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Summary

Based on the global method, an approach is proposed to consider the effect of

anchor reinforcement on slope stability, where equilibrium conditions are for-

mulated in terms of the whole slip body. Anchor pre‐tension is assumed to be

undertaken by the whole slip body instead of individual slices, causing internal

force within slope more realistic. Meanwhile, the optimization model for locat-

ing the critical slip surface is of weak nonlinearity and easy to solve using the

conventional optimization procedures. The effects of anchoring orientation

and position are thoroughly investigated, and interesting results are obtained.
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1 | INTRODUCTION

In the recent decades, to prevent and control landslide disasters, pre‐tensioned anchors are increasingly used to stabilize
dangerous slopes, especially slopes in highway and hydraulic power engineering. Anchors have significant technical
advantages, such as saving substantial cost and reducing construction period. Nevertheless, the stability analysis of
anchored slopes has been little touched upon in the classic literature, even in those monographs dealing with various
aspects of slope stability analysis and stabilization methods, such as Abramson et al1 and Bromhead.2

A few of methods, however, were developed to carry out the stability analysis of anchored slopes. Cai and Ugai3

studied the reinforcing mechanism of anchors in slopes using the finite element method and the Bishop method of
slices, where the safety factors of anchored slopes were calculated and compared with each other. Although the finite
element method, which satisfies both equilibrium and compatibility requirements, has indeed advantages over the limit
equilibrium methods in many aspects,4 the limit equilibrium methods have final say in the codes of slope engineering.
The reason for this is due in part to the fact that using a few of geotechnical parameters, the information on the slope
stability can be obtained directly with the limit equilibrium methods, and the results can still meet the accuracy require-
ments in the actual construction.

In practical applications, the stability analysis of anchored slopes is normally carried out by extending the existing
methods, such as the methods of slices and finite element method, to incorporate forces exerted by anchors. For exam-
ple, Hryciw5 considered the action of anchors as discrete surface loads and used in the infinite slope theoretical analysis
to determine the optimum orientation of anchors in cohesionless soils. To analyze the reliability of anchored slopes con-
sidering stochastic corrosion of anchors, a methodology using the Monte Carlo simulation was developed in conjunction
© 2018 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/nag 1
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2 ZHANG ET AL.
with the method of slices in Li et al.6 The normal stress on the slip surface purely induced by the anchor load was taken
as the analytical elastic stress distribution in an infinite wedge approximating the slope geometry; Zhu et al7 analyzed
anchored slopes by a distribution of tractions acting on the slice bottoms and statically equivalent to the point forces of
the anchors. Since the distribution of tractions is from the wedge solution from elasticity, it is beyond the assumption
that the sliding body is actually a rigid body in the context of limit equilibrium methods. Li et al8 proposed a procedure
based on the kinematic limit analysis to consider the reinforcing effect of anchors on slope stabilization.

Since Bishop,9 all rigorous methods of slices chose to eliminate the normal pressure on the slice bottom from the
equilibrium equations and place the burden of static indeterminacy on the interslice forces. Bell10 first proposed another
way to overcome the difficulties encountered in the rigorous methods of slices through introducing a distribution of nor-
mal pressure along the slip surface. The same idea was utilized in Zhu and Lee,11 with a different assumption on the
distribution of normal pressure from Bell.10 Later on, Zheng et al12 proposed the realistic distribution, form which
the normal pressure on the slip surface follows, and proposed a simple scheme for approximating the normal pressure
along the slip surface. Since the whole slip body instead of individual slices, this method is named the global method in
Zheng and Zhou.13 The solution to the factor of safety in the global method turns out to be an algebraic eigenvalue
problem,14 and accordingly it has no issue in convergence, because an eigenvalue problem always has a solution, which
can be found within a finite number of algebraic operations.

