Downloaded from ascelibrary.org by York University/Scott Library on 12/22/18. Copyright ASCE. For personal use only; all rights reserved.

Implementation of the Critical Unstable Condition in
Extended Finite-Element Analysis to Calculate the Safety
Factor of a Predefined Slip Surface

Lu Shi'; Bing Bai?; and Xiaochun Li®

Abstract: This study incorporated the critical unstable condition into extended finite-element analysis to determine the safety factor of a slip
surface that is regarded as a discontinuity embedded into the slope mesh. The displacement field and the safety factor can be obtained simulta-
neously by directly solving the final nonlinear equations. Moreover, the augmented Lagrange multiplier method and the vital vertex algorithm
were used to improve the accuracy of the normal stress on the slip surface. Three examples were presented to demonstrate various aspects of
the proposed method, including its efficiency in searching for the critical slip surface without remeshing and sensitivity to the finite-element
mesh. DOI: 10.1061/(ASCE)GM.1943-5622.0001356. © 2018 American Society of Civil Engineers.
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Introduction

Stability analyses should be performed routinely to assess the safe
design of a slope or to provide possible remedy measures for an
unstable slope (Eberhardt 2003; de Vallejo and Ferrer 2011). The
stability analysis of a slope usually involves the calculation of the
factor of safety (FOS, F;), which should be greater than 1 for a sta-
ble slope.

One method of obtaining the safety factor is to divide the total
resisting force by the total driving force, and these can be deter-
mined by integrating the shear strength and shear stress along the
slip surface. The stress state on the slip surface can be determined
by finite-element analysis (FEA) (Brown and King 1966; Kulhawy
1969; Naylor 1982; Fredlund et al. 1999; Liu et al. 2015).
Additionally, the stress direction can vary on the slip surface, and
the physical meaning of the total stress in integral form is unclear
when the slip surface is not circular or planar. To overcome this li-
mitation, Ge et al. (1995) projected the stress of the slip surface in
the principal sliding direction and proposed the vector summation
method to calculate the total resisting and sliding forces; this
method was subsequently improved and applied in other studies
(Ge 2010; Shi et al. 2012; Fu et al. 2017). However, the concept of
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the principal sliding direction remains unclear, and this parameter
may vary based on different methods.

A second approach used to determine the safety factor is to
simultaneously reduce the shear strength of the entire slope or slip
surface by a certain factor (F;) to create a limit equilibrium state
(i.e., after decreasing the shear strength, the shear stress at each
point on the slip surface is equal to the shear strength). The
strength-reduction method (SRM), which has been implemented in
FEA (Zienkiewicz et al. 1975; Donald and Giam 1988; Matsui and
San 1992; Griffiths and Lane 1999; Dawson et al. 1999; Bai et al.
2014), and the limit-equilibrium method (LEM) (Bishop 1955;
Morgenstern and Price 1965; Spencer 1967; Janbu 1975) are the
two primary methods of calculating the safety factor in this
approach. The LEM is used by most engineers due to its simplicity.
To force the slope-stability calculation to be a determinant problem,
assumptions regarding the interslice forces are used in the LEM
without a theoretical basis; these assumptions may influence the F
solution for the slip surface. In addition, as a method of force analy-
sis for a rigid body, the actions of the stabilization measures and
overloads are usually simplified in the LEM because the deforma-
tion behavior of the slope materials cannot be considered. With the
aid of stress—strain analysis in FEA, the SRM can overcome the
aforementioned deficiencies of the LEM and automatically locate
the critical slip surface (CSS), which is the slip surface that yields
the minimum F,, without a trial-and-error search (Zheng et al.
2005; Wang et al. 2016). Because the SRM is used to reduce the
shear strength of the whole slope, determining the other slip surfa-
ces of interest, which are slightly less critical than the CSS, is diffi-
cult; these surfaces may also require treatment in engineering prac-
tice (Cheng et al. 2007; Cheng and Lau 2014). Furthermore, the
selection of the instability criterion also influences the solution of
the SRM. Both the LEM and the SRM have advantages and disad-
vantages. Therefore, we introduced the critical unstable condition
of the prescribed slip surface into FEA and proposed a FEA-based
limit-equilibrium (FELE) method for evaluating the stability of the
predefined slip surfaces. The safety factor and displacement field
can be simultaneously determined in the FELE method (Shi et al.
2017). As with the traditional LEM, the FELE method must be
combined with a global optimization technique to locate the CSS of
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the slope. Therefore, the calculation of the safety factor of each slip
surface must be as simple as possible because optimization algo-
rithms usually require many trial calculations (Kim and Lee 1997,
Pham and Fredlund 2003; Shi et al. 2009). However, a shortcoming
of the FELE method is that the mesh must be reconstructed for each
potential slip surface, which is detrimental to the efficient determi-
nation of the CSS. Because the FELE approach regards the slip sur-
face as a discontinuity, a change in the slip surface can be treated as
amoving discontinuity.

