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Modelling three dimensional dynamic problems using the four-
node tetrahedral element with continuous nodal stress
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A partition of unity (PU) based four-node tetrahedral element with continuous nodal stress (Tetr4-CNS) was recently proposed
for static analysis of three-dimensional solids. By simply using the same mesh as the classical four-node tetrahedral (Tetr4)
element, high order global approximation function in the Tetr4-CNS element can be easily constructed without extra nodes or
nodal DOFs. In this paper, the Tetr4-CNS element is further applied in the analysis of three dimensional dynamic problems. A
series of free vibration and forced vibration problems are solved using the Tetr4-CNS element. The numerical results show that,
for regular meshes, accuracy obtained using the Tetr4-CNS element is superior to that obtained using the Tetr4 and eight-node
hexahedral (Hexa8) elements. For distorted meshes, the Tetr4-CNS element has better mesh-distortion tolerance than both the
Tetr4 and Hexa8 elements.
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1 Introduction

The finite element method (FEM) [1,2] is the most widely
used numerical method for the analysis of dynamic problems
of structures. When using FEM, engineers prefer 2D three-
node triangular (Tria3) element and 3D four-node tetrahedral
(Tetr4) element to 2D four-node quadrilateral (Quad4) ele-
ment and 3D eight-node hexahedral (Hexa8) element for the
easy creation of meshes for 2D or 3D geometries of general
complexity. Additionally, the h-type mesh refinement adap-
tation using the Tria3 and Tetr4 elements can be easily
conducted without difficulty, leading to the convenience in
modelling and simulation [3]. Therefore, the research on the
computational methods using low order triangular or tetra-
hedral mesh with high accuracy and versatility is of con-
siderable practical significance [4].

However, the Tria3 and Tetr4 elements also suffer from
crucial shortcomings for problems of solid mechanics. For
example, due to the adoption of linear displacement ap-
proximation function, both the Tria3 and Tetr4 elements
exhibit the well-known overly-stiff behavior, which leads to
large error in both static and dynamic analysis [3]. More
importantly, in FEM conforming mesh has to be employed to
discretize the domain of problem. In other words, Tria3 and
Tetr4 elements, as two types of numerical models in FEM,
also have to conform the problem boundary and fracture
face. When solving fracture propagation problems, the pro-
cedure to regenerate mesh around the fracture-tip, which is
normally time-consuming, has to be executed in each step.
For the purpose of alleviating these shortcomings, many
efforts have been made in the past years [5–9].
On the other hand, meshfree methods [10–14] offer at-

tractive alternatives to the FEM for various types of pro-
blems. The meshfree methods are very suitable for crack
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propagation problems [15], because they use a series of
nodes instead of mesh to discretize the problem domain. In
addition, due to the adoption of high order global approx-
imation function, accuracy obtained using meshfree methods
is generally better than that obtained using the FEM. How-
ever, meshfree methods are also not free from drawbacks.
One is the lack of Kronecker-delta property for some of the
meshfree methods. The other is high computational cost in
obtaining shape functions [16]. Alternatively, a series of
partition-of-unity (PU) based methods have been proposed in
recent years to overcome the difficulties encountered in the
FEM, including the extended finite element method (XFEM)
[17], the generalized finite element method (GFEM) [18],
the numerical manifold method (NMM) [19–35] and the
isogeometric analysis [36,37].
By using the Tria3 mesh, a partition of unity (PU) based

“FE-Meshfree” three-node triangular element with con-
tinuous nodal stress (Tria3-CNS) [38] was proposed recently.
In the Tria3-CNS element, high order global approximation
can be easily constructed without extra nodes or nodal DOFs.
More importantly, the “linear dependence” (LD) issue [39],
which cripples some of the PU-based methods, does not exist
in this Tria3-CNS element. It has been found that Tria3-CNS
element can obtain much better accuracy and higher con-
vergence rate than both Tria3 and Quad4 elements for static
and dynamic problems [38,40]. By incorporating advantages
of NMM, the Tria3-CNS element is able to solve crack
problems with very high accuracy [41].
Note that only a few practical engineering problems can be

simplified into 2D problems. Therefore, developing effective
numerical methods which can accurately simulate 3D pro-
blems is essential [5]. Since the Tetr4 element cannot obtain
desirable accuracy for many engineering problems, but has
great advantages in terms of mesh creation and h-type mesh
refinement adaptation, there is a natural demand in devel-
oping a new element, which can yield high accuracy by using
the same mesh as the Tetr4 element.
Recently, a PU-based four-node tetrahedral element with

continuous nodal stress (Tetr4-CNS) [42] was developed. By
simply using the same mesh as the Tetr4 element, high order
global approximation function can be constructed in the
Tetr4-CNS element without extra nodes or nodal DOFs,
thereby achieving higher accuracy and convergence rate for
linear elastic problems in 3D. This Tetr4-CNS element de-
serves to be further applied in the analysis of other types of
three dimensional problems, such as dynamic problems
which will be considered in this study, and crack propagation
problems, which will be considered in our future work.