Compared with the solution of the factor of safety for a given slip surface, the location of the critical slip surface, on
which the factor of safety attains its minimum, is far more difficult in that it actually reduces to an optimization prob-
lem. The optimization models induced by the conventional methods of slices have so strong nonlinearity that usually
one has to resort to those sophisticated optimization techniques. Cheng et al did deep and thorough researches on
the search for critical slip surfaces.15,16

Together with the Spencer method, Baker proposed a dynamic programming for determining the critical slip sur-
face,17 which was extended in Yamagami and Jiang,18 to search for the three‐dimensional critical slip surfaces, together
with the simplified Janbu method. Chen and Shao19 employed the simplex method, steepest descent, and the Davidson‐
Fletcher‐Powell method in conjunction with a grid search solution, and had an important finding that the factor of
safety might have multiple minima. In order to avoid being trapped in local minima, Li et al20 adopted a real‐coded
genetic algorithm, and Cheng et al21 applied artificial fish swarms algorithm.

On the basis of the sliding field conception along with the Spencer method, Zhu et al presented a method for locating
critical slip surfaces of general shapes in slope stability analysis,22 which involves a number of trial and error operations.

In addition to the solution of the factor of safety associated with a given slip surface, this study also sets up a global
method‐based optimization model for locating the critical slip surface of an anchored slope. Different from any other
optimization procedures in the literature, the proposed optimization model has a linear objective function with the con-
straints being at most cubic polynomials and, consequently, can be easily solved using those conventional optimization
techniques, with no need to resort to those sophisticated optimization techniques.
2 | GLOBAL METHOD OF STABILITY ANALYSIS OF ANCHORED SLOPES

Shown in Figure 1 is a schematic of a sliding body Ω reinforced using two rows of pre‐tensioned anchors with the bore-
hole points at K1 and K2. The sliding body is supposed to be represented by a planar region Ω that is encompassed by the
FIGURE 1 System of forces on an anchored slope
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ground surface DBCA, the slip surface represented by the curve AD will be designated subsequently by S. Ωmay contain
multiple subregions each of which represents a type of soil.

The external forces acting on Ω might include the body forces: the vertical gravity w and the horizontal seismic force
q; the surface loads: the normal traction qn and the tangential traction qt along the ground surface DBCA; and the pre‐

tension Pj of the j‐th row of anchors fixed at the borehole point Kj xpj ; y
p
j

� �
on the ground surface.

Acting along the slip surface S are the constraint forces of the total normal stress σ(x) and shear stress τ(x).
Temporally, let the slip surface S be given. In formulating the equilibrium conditions, the whole slip body Ω is take

as the loaded object. Taking three arbitrary points xci ; y
c
i

� �
, i =1, 2, 3, which are not on the same straight line, as the

moment centers, respectively, the resultant moments of forces acting on Ω about xci ; y
c
i

� �
should vanish, that is

∫S Δxciσ − Δyci τÞdx þ Δxci τ þ ΔyciσÞdyþmc
i ¼ 0

��
(1)

where Δxci and Δyci are the components of the vector from xci ; y
c
i

� �
to point (x, y) on the slip surface S, namely,

Δxci ¼ x − xci ; Δyci ¼ y − yci : (2)

The index i represents a free index. In other words, whenever the index i appears in an equation, i will traverse 1, 2,
and 3, and three relevant equations similar in form will be derived by taking in turn the three points xci ; y

c
i

� �
, i =1, 2, 3,

as the moment center. For simplicity in presentation, the slope is assumed to ascend as a whole along the positive x‐axis.
mc

i in Equation 1 represents the resultant moment of all the external forces acting in/on Ω about xci ; y
c
i

� �
, amongst

which is gravity, which can be calculated with the boundary integrals, and accordingly the partition of slices is no lon-
ger needed, with more details in Zheng and Tham.12

Due to the complicated soil‐anchor interaction and other uncertainties, in the methods of slices, the action of pre‐
tensioned anchors is usually simplified as the point force acting on only one slice at which the anchor borehole is. This,
however, may lead to an abrupt change in the normal stress distribution along the slip surface.5 To account properly for
the effect of anchors on the whole slope, let Pj denote pre‐tension in the jth row of anchors acting at the borehole point