Many methods have several advantages in modeling moving dis-
continuity problems, among which the extended FEA (XFEA), pio-
neered by Belytschko and Black (1999) and Moégs et al. (1999), has
been widely applied for crack propagation in solid mechanics
(Sukumar et al. 2000; Giner et al. 2009; Chin et al. 2017). With dis-
continuous interpolation functions in the framework of the partition
of unity method (Melenk and Babuska 1996), XFEA treats the dis-
continuities as independent of the finite-element mesh and circum-
vents the requirement of conforming the mesh to the discontinuities
in the standard FEA. Therefore, XFEA has superiority in simulating
moving discontinuity without updating the mesh. The original
XFEA can only be used to solve the problem of single crack propa-
gation under tensile stress. After more than a decade of rapid devel-
opment, XFEA is now capable of solving problems involving inter-
sections of multiple cracks (Daux et al. 2000; Budyn et al. 2004;
Zhou and Yang 2012; Zhou and Cheng 2017). Furthermore, many
methods have been adopted in XFEA to study the contact between
crack surfaces; these studies included the large time increment
method (Dolbow et al. 2001), conventional penalty method (Khoei
and Nikbakht 2007; Liu and Borja 2009), updated Lagrangian for-
mulation (Khoei et al. 2009), total Lagrangian formulation (Zhou
and Cheng 2017), and augmented Lagrangian multiplier method
(Shi and Yu 2014; Hirmand et al. 2015). For the complex contact
problems including multiple contact states on a crack, Cheng and
Zhou (2018) developed an effective technique with 10 equally
spaced points on the cracks to detect the contact state in the frame-
work of XFEA. Moreover, to avoid variations in the number of
degrees of freedom (DOFs) with the growth of cracks, which can
lead to difficulties in the iterative algorithm of time integration, the
multidimensional space method with all nodes in the computational
domain enriched was proposed by Cheng and Zhou (2015).

To search for the CSS without remeshing the slope based on the
FELE concept, this study replaced FEA with XFEA due to its
advantages in modeling moving discontinuity. To facilitate the
search for the CSS, the proposed method uses a triangular mesh, in
which each node has four DOFs, including two standard DOFs and
two enhanced DOFs. This approach is similar to the multidimen-
sional space method, and each triangle has three subregions for nu-
merical integration. Thus, the data structure of the mesh remains
unchanged when evaluating the stability of different slip surfaces.
By exploiting the advantages of XFEA, the improved method is
computationally efficient in locating the CSS without reconstruct-
ing the mesh of the slope under evaluation. In this paper, several
examples are given to illustrate the utility and effectiveness of the
proposed method.

Governing Equations of the Stability Analysis of a
Given Slip Surface

Boundary Value Problem

Consider a discontinuity I'; (slip surface) in domain Q (slope) with
boundary T, as presented in Fig. 1. The domain is divided into Q*
(sliding body) and Q" (sliding bed) by I';. The side of I'; within Q"
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Fig. 1. Definition of a two-dimensional slope with a slip surface
requiring evaluation.

is called the positive side (I",}), and the other side is called the nega-
tive side (I"; ). The static equilibrium equation in Q is as follows:

V-6+b=0 (1)

where o = Cauchy stress tensor; b = body force vector; and V = vec-
tor gradient operator. The stress tensor (6) can be related to the
strain tensor (€) using a constitutive equation. In this study, the
behavior of the slope body material was assumed to be linear elas-
tic, and the constitutive equation can be represented by ¢ = D : €,
where D denotes the fourth-order elastic tensor.

The displacement boundary condition is u=u on I, C T,
where u is the displacement variable of the slope, and u is the pre-
scribed displacement at the displacement boundary (I",,). The trac-
tion boundary condition is ¢ - n =t on I'; C T, where nr is the
unit outward normal vector of the external boundary (I'), and t is
the prescribed traction on boundary I';. At each node located on I',
either the displacement or traction must be prescribed (i.e., I, N
I''=gandl', Ul =1).

Moreover, the domains Q" and Q~ interact with each other
through the boundary I';. Therefore, the aforementioned boundary
value problem should be modified by considering the traction of the
discontinuity (i.e., 6 - nr, = tynr, + trmr, = t on I'y, where nr,
is the unit normal vector of I'; pointing toward Q" mr, is the unit
tangential vector of I'; in the direction opposite the sliding direc-
tion, and ¢ and ty are the tangential and normal components of trac-
tion, respectively). Thus, the traction is t on the I'; side of the dis-
continuity, and the traction is —t on the I'; side.

To solve the boundary value problem with a discontinuity, Eq.
(1) must be transformed into a weak form by multiplying by a vir-
tual displacement (o u) and integrating over Q

J du(V-6+b)dQ=0 (2)
Q

According to the divergence theorem, Eq. (2) can be written as
follows:

J 5e:o'dQ+J [6u}~tdF—J 5u~fdl“—[ du-bdQ =0
Q r,

T, Q

3)
where 5€ = 1 (V&u + V7 5u); [u] = displacement jump along the

discontinuity, and [x] = *" — %~, where the subscripts + and —
denote the variables for I'} and T';, respectively. The virtual
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displacement (6u) must be kinematically admissible—that is, it must
satisfy the displacement boundary condition.

Normal Contact Constraint

The contact constraint of the slip surface is the nonpenetration con-
dition [i.e., the normal stress (#y) can develop when gy = 0, where
gnv = [u] - nr, is the gap in the slip surface; otherwise, #y = 0 and
g, > 0]. Hence, the mathematical description of the contact con-
straint can be written as follows:

en 20,1y <0, gnty =0Vx eIy 4

In most cases, the two sides of the slip surface are in full contact
with each other, but some of the slip surfaces are open at the tailing
portion. Therefore, symbol I'"™ C Ty is used to denote the contact
region of the slip surface, where gy = 0 and #y < 0. In general, the
contact state of the slip surface is not known a priori and must be
determined by means of an iterative algorithm.

