derive from both the cell height and the base triangle shape. The arbitrary shaped
tetrahedral cell is firstly subdivided into several subcells with the projection point from singular vertex to base triangle.
Then, after transformation into a triangular prism for each subcell, the 2D conformal preconditioning strategy is employed
to eliminate the near singularity caused by distorted base triangle shape. Finally, a local coordinate polar coordinate
system is established with the origin located at the projection point, and the distance transformation in radial direction
and the sigmoidal transformation in angular direction are utilized jointly to damp out the near singularities. Numerical
results demonstrate that the Duffy-distance transformation is always superior to the Duffy transformation with higher
convergence rate.

When applying the Duffy-distance transformation into tetrahedral elements with singular point inside, the
iso-parametric transformation brings another near singularity caused by element shape distortion, and the 3D conformal
preconditioning strategy is constructed to eliminate the near singularity. The corresponding 2D conformal precondition-
ing strategy has also been developed for triangular and quadrilateral elements, and interested readers can refer to the
work of Lv et al.40 The proposed scheme can be extended to other orders of singularity in straightforward fashion. Config-
urations for edge case as in the work of Minnebo30 and further applications in the GFEM/XFEM framework will be the
sequential work.
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