Kj xpj ; y
p
j

� �
on the ground surface at an angle of βj with the negative x‐axis, as shown in Figure 1. All the np rows of pre‐

tensioned anchors do contribution to the total moment mc
i about xci ; y

c
i

� �
, represented by mp

i , reading

mp
i ¼ − ∑

np

j¼1
Pj xpj − xci

� �
sinβj þ ypj − yci

� �
cosβj

h i
: (3)

Once mp
i is calculated, it is added to the total moment mc

i in Equation 1.
The treatment of anchors in the above is simpler than that in Zhu et al,7 where the action of point forces in the

anchors leads to a distribution of tractions acting on the slip surface and determined by the wedge solution from elas-
ticity, which is accurate only for homogeneous materials. In this study, the anchoring forces, Pj, are undertaken by the
whole slip body, which is deemed rigid in the context of limit equilibrium methods.

Suppose that the Mohr‐Coulomb criterion holds along the slip surface S. When the anchored slope is in the state of
limit equilibrium, along S we have

τ ¼ 1
F
ce þ f e σ − uð Þ½ � ¼ 1

F
cw þ f eσð Þ (4)

where F is the factor of safety, ce and f e are effective shear strength parameters, u is pore pressure, and cw = ce − f eu.
Substituting Equation 4 into Equation 1, it is followed that

∫SL
x
i σdx þ Lyi σdyþmc

i F þ dci ¼ 0 (5)

where

Lxi ¼ FΔxci − f eΔy
c
i ; Lyi ¼ FΔyci þ f eΔx

c
i (6)

dci ¼ ∫ScwΔx
c
i dy − cwΔyci dx: (7)
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The real distribution of total normal stress along the slip surface should take the form.12

σ ¼ σ xð Þ ¼ σ0 þ σI (8)

where σ0 is caused merely by the body forces, which is also a major part of σ; σI is reflecting the action of the sliding
body on other external forces excluding the body forces. Both σI and σ0 are the function of x.

For simplicity, we only consider the situation where only gravity and no seismic load is present. In this case,

σ0 ¼ σh cos2α (9)

where

σh ¼ ∫
yG
yH
γdy: (10)

yH and yG are the y‐coordinates of the two points H(xH, yH) on the slip surface S and G(xH, yG) on the ground surface,
which are the intersection points of the vertical line x = xH with the slip surface S and the ground surface, respectively;
α is the angle of the slip surface S at the point H with axis‐x, and γ is the natural unit weight along the vertical line HG.

σI in Equation 8 is indeterminate. To make the problem statically determinant, at most two unknowns can be intro-
duced, namely,

σI ¼ f x; a; bð Þ (11)

where a and b are two parameters to be solved. Zheng and Tham12 proposed a linear function f (x;a, b) be used to
approximate σI, namely

f x; a; bð Þ ¼ ala xð Þ þ blb xð Þ (12)

with

la xð Þ ¼ −
x − xb
xb − xa

; lb xð Þ ¼ x − xa
xb − xa

(13)

xa and xb being x‐coordinates of any two points not in a vertical line, for example, the slope toe and top, respectively.

Substituting Equation 12 into system (4), the system of three equations in F , a, and b follows

g F; a; bð Þ≡F au1 þ bu2 þ u3ð Þ þ au4 þ bu5 þ u6 ¼ 0 (14)

where g is a three‐dimensional vector‐valued function in F , a, and b; u1 to u6 are three‐dimensional vectors, defined as

u1;i ¼ ∫SΔx
c
i ladx þ Δyci lady (15)

u2;i ¼ ∫SΔx
c
i lbdx þ Δyci lbdy (16)

u3;i ¼ mci þ ∫SΔx
c
iσ0dx þ Δyciσ0dy (17)

u4;i ¼ −∫S f eΔy
c
i ladx − f eΔx

c
i lady (18)

u5;i ¼ −∫S f eΔy
c
i lbdx − f eΔx

c
i lbdy (19)

u6;i ¼ −∫S cw þ f eσ0ð ÞΔycidx − cw þ f eσ0ð ÞΔxcidy: (20)