2 Shape function for Tetr4-CNS element

The procedure to construct shape functions of the Tetr4-CNS
element has been presented in detail in ref. [42]. Hence, only

the basic expressions are reviewed in this section.
Let a tetrahedral element defined by four nodes {P1 P2 P3

P4} and introduce an arbitrary point P(x). Here, x=(x, y, z).
As a PU-based method, the global approximation function
uh(x) of Tera4-CNS element can be expressed as

u w ux x x( ) = ( ) ( ), (1)h

i
i i

=1

4

where wi(x) and ui(x) are the weight function and local ap-
proximation function associated with node i, respectively.
The coordinate transformation for a given point is ex-

pressed as [1]
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where Ni are expressed in the following form:

N = 1 , (3a)1

N = , (3b)2

N = , (3c)3

N = . (3d)4

In the Tera4-CNS element, weight functions {wi(x), i=1, 2,
..., 4} are constructed by using volume coordinates and ex-
pressed as [42]
w L L L L L L L L L L L L L

L L L L L L
= + + +

, (4)
i i i i j i i k i i m i j j

i k k i m m

where subscript i varies from 1 to 4, and j, k and m are
determined by cyclic permutation of the order of i, j, k andm.
Note that weight functions of the Tera4-CNS element have
four important features, which can be found in Appendix A.
The local approximation function associated with node i is

expressed in the interpolation form as

u ax x( ) = ( ) , (5)i
j

n

j
i

j
=1

[ ]
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where n[i] is the total number of nodes in domain Ωi (see
Figure B1), aj is the nodal displacement of node j and j

i[ ] is
the shape function corresponding to ui(x) (The procedure to
obtain ui is described in Appendix B).
Substituting eqs. (4) and (5) into eq. (1), then the global

approximation function for the Tetr4-CNS element is ex-
pressed as

u w ax x x( ) = ( ) ( ) . (6)h
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By manipulating eq. (6), uh(x) can be expressed in a simper
form as
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u ax x( ) = ( ) , (7)h

i

N

i i
=1

where ϕi(x) is the shape function corresponding to node i. N
is the total number of nodes in the element support domain
(Definition of can be found in Appendix B).
There are two useful properties for the Tera4-CNS element

including, (1) the derivatives of uh(x) are continuous at the
nodes; (2) the Kronecker-delta property

x( ) = . (8)i j ij

Shape functions of the Tetr4-CNS element possess the
Kronecker-delta property, which is very important to impose
the essential boundary conditions directly. However, due to
the adoption of high order global approximate function, ap-
plying the boundary conditions only at the boundary nodes
may not sufficient. This is a demerit of the Tetr4-CNS ele-
ment. Note that this demerit also exists in other types of
elements [43,44] which have been successfully used to solve
solid problems. Similar to those elements [43,44], no ill-
effect has been found in the Tetr4-CNS element.

3 Tetr4-CNS element for dynamic analysis
Consider a three dimensional problem domain defined with
V and let V be discretized by a set of non-overlapping tet-
rahedral elements. V can therefore be express as V V= i

N
i=1 .

Here, Vi represents the domain of the i-th tetrahedral element.
Using shape functions of the Tetr4-CNS element (eq. (7)),
the discretized equation system for dynamic analysis can be
expressed with eq. (9) [45,46].
Mä Ca Ka f+ + = , (9)
where K denotes the global stiffness matrix; M represents
the global mass matrix. K andM can separately be obtained
by summing all the element stiffness matrices and mass
matrices:
K K M M= , = , (10)ij ij
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and D in eq. (11) is the elastic matrix. Note that in eqs. (13)
and (14), ϕi is constructed using the same method presented
in eq. (7). To be more specifically, the element stiffness
matrix and element mass matrix for the proposed Tetr4-CNS
element have equal dimensions, which are both larger than
those for the traditional FEM Tetr4 element.
In this study, the Rayleigh damping [1] is used. Hence, the