Two schemes are frequently used to introduce the constraint of
gy=00nT$™ in Eq. (3): the penalty method and the Lagrange mul-
tiplier method. Both of these methods have advantages and disad-
vantages. Therefore, the augmented Lagrange multiplier method
(ALM) (Simo and Laursen 1992; Hirmand et al. 2015) is used to
impose the constraint. This method combines the advantages of the
penalty and Lagrange multiplier methods and not only reduces the
ill conditioning of the stiffness matrix but also satisfies the con-
straint at a higher level. The ALM uses an iterative technique to
update the normal stress

A = 1 4 kgl wx e T (5)

where ky > 1 = strictly positive penalty parameter; subscript m =
mth step of the ALM; and t,(\?) = known initial normal stress on
'™, Notably, 7y in Eq. (5) is nearly identical to the augmented
Lagrange multiplier (Hirmand et al. 2015), except that it considers
the initial condition. In each augmentation step with "’ known, the
normal stiffness (ky) is used to approximate the nonpenetration con-
straint, which is consistent with the normal penalty factor in the pen-
alty method; the difference is that ky does not need to be extremely
large, as in the penalty method, to improve the accuracy of the
ALM solution. A relatively large value of ky can help the iterative
ALM method converge faster; however, the desired level of accu-
racy of the solution should be independent of k. The convergence
with respect to ky and the associated estimation process are dis-
cussed in Numerical example 1.

Critical Unstable Condition

The critical unstable condition includes a stress constraint and a tan-
gential displacement jump constraint on the discontinuity (I'y).

In the critical unstable state, the shear stress must equal the shear
strength after the reductionon I',

1

7 (tytangp —c) Vx € I'y 6)

It =

where ¢ and ¢ = friction angle and cohesion, respectively. Eq. (6)
is the well-known limit-equilibrium condition. Clearly, the traction
on the discontinuity (I'y) is related to #y and F only. As can be
observed, because all points on '™ are in the slip state, no special
algorithm is required to determine the slip-slick state of the slip sur-
face as the general frictional contact problems.
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The problem cannot be determined with only the constraint
given in Eq. (6), because if only the force equilibrium is satisfied,
a sliding body with a circular or planar slip surface can slide any
distance under the assumptions of small deformation and perfect
plasticity. When the state of the stress on the slip surface changes
from the existing conditions to the limit-equilibrium condition, a
tangential displacement jump of the slip surface (g7) should occur
in the sliding direction

gr=[u-mpr, <0Vxely, (7)

Moreover, a point that does not undergo a tangential displace-
ment jump on I', must exist; otherwise, the slip body has lost its sta-
bility. This point is called the critical unstable point (CUP), and the
constraint on this point can be written as follows:

gr=03xeTly (8)

It follows that the value of 77 at the CUP is not related to g7 but
is related to the normal stress at this point and the FOS.
Therefore, the FOS must be adjusted so that Eq. (8) can be satis-
fied. In this case, Eq. (8) serves as a supplementary equation to
introduce the unknown of FOS, and the boundary value problem
of slip surface stability can be determined based on the conditions
of Egs. (5), (6), and (8). Moreover, Eq. (7) can be used to deter-
mine whether the selection of the CUP is correct. The specific
determination of the location of the CUP is discussed in the next
section.

Modeling of the Slip Surface in the Critical Unstable
State with XFEA

XFEA Approximation

To accurately simulate the mechanical behavior of a solid contain-
ing discontinuities, nodes must be arranged on the discontinuity in
the standard FEA. Therefore, a change in the discontinuity will
cause a modification of the mesh topology. This modification is the
primary problem associated with searching for the CSS based on
the FELE method, in which the mesh must be regenerated for each
potential slip surface. Therefore, XFEA based on the partition of
unity method was used in this study to discretize the slope and slip
surface. The most powerful advantage of this method is that the dis-
continuity can be independent of the mesh; therefore, the mesh does
not require modification when the location of the discontinuity
changes. To embed the discontinuity within the mesh, an enrich-
ment function is added to approximate the space with a jump in the
displacement field. The enriched displacement field can be written
as follows:

u'(x) = > N+ > Ni(H(x) - H(x;))a,

IeN TeN™
=Nx)Ju+NxaxeQ 9)

where N = set of all nodes; A" = set of nodes enriched by the
function H(x) (namely, the support region of the nodes in N is
bisected by the discontinuity); N; = standard shape function;
u; = u(x;) = vector of the standard nodal displacement of node I;
a; = a(x;) = vector of the enriched DOF of node € N*'; and H
(x) = Heaviside function used to model the discontinuity. H(x) can
be written as follows:
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- {5702,

with
o(x) :sign(nrd(x*) . (xfx*))||xfx*|| (11)

where ¢(x) = signed distance function; x* = closest projection of x
on I'y; and ||x — x*|| = distance between x~ and x. In addition to
obtaining the value of the Heaviside function, the calculation of the
signed distance of each node to the discontinuity can also be used to
determine the location of the discontinuity by solving ¢(x) =0. The
slip surface is then approximated as a polyline with vertices that are
the intersections of the slip surface and the edges of the mesh.

The enrichment function [H(x)—H(x,;)] in Eq. (9) is called a
shifted-basis enrichment (Ventura et al. 2003; Giner et al. 2009),
which is used to set u;, associated with the enriched node (/), equal
to the real nodal displacement vector.

According to Eq. (8), the displacement jump on I'; can be writ-
ten as follows:

"] = u"(x*) —v"(x") =2N(x)ax e Ty (12)

The strain (€) is also decomposed into standard and enriched
parts

') =3 B, + 3 Bi(H(x) - H)a, = B(x)u + B(x)a x
IeEN IeN™

€Q 13)

where B(x) = LN(x) and ]~3(x) = LN(X) = strain matrices corre-
sponding to the standard displacement and enriched DOFs, respec-
tively; and H; = H; (x;). Note that L represents the differential
strain operator, and € is the vector form of the strain tensor (€).