Solving for a and b from the first two equations in system (14) and then substituting them into the third equation, a
cubic polynomial equation in F is derived. Since a cubic polynomial equation has at least one real root, system (14) has
at least one real solution, and again no convergence issue exists for the global method.
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We notice here that the failure of anchors must be taken into account in the design of slope reinforcements. Usually,
failure of anchors is caused by slope deformation if no chemical action is ignored. In such cases, more complicated anal-
ysis, such as the finite element analysis, must be carried out.
3 | DETERMINATION OF THRUST LINE OF REINFORCED SLOPES

Once the solution to system (14) is obtained, we can calculate the interslice forces to check whether the solution leads to
a statically admissible system of forces on the slip body.

Suppose that a vertical line MN at x = xo divides the sliding body Ω into two parts, as show in Figure 2, and take the
lower part ΩL as the loaded body.

Considering the two conditions of force equilibrium in the horizontal and vertical directions, respectively, we can
obtain the interslice forces th and tv

th ¼ −qL þ ∫Lqtdx − qndyþ ∑
np

j¼1
Pj cosβj (20)

tv ¼ −wL þ ∫Lqndx þ qtdy − ∑
np

j¼1
Pj sinβj (21)

where L represents the anticlockwise outer boundary of ΩL excluding MN; qn and qt are normal and tangential tractions
along L:qn ¼ qn,qt ¼ qt on the ground surface NCA, and qn=σ,qt=τ on the slip surface AM; wL is the gravity of ΩL and qL
is the seismic load. If the anchor borehole point x p

j ; y
p
j

� �
is outside ΩL, let Pj = 0.

Take the origin (0, 0) as the moment center and use the condition of moment equilibrium to compute the ordinate y0
of the action point T of the interslice force (th,tv), we have

y0 ¼
1
th

x0tv −mL − ∫L xqn − yqtð Þdx þ xqt þ yqnð Þdyþ ∑
np

j¼1
Pj xpj sinβj þ ypj cosβj
� �" #

(22)

where mL is the moment of wL and qL around the origin.
4 | LOCATION OF CRITICAL SLIP SURFACE OF ANCHORED SLOPES

On the basis of the global method of slope stability analysis, Sun et al23 proposed an optimization model for locating the
critical slip surface with no anchor reinforcement. Here, we extend this model to the analysis of anchored slopes.

First, a series of vertical lines with x‐coordinates xk, k = 1, ⋯, n, are deployed in a scope in which the critical slip
surface might be. Then, let any slip surface in consideration be approximated by connecting points (xk,yk) successively
on these vertical lines, where the yk coordinates are the optimization variables.
FIGURE 2 System of forces on an anchored slope
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Here, in order to simplify programming, let the slip surface pass through all the vertical lines by regarding some
ground surface lines as the portions of the whole slip surface. Take Figure 3 as an example, where 50 vertical lines
are deployed. Let the slip surface start at the 5th point near the toe, and end at the 46th point on the top. Yet, the lines
passing through points (x1, y1) to (x5, y5) and points (x46, y46) to (x50, y50), which are all on the ground surface, are still
regarded as the portions of the slip surface, denoting by SV these portions on the slope surface, with the subscript
“V” representing “Virtual.” In the search for the critical slip surface, let the integrals on SV in Equations 15 to 20 vanish,
which is equivalent to letting the normal stress σ on SV vanish. In this way, the dimensionality of optimization vectors
keeps invariant, greatly simplifying the programming.

In the literature the safety factor acts as the objective function, which is an implicit function of yk, k = 1, ⋯, n,
denoted by G(y), with the n‐dimensional vector y listing all the yk.

G(y) induced by a method of slices is usually high nonlinear, leading to huge difficulties in minimizing G(y) subject
to the constraints that take on strong nonlinearity as well.