damping matrix C is obtained through a linear combination
of K and M:
C M K= + , (15)1 2

where β1 and β2 are the Rayleigh damping coefficients.
To solve the system equations (eq. (9)), the Newmark

method [1] is employed. Assuming the state variables at time
t is known, then the new state variables at time t+Δt can be
obtained using the following expressions:

t t

t t

t t
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2 1 ¨ , (17)t t t t t t t+ 2 +

t ta a a a= + (1 )¨ + ¨ . (18)t t t t t t+ +

By neglecting the damping and forcing terms, eq. (9) can
be simplified into a homogenous equation:
Mä Ka+ =0. (19)
A general solution of eq. (19) can be written as

i ta a= exp( ), (20)
where t denotes time. a is the eigenvector andω is the natural
frequency.
Substituting eq. (20) into eq. (19), then the natural fre-

quency ω can be obtained by solving the following eigen-
value equation:

Ka Ma =0, = . (21)2

Here, the eigenvectors a determine the mode shapes of free
vibration associated with ω. Solving all the modes of the
problem will be extremely time-consuming. As a result,
generally, only those lower order modes with smaller ω are
seek out by using, for instance, the subspace iteration pro-
cedure [1].

4 Numerical examples

To assess performance of the Tetr4-CNS model for structural
dynamic problems, four numerical tests for free vibration
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problems and one numerical test for forced vibration pro-
blem are solved. Except specially mentioned, physical units
used in this section are based on the international standard
unit system. Here, n represents the total number of nodes in
the computational model. To assess accuracy, the relative
error in the natural frequency is defined as

Re = , (22)
num ref

ref

where the ‘‘ref’’ represents a reference solution and the
‘‘num’’ denotes a numerical solution.
The numerical models used in this section are listed as

follows:
(1) Tetr4 element: four-node isoparametric tetrahedral

element;
(2) Hexa8 element: eight-node isoparametric hexahedral

element;
(3) Tetr10 element: ten-node isoparametric tetrahedral

element;
(4) Hexa20 element: twenty-node isoparametric hexahe-

dral element;
(5) Tetr4-CNS (LS10) element: the first type of Tetr4-CNS

element, which uses the basis from eq. (A7) to construct
local approximation functions;
(6) Tetr4-CNS (LS20) element: the second type of Tetr4-

CNS element, which employs the basis from eq. (A8) to
construct local approximation functions.

4.1 Mesh distortion test

To investigate performance of the Tetr4-CNS element for
distorted meshes, a 3D straight cantilever beam is employed.
As shown in Figure 1, the 3D straight cantilever beam is
discretized into 2×2×2 elements to investigate the perfor-
mance of Hexa8 and Hexa20 elements. In addition, the
hexahedral meshes shown in Figure 1 are further divided into
tetrahedral meshes to assess the performance of Tetr4,
Tetr10, Tetr4-CNS (LS10) and Tetr4-CNS (LS20) elements.
As can be seen from Figure 2, each hexahedral element is
divided into 6 tetrahedral elements.
In this study, we consider two types of distortion, namely,

the plain-distorted and skewed-distorted elements. In the
computation, a distortion parameter 2d/W is used to control

mesh distortion. When considering plane-distorted elements,
nodes A, B, C, G, H and I are moved longitudinally, by a
distance ±d to induce distortion. When considering skewed-
distorted elements, node E is moved longitudinally by a
distance. Note that this example has already been used to
evaluate the performance of Tetr4-CNS (LS10) and Tetr4-
CNS (LS20) elements in solving static problems [42].
In this example, the left end of the beam is fixed. The

parameters used are taken as: L=10, H=2, W=2, Young’s
modulus E=1500, Poisson’s ratio v=0.25 and mass density
ρ=1. The reference solution of the fundamental natural fre-
quency for this cantilever beam is 0.1222, which is obtained
by ABAQUS with a very fine mesh with 320000 Hexa8
elements and 337881 nodes. Comparisons of computed
natural frequency of the first mode through the plane-dis-
torted and skewed-distorted elements are separately shown
in Tables 1 and 2. The comparisons of relative errors ob-
tained by using different element types are shown in Figure
3. Some conclusions can be drawn:
(1) First, the errors given by Tetr4-CNS (LS10) and Tetr4-