Implementation of the Critical Unstable Condition and
Contact Constraint in XFEA

To formulate the discrete form of Eq. (2), the discontinuity must be
discretized for numerical integration. In standard FEA, the disconti-
nuity conforms to the mesh and is discretized into nodes or edges.
However, the discontinuity and mesh in XFEA are independent. As
discussed earlier, the discontinuity (I'y) is approximated as a poly-
line, with each of its segments embedded in an element, as pre-
sented in Fig. 2. Therefore, I'; can be easily discretized based on the
vertices of the polyline, and the contact constraints of Eq. (7) are
enforced. However, the adoption of this technique can yield an
overconstrained formulation and result in an abnormal oscillation in
the calculated stress at the discontinuity (Moés et al. 2006). Hence,
the discrete space of the discontinuity must be coarsened, and the
stabilization scheme based on the vital vertex technique (VVT),
which was proposed by Hirmand et al. (2015), is used. This tech-
nique involves two steps: the selection of vital vertices and numeri-
cal integration along the discontinuity. The latter is discussed in the
following subsection.

The vital vertices are the locations on the discontinuity used to
impose the contact constraint, and they are the subset of the vertices
on the polyline, as presented in Fig. 2. Furthermore, the values of 5
are stored at the vital vertices, and the values of #y at the other posi-
tions on I'; must be interpolated. The assignment of the vital verti-
ces is based on two criteria: (1) a node of the mesh cannot be con-
nected to two vital vertices, and (2) a nonvital vertex must be
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~
O Enriched node (H = 1)
O Enriched node (H = —1
Normal vertex
Vital vertex

~—

Fig. 2. Discontinuity passing through the triangular mesh and interpo-
lation of the stress on the discontinuity.

connected to a vital vertex through one mesh node. Two criteria are
used to ensure that overconstrained and underconstrained formula-
tions are avoided. The specific selection process is as follows: (1)
mark all enriched nodes with a false flag, and (2) loop over all verti-
ces along I';. When a vertex is connected to two nodes with false
flags, this vertex is selected as a vital vertex, and the two nodes are
marked with true flags.

Two adjacent vital vertices and the segments between them form
a contact element, and 7y on I'; can be approximated as follows:

tv(x) = > Njiy, =N(x)ty x € Ty (14)
JeM

where M = set of all vital vertices on I';; and N '; = shape function
associated with vital vertex J (Fig. 2). Note that the distance
between x and a vital vertex should be calculated along I'y in the
calculation of N;.

Substituting Egs. (5), (6), (9), and (12)—(14) into Eq. (3), the dis-
crete form of Eq. (3) for the mth augmentation iteration can be
expressed as follows:

K Kua u)™
FSK’,EQ Fs (Kaa + KL‘N) + KCT a
Qstd

= FS(QS“‘+QZ'$)) +QE.’¥) (15)

with

K, = J B'DBAQ (16)
Q

KLl[l

J B’DBdQ 17)
Q

K. :J B DBdQ (18)
Q

K,y = 4kNJ N'nr,n{ NdT' (19)

cont
Fd

Int. J. Geomech.

Int. J. Geomech., 2019, 19(3): 04018200



Downloaded from ascelibrary.org by York University/Scott Library on 12/22/18. Copyright ASCE. For personal use only; all rights reserved.

K., — 4"NJ tanN'mp, nl. NdT’ (20)

cont
r d

Q= J N"tdQ + J N"baQ — J B’ 6dQ @21
I, Q Q
QM = J N'tdQ + J N'bdQ — J B 6dQ 22)
I, Q Q
Q) = —2J N"np, Ndrt|)” 23)
rf[ol](
QY = —2J tan N"mp, NIt + 2[ ¢Nmp,dl
l—;UIll F;Un\
24

where D = elastic matrix; and Q%) and QE’;) /F = enrichment nodal
forces induced by the normal and tangential tractions on I, respec-
tively. The enrichment nodal forces are known in each augmenta-
tion iteration and updated according to Eq. (5).

As discussed earlier, there is no tangential displacement jump at
the CUP. Therefore, by selecting the vital vertex ( y), the constraint
of Eq. (6) can be expressed as follows:

kymr, (X, )N(%, )8 = Keypd = 0 25)

Finally, Egs. (15) and (25) can be combined to form the follow-
ing nonlinear equation:

Kuu Kua —(m)

u
\I’(M) (X) = FYKZg FY(Kaa + KCN) + KCT { ~(m) }
am
0 Kcup
Qsld
— F, (Qenr + QE’[@)) + QE’;) (26)
0

where X = {u”,a”, F,}" = unknown vector. Therefore, the safety
factor (F,) of the prescribed slip surface in the mth augmentation
can be obtained by solving Eq. (26).

Other Issues Addressed in Proposed Method

Numerical Integration

In standard FEA, Gauss’s integration is an effective approach to ele-
ment integration. However, for elements bisected by a discontinu-
ity, the enrichment function is different on each of the two sides of
the discontinuity for the given enriched elements; clearly, in this
condition, the original integration scheme cannot meet the precision
requirement. Moreover, the stability analysis method proposed in
this study must facilitate the CSS search, which requires the data
structure of the elements to remain unchanged as the slip surfaces
change.

The triangular mesh and the layout of Gauss’s points in the
enriched element presented in Fig. 3 are used. Normally, a triangu-
lar element is bisected by the discontinuity [zero level of ¢(x)] into
a triangle [Subtriangle 1 (ST1)] and a quadrangle, which can be fur-
ther divided into two triangles (ST2 and ST3). Therefore, Gauss’s
points and their weights correspond to the centroids and areas of
these three subtriangles [Fig. 3(a)]. The discontinuity must intersect
the edges with nodes enriched as H = 1 and H = —1. Thus, even in
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N3

Sub-triangle 1

Intersection 1

ST2

(d)

Discontinuity
O Enriched node (H = 1)
0 Enriched node (H = —1)
® Gauss point

Fig. 3. Numerical integration of an enriched triangular element:
(a) typical relationship between triangular element and discontinuity;
(b) one of the intersections approaches a node, and area of ST2 is zero;
(c) both intersections approach the same node, and areas of ST1 and
ST2 are zero; and (d) two intersections approach different nodes, and
areas of ST2 and ST3 are zero.

special cases in which one or two intersections may coincide with
the nodes [Figs. 3(b—d)], Gauss’s integration rule does not need to
be changed if the areas of some subtriangles are zero. Therefore, the
approach used to integrate over the enriched elements is unified.
Moreover, because the derivation of the shape function of the trian-
gular element is constant, B(x) of each Gaussian point can be
obtained by modifying B(x), which is a constant matrix.