In this study, in order to reduce nonlinearity in the optimization model to be built, the safety factor F will act as an
ordinary optimization variable, in the same status as other variables, namely, a and b in Equation 14, and yk. That is to
say, let the objective function G(F ,a, b,y) take on the form

G F; a; b; yð Þ ¼ F: (23)

In this way, the objective function becomes an explicit function of the optimization variables.
In addition to three moment equilibrium equations, convexity of the slip surface should act as a constraint, stating

that any three adjacent points (xj − 1, yj − 1), (xj, yj), and (xj + 1, yj + 1) on the slip surface should take on the anticlockwise
direction,

det

1 xj−1 yj−1
1 xj yj
1 xjþ1 yjþ1

�������
������� ≥ 0 (24)

if (xj, yj) is inside the slip body.
To this point, the optimization model for locating the critical slip surface can be stated as follows. Minimize

G(F ,a, b,y) subject to system (14) and inequalities (24).
In fact, the constraints of system (14) and inequalities (24) dictate a polyhedral domain in the (n + 3)‐dimensional

space, represented by D, in which the dimensionality n is for vector y and 3 for the parameters F , a, and b. The above
optimization problem is actually to find out the vertex of the polyhedron D with the greatest F ‐coordinate.

Since the objective function G(F ,a, b,y) is linear, and the constraint functions in system (14) are at most cubic
polynomials of the optimization variables F , a, b, and yk if the slip surface is approximated by the line segments
(x1, y1)‐ (x2, y2), ⋯, (xn − 1, yn − 1)‐(xn, yn), the model has weak nonlinearity and can be solved easily using those
commercial software products, such as the function “fmincon” in the Matlab toolbox.
5 | ILLUSTRATIVE EXAMPLES

In this section, the anchor parameters are kept invariant, including the anchor pre‐tension P, the anchor borehole posi-
tion parameter lx that is the horizontal distance of the borehole point K to the slope toe C, and the anchor inclination β.
The effect of these parameters on the stability will be expounded in the next section.
FIGURE 3 All thick lines are regarded as portions of a slip surface
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All the examples are analyzed using the global method and the Spencer method implemented in “Slide,” a commer-
cial software product by Canadian company Rocsciences.
FIGUR

FIGUR

FIGUR
Example 1. An homogeneous slope
Figure 4 displays a cross section of a homogeneous earth slope with a height of 20 m and a gradient of 2:1. A row of
anchors are installed with the anchor parameters as follows: pre‐tension P= 600 KN/m‐z, the borehole position param-
eter lx= 20 m, or the borehole point K(40, 30), and the anchor inclination β = 20°. Hereafter, “/m‐z” in the unit of pre‐
tension P means “per meter in z‐direction.”

Figures 5 and 6 display the critical slip surface without and with anchor reinforcement, together with the safety fac-
tors in the parentheses. Apparently, with anchor reinforcement, the safety factor does become bigger, yet the critical slip
surface gets deeper.
Example 2. A nonhomogeneous slope
Shown in Figure 7 is a section of the nonhomogeneous slope in study, with the anchor borehole point K(40, 30),
equivalent to lx=20 m, anchor inclination β = 20° and pre‐tension P=150 KN/m‐z.

Figures 8 and 9 have the same remarks as Figures 5 and 6.
From the above analyses, the safety factors assessed by the global method are a little bit smaller than those by the

Spencer method, by less than 5%. From the practical point of view, such a difference is rather small. Meanwhile, the
critical slip surfaces assessed by the two methods agrees well. As we pointed out in the above, however, the global
method is completely free from the convergence issue.
E 4 Illustrative example 1 of a slope reinforced with anchors

E 5 Critical slip surfaces of example 1 without anchor reinforcement [Colour figure can be viewed at wileyonlinelibrary.com]

E 6 Critical slip surfaces of example 1 with anchors (lx = 20 m, β = 20°) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 7 A nonhomogeneous slope reinforced with anchors

FIGURE 8 Critical slip surfaces of example 2 without anchors [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Critical slip surfaces of example 2 with anchors (lx = 20 m, β = 20°) [Colour figure can be viewed at wileyonlinelibrary.com]
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6 | FURTHER COMPARISON AND DISCUSSION

In this section, we make a deeper comparison between the global method and the Spencer method, including the nor-
mal stress on the slip surface and the thrust line. For cohesionless soil slopes, Hryciw5 carried out the similar investi-
gation and drew the similar conclusions.