CNS (LS20) elements almost do not change with the increase
in distortion parameters, while the errors given by Tetr4 and
Hexa8 elements show a rapid increase. The Tetr4-CNS
(LS10) and Tetr4-CNS (LS20) elements are seen to be in-
sensitive to mesh distortion.
(2) Second, the results of Tetr4-CNS (LS10) element are

always much better than those of Tetr4 and Hexa8 elements.
The results of Tetr4-CNS (LS20) element is slightly better
than those of Tetr4-CNS (LS10) element.
(3) Third, accuracy obtained using the Tetr10 and Hexa20

elements are even better than those obtained using the Tetr4-
CNS (LS20) element. However, as the value of distortion
parameter increases, the results obtained by using the Tetr10
and Hexa20 elements deteriorate. Additionally, both Tetr10
and Hexa20 elements need adding extra nodes, resulting in a
fast expanding global stiffness and mass matrices.
It is known that certain elements are sensitive to certain

types of distortions, i.e. linear elements fear linear distortions
(angular distortion) while high order elements are immune to
linear (angular) distortion [47,48]. As shape functions of the
Tetr4-CNS (LS10) and Tetr4-CNS (LS20) elements are not
linear, they are hence immune to linear distortions tested in

Figure 1 (Color online) Straight cantilever beam for distortion test [43]. (a) Regular hexahedral mesh; (b) distorted hexahedral mesh generated by
longitudinally shifting the associated nodes by a distance d.
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this example.

4.2 A 3D cantilever beam

A three dimensional cantilever beam shown in Figure 4 and
fixed at the left end is studied for the various behaviors of
Tetr4-CNS element as a benchmark problem. The parameters
in the computation are taken as L=4, H=1, W=0.4, Young’s
modulus E=71×109, Poisson’s ratio v=0.3 and mass density
ρ=2700. This problem has earlier been analyzed by He et al.
[3] using an edge-based smoothed tetrahedron finite element
method (ES-T-FEM). Due to the lack of analytical solution
for this problem, a reference solution is obtained by He et al.
[3] using Nastran with a very fine mesh of 18241 nodes for
comparison purpose.
To examine the convergence of numerical solution in

Tetr4, Hexa8, Tetr4-CNS (LS10) and Tetr4-CNS (LS20)
elements, three discrete models are constructed, as shown in

Figures 5 and 6. The first 6 non-rigid eigenfrequencies of the
3D beam obtained from Tetr4-CNS (LS10) and Tetr4-CNS
(LS20) elements are listed in Tables 3–5, together with the
numerical solutions obtained using the Tetr4 element with
the same set of mesh. In addition, results obtained using the
Hexa8 element with hexahedral mesh are also provided in
Tables 3–5. Figure 7 shows the plot of errors in the first two
natural frequencies obtained using the Tetr4-CNS (LS10)
and Tetr4-CNS (LS20) elements as well as the Tetr4 and
Hexa8 elements. It is seen that errors in the first two natural
frequencies given by Tetr4-CNS (LS10) element is generally
less than that given by the Tetr4 and Hexa8 elements. Ad-
ditionally, Tetr4-CNS (LS20) element can obtain even better
results than Tetr4-CNS (LS10) element. Even for coarse
mesh, results given by the Tetr4-CNS (LS20) element are
close to the reference solution.
The eigenmodes of Modes 5, 10 and 15 obtained by using

the Tetr4 and Tetr4-CNS (LS20) element are separately

Figure 2 (Color online) Sketch of dividing a Hexa8 element into six Tetr4 elements. (a) A Hexa8 element; (b) six Tetr4 elements.

Table 1 Computed natural frequencies (Hz) of the first mode through the plane-distorted elements

2d/W Tetr4 Hexa8 Tetr10 Hexa20 Tetr4-CNS
(LS10)