In addition to integrating over the elements, it is necessary to
integrate along I'; to obtain K.y, K.7, Q.n, and Q.. As noted ear-
lier, the VVT was used in this study, and the contact constraints
were enforced at the vital vertices. For the normal penalization con-
tributions (K.y and K.r) along the discontinuity, the Gaussian
quadrature method can be implemented based on the trapezoidal
rule, with the integral points located at these vital vertices.
Additionally, because the VVT is adopted, some enriched nodes
may not be affected by the constraints along I';. Therefore, to ac-
quire the stable stress distribution on I'y, a two-order Gauss integra-
tion scheme with two integral points in each segment of I'; is
adopted to determine Q.y and Q7. Thus, all enriched nodes have
an equivalent nodal force generated by ty.

Criteria for Suppression of Enriched DOFs of the Nodes
The diagonal elements in K, corresponding to enriched node / can
be written as follows:

Kt = 3 [(1 - H,)Z(Bf)TDBfA”]

eCQy

+3 [(—1 - H,)z(B;)TDB;‘Ae*} 27

eCQy

where e = element in Q;, which is the support region of node 7; Bf =
strain matrix of node I in element e; and A" and A°™ = areas of the
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domains above and below the discontinuity in element e. When
H;=1and A; = ZL,CQIAE* is very small, K,.;; < K./, where
K...ir represents the diagonal elements in K,, corresponding to
node I; similarly, when H;= -1 and A} = ZECQ,AH is very small,
the same conclusion can be drawn.

The multiple orders of magnitude of the differences between
K. and K,,,;; will lead to ill conditioning or even the singularity
of the global stiffness matrix in XFEA. For node I with support
region Ay, if the condition of A; JA; < A with H;=1 or A] JA; < A
with H; = -1 is satisfied, where A is the allowable tolerance, node 1
should not be enriched, as presented in Fig. 4. In practice, the toler-
ance (A) is usually set to 107, In addition, instead of directly
removing the enriched nodes that satisfy the aforementioned condi-
tion from N, as Dolbow (1999) and Khoei (2015) did, we force
the enriched DOFs of these nodes to equal zero. Otherwise, a dis-
parity in the data structure of the enriched elements will develop,
and the algorithm complexity will increase.

Determination of CUP

The selection of the CUP for a potential slip surface was discussed
in detail by Shi et al. (2017). Because the location of the CUP is not
known a priori, it is necessary to perform a trial calculation to obtain
the distribution of g7 on the slip surface by randomly selecting a
point as the CUP; then, the node with the largest sliding distance is
selected as the real CUP. Because mr, points in the direction oppo-
site that of sliding, the tangential displacement jump (g7) attributed
to sliding is negative. However, a trial must be used to solve the
nonlinear equations in Eq. (26), which will increase the computa-
tional cost. In most cases, the CUP is the point that has a maximum
local FOS (F,) on I'y, where F, = (tytan¢ — ¢)/tr and fy and #7
are the initial rather than critical stress distributions on I';. The point

Kuu Kua

\III(Xn) — FnKT F?(Kaa —+ KCN) + KCT

ua

0 Kewp

A more accurate approximation is X!

V(X")

Xn+1 — X" — :
v(x")

(29)
This process is repeated until the following condition is
satisfied:

|\|!| < aim

:di
¢ QN QS

In each augmentation loop, the nonlinear equations are solved
by Newton’s method with the initial guess from the last augmenta-
tion iteration. Because the guess is very close to the true solution,
the convergence of Newton’s iteration is very fast in subsequent
augmentation iterations. The condition related to the convergence
of the augmentation iteration is as follows:

(30)

1 )
ul :ﬁJ lgn|dl < pp'™ (31
l"(C’Onl

where [ = length of T5"™.
Normally, the determination of I'"™ is based on the contact iter-
ation, which is time-consuming. Therefore, to simplify the algorithm,
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S

—4 4 4
(a) - =10 (b) A_<10 © A_1<10

Fig. 4. Criterion for suppression of node enrichment: node / in
(a) should be enriched, and node 7 in (b and c¢) does not need to be
enriched.

with the maximum F, value is typically the last to fail, which is sim-
ilar to the definition of the CUP.

In this study, if the initial stress field of the slope was known, the
strategy used to determine the CUP of a slip surface was as follows:
(1) the CUP was estimated according to the distribution of the local
FOS; (2) the CUP was verified with a trial; if the verification was
successful, the result from the trial was the final result; otherwise,
(3) to obtain the final result, the CUP was selected based on the dis-
tribution of g7 from the trial.

Solution of Nonlinear Equations

Newton’s method is a classical and effective approach for solving a
system of nonlinear equations, such as Eq. (26). An initial guess is
set in the initial augmentation iteration withw® = 0, a° =0, F =
1, and X’ = {0, 1}T. Then, the derivative of Y(X) at X" can be writ-
ten as follows:

0

KL a" + (Ko + Key)a" — Q" — Q% (28)

0

we determine '™ according to the initial tensile stress distribution
of the slope because a small area of opening is possible only at the
rear edge of the slip surface. Moreover, the initial stress distribution
on the slip surface is determined in standard FEA, and the stresses are
discontinuous between elements. Here, the patch-based stress recov-
ery technique (Zienkiewicz and Zhu 1992) was used to determine the
stresses at the nodes; these stresses were then used to obtain the nor-
mal and tangential stresses at the vital vertices through the finite-
element interpolation.