The normal stress distribution along the slip surface of the two examples with the anchor reinforcement is shown in
Figures 10 and 11.

From Figures 10 and 11, the curve of the normal stress distribution along the slip surface assessed by the global
method is smooth, while by the Spencer method, an abrupt change is observed at the same x‐coordinate as the borehole
point K. We believe that the result by the global method is more reasonable, in that the curve assessed by the Spencer
method is strongly dependent on the slice partition. This is further verified in Figures 12 and 13, which display the curve
of normal stress distribution along the slip surface with different slice partition.

The abnormal result can be explained as follows. The anchor pre‐tension is loaded on only one slice in the Spencer
method, and the pre‐tension is balanced merely by the normal stress on the bottom of this slice. Due to the static equiv-
alence of the thrust in the slip body, the area under the curve of normal stress distribution along the slip surface is kept
invariant with different slice partition. As a result, the greater the number of slices is used in the Spencer method, the
more abrupt change will be.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 10 Normal stress on slip surface of example 1 with anchors (lx = 20 m, β = 20°)

FIGURE 11 Normal stresses on slip surface of example 2 with anchors (lx = 20 m, β = 20°)

FIGURE 13 Normal stress on slip surface of example 2 with distinct slice partition (lx = 20 m, β = 20°) [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 12 Normal stresses on slip surface of example 1 with distinct slice partition (lx = 20 m, β = 20°) [Colour figure can be viewed at

wileyonlinelibrary.com]

ZHANG ET AL. 9
While in the global method, the anchor pre‐tension is undertaken by the whole slip body and, accordingly, no stress
concentration is present on the slip surface.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 14 Thrust lines of anchored slope with of example 1 (lx = 20 m, β = 20°) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 15 Thrust lines of anchored slope with of example 2 (lx = 20 m, β = 20°) [Colour figure can be viewed at wileyonlinelibrary.com]
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Figures 14 and 15 suggest that the thrust lines in the slip body evaluated by the global method and the Spencer
method agree well with each other, and both have abrupt changes near the anchor borehole.
7 | EFFECT OF ANCHORING PARAMETERS ON STABILITY

In this section, let the orientation and position of anchors change to look at the effect of these parameters on the slope
stability.
7.1 | Effect of anchor orientation

Figure 16 shows the influence of the anchor orientation on the safety factor of example 1, with pre‐tension P= 600 KN/m‐z
and the anchor borehole point K(40, 30) keeping invariant, but the anchor inclination β varying from 0° to 45°. As β
increases from 0° to 45°, the safety factor decreases from 1.228 to 1.144.

Figure 17 shows the influence of the anchor orientation on the safety factor of example 2, with P=150KN/m andK (40, 30)
keeping invariant, and β varying from 0° to 45°. As β increases from 0° to 45°, the safety factor decreases from 1.272 to 1.131.

The difference of the safety factor calculated by the global method and the Spencer method is always less than 5%.
Both the methods have the same trend as the anchor angle β changes. The result is explained as follows. The larger the
angle β is, the larger the friction on the slip surface purely caused by the anchor pre‐tension is, but the smaller the
FIGURE 16 Anchor angle β versus safety factor of example 1 (lx = 20 m and P = 600 KN/m‐z)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 17 Anchor angle β versus safety factor of example 2 (lx = 20 m and P = 150 KN/m‐z)

ZHANG ET AL. 11
hauling force of the anchor against slope sliding is. The above results indicate that the stabilization effect of anchors is
due mainly to the pre‐tension that directly hauls the slip body against sliding down.
7.2 | Effect of anchor position

Apparently, the anchoring position is of interest to the stability of the anchored slope, determining the critical slip sur-
face and the associated safety factor.