Because the limit-equilibrium condition, which is included in the
critical unstable condition, is implemented in XFEA, we call this
method of slope-stability analysis the X-FELE method. The algo-
rithm flowchart of this approach is presented in Fig. 5. Notably, this
method is easily combined with an optimization algorithm to locate
the CSS. In the subsequent verification of the proposed X-FELE
method, na‘m and 7™ are set to 107 and 107'2, respectively.

Examples and Verification of X-FELE Method

The advantages of the FELE method over the traditional LEM, such
as the ability to evaluate the influence of underground excavation
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Fig. 5. Flow diagram of the implementation of the critical unstable conditions in XFEA.

on slope stability, have been demonstrated (Shi et al. 2017) and
were not the focus of this study. Therefore, the following examples
focus on the accuracy, convergence, and rationality of the stress dis-
tribution on the slip surface based on the use of XFEA in the pro-
posed method.

Example 1: Planar Slip Surface

The first example is a planar slip surface with a FOS that can be
analytically obtained. This example is used to verify the accuracy
of the method of slope-stability evaluation. For a planar slip sur-
face with an inclination angle of 8, the FOS can be expressed as
follows:

_tan¢ lc
"~ tanf

(32)

s

Vysinf

where V =slip area in m*/m.

For simplicity, a 10 x 20-m rectangular region (plane-strain
problem) that contained a planar slip surface was evaluated here.
Fig. 6 presents the discretization of the region with a slip surface
characterized by 6 equal to 45°. The model material had an elastic
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modulus (E) of 28 GPa, a Poisson’s ratio (v) of 0.23, and a unit
weight () of 27 kN/m”.

Table 1 presents a comparison of the FOS obtained by the ana-
lytical formula and the X-FELE method for the planar slip surface
with different inclination angles. The proposed method had a very
high computational accuracy. The following analysis was based on
Case 4, as described in Table 1. For the planar slip surface with an
inclination angle of 30°, the initial normal stress on the planar slip
surface linearly decreased from left to right, as seen in Fig. 7. In this
and the following examples, the compressive stress was positive.
The graph of y versus the x-coordinate from the Morgenstern-Price
method (MP) exhibited sinusoidal variation, which indicates that
the interslice force assumption considerably influenced the distribu-
tion of the normal stress. Because the slip body or the entire slope
was regarded as the deformable body and satisfied the deformation
compatibility constraint, the normal stress obtained by the FELE
method exhibited a different trend. Specifically, the stress first
increased and then decreased from left to right. In this study, #y
from the FELE method (Fig. 7) was different from the result of Shi
et al. (2017) because the entire slope was deformable. Most impor-
tantly, the results regarding the normal stress and FOS from the
FELE and the proposed method were consistent. Thus, using the
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0 = 45°

y=0m

AN AN AN AN

Fig. 6. Mesh with 747 nodes and 1,384 triangles for the planar slip sur-
face example.

Table 1. Comparison of the FOS obtained from the analytical and pro-
posed methods for the planar slip surface with different angles of
inclination

Strength
parameters N F
——  Inclination angle
Case & (°)  c(kPa) 6 (degrees) By Eq.(32) X-FELE
1 35 0 30 1.212795  1.212795
2 35 0 35 1.000000  1.000000
3 35 0 45 0.700208  0.700208
4 30 20 30 1.592593  1.592593
120 7 ‘\~\ ------ Initial state
e FELE
100 1 SN --- MP
NN
N —— X-FELE
80 1
5
= 60
&
40 A
20 1
0 =
T 1 T T 1 T
0 2 4 [§ 8 10

z-coordinate (m)

Fig. 7. Distributions of normal stress on the slip surface (0 = 30°)
obtained using different methods under the limit-equilibrium state
when ¢ = 30° and ¢ = 20 kPa; moreover, the initial normal stress is
plotted for comparison. MP = Morgenstern-Price method.
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Fig. 8. Profiles of tangential displacement jump and local FOS along
the planar slip surface.

10°
P a 1.6
10—2
1.5
10—4
3 F1.4
o 107° 1
p=t —8
g 10
= - 1.2
10—10 4
—e— Newton iteration 1.1
10-124 | Augmentation :
1—.-— Fs '\.
- 1.0
10—14 T T T T T T
0-0 1-0 2-0 3-0 0-1 1-1

Iterative number

Fig. 9. Iterative information from the X-FELE method in the solution
of Case 4 of Example 1; for the x-axis labels, i-m represents the ith
Newton iteration within the mth augmentation iteration.

aforementioned methods to impose the critical unstable condition in
XFEA was very effective, and the unreasonable oscillation of the
stress distribution was largely corrected. Moreover, a smooth distri-
bution of the stress on the slip surface can be obtained even if the
slip surface is unevenly discretized based on an unstructured mesh.

The local FOS along the slip surface after gravity equilibrium
was reached is presented in Fig. 8. Therefore, the right-most point
on the slip surface with the highest local FOS was selected as the
first candidate CUP. The tangential displacement jump of this point
was expected to be the largest in the trial calculation. Therefore, the
candidate CUP could be confirmed, and no further calculations
were required. In addition, Fig. 8 shows that the larger the local
FOS was, the smaller the amount of slippage was when the slip sur-
face reached the critical unstable state.