Figure 18 illustrates the influence of anchoring position on the safety factor of the slope in example 1 with P = 600
KN/m‐z and β = 20° keeping invariant. Let the anchoring position parameter lx vary from 0 to 50 m. It can be seen that
the maximum safety factor is attained at lx= 20 m, with the critical slip surface shown in Figure 6.

Figure 19 shows the influence of anchoring position on the safety factor of the slope in example 2 with P= 150 KN/m‐z
and β= 20° invariant. Let lx vary from 0 to 22m. The same variation of the safety factor is observed as in example 1, but the
maximum safety factor is attained at lx= 4 m, with the critical slip surface shown in Figure 20. Noticeably, a very
interesting result is observed—the anchor is outside the critical slip body! The result appears strange to us at the first
glance, yet it is explainable and greatly significant. The critical slip surface of a slope always exists, and the instal-
lation of the anchor at some place forces the critical slip surface therein to move to other place but enhances the
global stability of the whole slope.
FIGURE 18 Anchoring position lx versus safety factor of example 1 (β = 20° and P = 600 KN/m‐z)

FIGURE 19 Anchoring position lx versus safety factor of example 2 (β = 20° and P = 150 KN/m‐z)



FIGURE 20 Critical slip surface corresponding to best lx (4 m) at which the maximum safety factor attains (example 2, β = 20° and

P = 150 KN/m‐z)
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The anchoring position determines the critical slip surface and the associated safety factor.
As another two extreme cases from example 1, if the anchor borehole is very close to the slope toe or the slope top,

the anchor will be outside the critical slip body. Figures 21 and 22 display the two extremities.
7.3 | Application of two rows of anchors

If the pre‐tension force to reach the given stability cannot be undertaken by one row of anchors, more rows of anchors
are needed. Here is such a case.

For the slope of Example 2, the pre‐tension of 150 KN/m‐z is assumed to be undertaken by two rows of anchors,

with the first row of anchors having the anchoring parameters, see Figure 7, l1x = 20 m and pre‐tension P1=100 KN/m‐z,
and the second row of anchors having the anchoring parameters l2x = 25m and pre‐tension P2=50 KN/m‐z. All the anchors
have the same fixing angle of 20°.
FIGURE 21 Critical slip surface in example 1 with anchors close to slope toe (lx = 5 m, β = 20°) [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 22 Critical slip surface in example 1 with anchors close to slope top (lx = 38 m, β = 20°) [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 24 Thrust lines of slope in example 2 resulting from two rows of anchors [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 23 Results of example 2 with two rows of anchors ( l1x ¼ 20m; β¼20°; l2x ¼ 25m; β¼20°) [Colour figure can be viewed at

wileyonlinelibrary.com]
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Let us return to Figure 9, which displays the results corresponding to one row of anchors applying a pre‐tension of
150 KN/m‐z, FGlobal = 1.261 and FSpencer = 1.283. After applying two rows of anchors, see Figure 23, the results are
FGlobal = 1.265 and FSpencer = 1.291.

The application of two rows of anchors does not lead to a significant increase in the factor of safety, which is explain-
able because the improvement of slope stability is due mainly to the reinforcement force (Figure 24).

Figure 24 shows the thrust lines corresponding to two rows of anchors. In each line, two abrupt changes are observed.
8 | CONCLUSIONS

This study shows the global method is very well qualified for the stability analysis of anchored slopes, not only for the
calculation of the safety factor of landslides but also for the location of the critical slip surface.

The stabilization effect of anchors lies mainly in the pre‐tension that directly resists the slip body against sliding
down, rather than increases the friction along the slip surface purely caused by the pre‐tension.

The global method‐based optimization model for locating the critical slip surface has weak nonlinearity compared
with other existing optimization models, and easy to solve using those conventional optimization procedures.

The anchoring position is of vital importance to the stability of slopes, having an optimal value at which the
anchored slope is stabilized best.

The best anchoring position might be outside the critical slip body.
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