The iterative information used to solve Case 4 is presented in
Fig. 9, with ky = 5 x 10® MPa/m. Convergence was achieved in
only three steps in the initial augmentation, illustrating that the rate
of convergence of Newton’s method was quadratic. Moreover,
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using the solution from the previous augmentation step, which was
close to the true solution, as the next initial guess, Newton’s itera-
tion converged in one step in the subsequent augmentation. In addi-
tion, with only one augmentation step, 7); decreased to 4.94 x 1074,
After reducing the penalty parameter by 1 or 2 orders of magnitude,
Case 4 was recalculated with the convergence profiles of the aug-
mentation iteration listed in Table 2. When the penalty parameter
was relatively conservative, the expected level of accuracy could
still be achieved by the ALM, but the convergence rate was clearly
reduced. Therefore, it was necessary to increase the value of the
penalty parameter as much as possible without ' being ill condi-
tioned. As a rule of thumb, ky can be estimated by multiplying the
largest diagonal element in K,,,, and K, by 10° to 10,

Example 2: Circular Slip Surface

In 1988, a set of five basic slope-stability problems were distributed
to both Australian and overseas geomechanic professionals as part
of a survey sponsored by the Australian Computer-Aided Design

Table 2. Convergence profiles of augmentation iterations in the solution
of Case 4 of Example 1 with different penalty parameters

Tterative number &\ =5 x 10 MPa/m k2 = 0.1k &) = 0.01k{})

0 458 x 107" 458 x 107?458 x 107!
1 495 % 107" 495 %1072 494 %1072
2 — 294 %107 294 %1072
3 — 191 x 107 191 x 1072
4 — 126 x 1072 126 x 10712
5 — 833x107*  8.38x 107"
6 — — 5.57x 107"
7 — — 3.71x 107"
8 — — 247%x 1071
9 — — 1.65 x 10713
10 — — 1.10 x 10713
11 — — 7.37x 1071
Table 3. Soil properties of Example 2

Soil c (kPa) ¢ (degrees) b% (kN/rn3) E (kPa) v

Society (ACADS) for testing slope-stability programs (Donald and
Giam 1992). Example 2 in this study was the ACADS EX1(c) prob-
lem for a three-layer slope. The soil properties are listed in Table 3,
and the geometry and the discretization of this nonhomogeneous
slope are presented in Fig. 10. A slip center search grid of 18 x 22
intervals was used, with 10 intervals between the maximum and
minimum radii of the valid circles. The coordinates of the bottom-
left and top-right corners of the search grid rectangle were (30, 36)
and (43, 52) m, respectively. To constrain the allowable locations of
the slip surfaces, two ranges for the starting and ending points were
defined at the head and toe of the slope, respectively.

A total of 2,462 valid slip surfaces were assessed using the X-
FELE, and their FOS are presented in Fig. 11. The CSS with a cen-
ter located at (34.333, 42.545) m and a radius of 18.073 m had a
FOS of 1.376, which is very close to the results obtained using the
MP in the verification manual of the SLIDE software. Thus, the pro-
posed method, which does not require mesh reconstruction, is suita-
ble for use in the CSS search. Because the tangential stress exerted
on the slip body at the edge of the CSS pointed in the sliding direc-
tion, the local FOS was negative. In this case, the CUP was selected
among the points with negative local FOS. Of these points, that
with a maximum sum of |ty| and |¢7| can be selected as the CUP. As
seen in Fig. 12, the CUP of the CSS was selected at the right-most
point, which could be confirmed by the distribution of g, along the
CSS. In addition, the sliding distance of a point on the slip surface
was negatively correlated with its antisliding ability. The displace-
ment field of the slope when the CSS reached the critical unstable
state is plotted in Fig. 13. The displacement of the middle of the
sliding body was relatively large, and in combination with the gr
and local FOS distributions on the slip surface, it can be concluded
that middle of the slip surface was the weak link.

As seen in Fig. 14, the difference in the normal stresses between
the initial and critical unstable states was very small, and the differ-
ence between the tangential stresses in these states was relatively
large. According to the tangential stress distribution, the endangered
section of the slip surface, where the tangential stress under the ini-
tial state was greater than that under the critical unstable state, can
be clearly determined. Moreover, the smooth distribution of the nor-
mal stress also reflected the robustness and effectiveness of the pro-
posed method.

1 0.0 38.0 19.5 1.0 x 10* 0.25 Example 3: Smooth Noncircular Surface
4
§ g; ;(3)8 igg ig x 184 g;z This example modeled Prandtl’s well-known solution of the bearing
’ : i ox : capacity. The model of approximately 1,000 triangular elements is
w }4 y (m):
— 35
oil #T :;|
— 31
— 29
Soil # O _ 97
4
— 25
— 24
0 Soil #PKEL]
A A yaN yaN — 20
| | | [ |
z (m): 20 30 40 50 52 54 70

Fig. 10. Geometry setup and discretization of Example 2. Mesh consisted of 1,426 triangles and 776 nodes.
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(43,52)

(30,36

Critical slip surface
Center: (34.333, 42.545) m
Radius: 18.073 m
Safety factor: 1.376

Fig. 11. Grid search solution for Example 2 using the X-FELE method.

Local FOS

w
Local FOS

z-coordinate (m)

Fig. 12. Profiles of tangential displacement jump and local FOS along
the CSS of Example 2.

shown in Fig. 15(a). The failure surface of the fan region was a
quarter arc because the friction angle of the soil was zero. A uni-
formly distributed load of 102.83 kPa, which was Prandtl’s solution
of g.=2c(1 + m/2), was applied over a width of 10 m, where ¢ = 20
kPa. The Prandtl-type failure body can be divided into active, radial
shear, and Rankine passive zones. Thus, failure must occur within
the failure body. However, the X-FELE method cannot consider the
plasticity of the slope, and the MP, rather than Prandtl’s solution,
was used for comparison. Moreover, this example was used to
investigate the mesh sensitivity of the X-FELE method and the
effect of the CUP selection on the results. The elastic modulus,
Poisson’s ratio, and unit weight of the soil were 50 MPa, 0.4, and 0,
respectively.
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To assess the mesh sensitivity of the proposed method, two addi-
tional meshes with approximately 500 and 2,000 elements, pre-
sented in Figs. 15(b and c), were constructed. The quality of these
three meshes was generally poor. Under the action of the distributed
load, the soil is compressed, and the CUP must be located at the
right-most point of the failure surface, which is the last to fail. With
this point as the CUP, the normal stress distributions and the sliding
surface obtained by the X-FELE method using different meshes and
the MP were plotted in Fig. 16(a). As can be observed, the normal
stress distributions for different meshes were comparatively
consistent. Note that the size of the contact element varied con-
siderably due to the random intersection of the failure surface
and the mesh, and it is difficult to achieve a completely uniform
distribution using different meshes. Moreover, the FOS obtained
by the X-FELE method using 500-element, 1,000-element, and
2,000-element meshes were 1.1260, 1.1232, and 1.1216, respec-
tively, and the difference among them was less than 0.5%.
Therefore, it can be concluded that the results of the X-FELE
method were not sensitive to the mesh.

The FOS of the failure surface obtained by the MP was 0.94,
which was approximately 16% smaller than that of the X-FELE
method. The normal stress calculated by the MP was mainly distrib-
uted below the load, and this result was very different from that cal-
culated by X-FELE. From the viewpoint of deformation compati-
bility, the normal stress obtained by the MP was unreasonable.
Unlike the planar and circular slip surfaces, the FOS of this slip sur-
face was extraordinarily sensitive to the normal stress distribution,
even though the shear strength of the surface was independent of
the normal stress because of the zero friction angle. In addition, as
seen in Fig. 16(b), the normal stress distribution of the slip surface
varied with the CUP location. The CUP located at the right-most,
middle, and left-most portions of the failure surface corresponded
to FOS of 1.1232, 1.0543, and 0.9808, respectively. This finding
again confirmed that the normal stress distribution has a notable
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Fig. 13. Displacement field with the CSS under the critical unstable state: (a) contours of displacement (contour labels are in mm); and
(b) displacement direction of the slip body.

tN (kPa)

----- Initial state
—— X-FELE o

T T T T T T T T

30.0 325 350 375 400 425 450 475 50.0

z-coordinate (m)

Fig. 14. Comparison of stress distributions of the CSS in initial and
critical unstable states.

influence on the FOS. Therefore, CUP selection is critical in FELE
calculations.

To introduce the supplementary condition of Eq. (8), any point
on the slip surface can be selected as the CUP. The evolution of the
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Fig. 15. Geometry setup, location of predefined slip surface, and bound-
ary conditions together with discretization of Example 3: (a) mesh con-
sisting of 933 triangles and 519 nodes; (b) mesh consisting of 506
elements and 290 nodes; and (c) mesh consisting of 1,796 elements and
973 nodes.
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Fig. 16. Comparison of normal stress distributions along the slip sur-
face for Example 3 obtained using (a) MP and X-FELE with a different
density of mesh; and (b) X-FELE using a mesh of 1,000 elements with
different CUPs.
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Fig. 17. FOS variation with the location of the CUP together with the
distributions of the tangential displacement jump along the slip surface
obtained using three different CUPs for Example 3.

FOS with the CUP location is presented in Fig. 17. According to
Pan’s extremum principle, the right-most point is the real CUP,
which is consistent with the failure mechanism discussed earlier.
This is a time-consuming method of determining the CUP. The
CUP was determined according to the distribution of g7 on the slip
surface in this study (i.e., g7 was largest at the CUP). The variation
in g7 on the slip surface was generally the same regardless of which
point was selected as the CUP, and this knowledge was the basis of
the trial calculation strategy for determining the CUP. Thus, the
selection of the CUP was in accordance with Pan’s principle and
conformed to the failure mechanism of the slip body. Determining
the CUP based on the point with the largest local FOS is an estima-
tion method that does not always succeed.
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It should be emphasized that the proposed method should be
developed further to include elastoplastic deformation and to study
problems such as Example 3 more reasonably.

Conclusions

In this study, XFEA was used to establish the discrete form of the
equilibrium equation with the critical unstable constraint of the pre-
defined slip surface. To avoid oscillations, the VVT was used to sta-
bilize the normal stress on the slip surface. The novelty of this study
is that the slip surface was regarded as a discontinuity imbedded
into the slope mesh, and the slope did not require remeshing for
each slip surface. In addition, only the portion of the stiffness matrix
that is related to the enriched DOFs must be reorganized. Therefore,
the proposed method, called X-FELE, is suitable for locating the

CSS due to the decrease in the computational burden associated

with each slip surface. Three examples were solved to illustrate the

accuracy and efficiency of the X-FELE. These analyses led to the
following conclusions:

1. In the planar slip example, the FOS determined by the X-FELE
method was equal to that of the analytical solution, which sug-
gests that the X-FELE is highly accurate.

2. The smooth distribution of the normal stress on the planar and
circular slip surfaces indicates that the X-FELE is robust for
unstructured mesh configurations due to the implementation
of the VVT.

3. The CUP can generally be determined by finding the point on
the slip surface with the maximum local FOS, thereby reduc-
ing the computational cost by approximately half.

4. The ALM method can satisfy the normal constraint of the slip
surface at a high level without strict penalty factor requirements.

5. The endangered section of the slip surface can be determined
by comparing the tangential stress distributions in the initial
and critical unstable states. Thus, the method can be used to
help distinguish between landslide types.

6. The successful search for the CSS in Example 2 shows that the
proposed method and the corresponding code aid in determin-
ing the FOS of a large number of predefined slip surfaces with-
out changing the slope mesh.

7. The proposed method is insensitive to the mesh.
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