Tetr4-CNS
(LS20) Reference

0.000 0.2963 0.2258 0.1277 0.1226 0.1506 0.1446 0.1222

0.025 0.2971 0.2259 0.1277 0.1227 0.1506 0.1446 0.1222

0.050 0.2982 0.2263 0.1278 0.1227 0.1506 0.1446 0.1222

0.075 0.2995 0.2270 0.1278 0.1228 0.1507 0.1446 0.1222

0.100 0.3011 0.2279 0.1279 0.1228 0.1507 0.1446 0.1222

0.150 0.3045 0.2304 0.1281 0.1231 0.1507 0.1446 0.1222

0.200 0.3082 0.2336 0.1284 0.1235 0.1507 0.1446 0.1222

0.250 0.3119 0.2371 0.1288 0.1240 0.1508 0.1446 0.1222

0.300 0.3156 0.2408 0.1293 0.1245 0.1508 0.1446 0.1222

0.400 0.3226 0.2481 0.1306 0.1260 0.1509 0.1446 0.1222

0.500 0.3290 0.2546 0.1323 0.1276 0.1510 0.1446 0.1222

0.600 0.3348 0.2604 0.1342 0.1294 0.1511 0.1446 0.1222

0.700 0.3403 0.2654 0.1361 0.1309 0.1512 0.1445 0.1222

0.800 0.3456 0.2699 0.1379 0.1323 0.1514 0.1445 0.1222

0.900 0.3507 0.2740 0.1394 0.1338 0.1515 0.1444 0.1222
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plotted in Figures 8 and 9. It can be observed that the com-
puted eigenmodes from Tetr4-CNS (LS20) element are si-

milar to those from Tetr4 element and no spurious modes
exist.

4.3 A 3D lame problem

In this section, a 3D Lame problem which consists of a
hollow sphere is considered. Due to the symmetry, only one-
eighth of the hollow sphere is modeled, as shown in Figure
10. The parameters for this problem are listed as: inner radius
of the hollow sphere a=1 m, outer radius of the hollow
sphere b=2 m, Young’s modulus E=1000 N m−2, Poisson’s
ratio v=0.3 and mass density ρ=1 kg m−3. Due to the lack of
analytical solution, a reference solution is obtained by using
the Tetr10 element with a very fine mesh of 18593 nodes for
comparison purpose.

Table 2 Computed natural frequencies (Hz) of the first mode through the skewed-distorted elements

2d/W Tetr4 Hexa8 Tetr10 Hexa20 Tetr4-CNS
(LS10)

Tetr4-CNS
(LS20) Reference

0.000 0.2963 0.2258 0.1277 0.1226 0.1506 0.1446 0.1222

0.025 0.2976 0.2269 0.1277 0.1227 0.1506 0.1446 0.1222

0.050 0.2995 0.2284 0.1277 0.1227 0.1506 0.1446 0.1222

0.075 0.3018 0.2302 0.1277 0.1227 0.1506 0.1446 0.1222

0.100 0.3044 0.2323 0.1278 0.1227 0.1506 0.1446 0.1222

0.150 0.3098 0.2370 0.1279 0.1228 0.1506 0.1446 0.1222

0.200 0.3150 0.2422 0.1281 0.1229 0.1506 0.1446 0.1222

0.250 0.3194 0.2473 0.1283 0.1230 0.1506 0.1446 0.1222

0.300 0.3232 0.2522 0.1286 0.1232 0.1506 0.1446 0.1222

0.400 0.3290 0.2605 0.1296 0.1238 0.1506 0.1446 0.1222

0.500 0.3332 0.2668 0.1310 0.1246 0.1506 0.1446 0.1222

0.600 0.3365 0.2715 0.1328 0.1255 0.1507 0.1446 0.1222

0.700 0.3394 0.2749 0.1347 0.1267 0.1507 0.1445 0.1222

0.800 0.3419 0.2777 0.1365 0.1281 0.1507 0.1445 0.1222

0.900 0.3443 0.2799 0.1382 0.1296 0.1507 0.1445 0.1222

Figure 4 Free vibration analysis of a 3D cantilever beam.

Figure 3 (Color online) Errors in the computed frequencies of the first mode for distortion sensitivity test. (a) Plane-distorted elements; (b) skewed-
distorted elements.
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To examine convergence of numerical solution in the
Tetr4, Tetr4-CNS (LS10) and Tetr4-CNS (LS20) elements,
three discrete models are used. The first 6 non-rigid eigen-
frequencies of the one-eighth of the hollow sphere obtained
using the Tetr4-CNS (LS10) and Tetr4-CNS (LS20) ele-
ments are listed in Tables 6–8, together with the numerical

solutions obtained using the Tetr4 element with the same set
of meshes. Figure 11 shows the plot of errors in the first two
natural frequencies obtained using the Tetr4-CNS (LS10),
Tetr4-CNS (LS20) and Tetr4 elements. It is seen that errors
in the first two natural frequencies given by the Tetr4-CNS
(LS10) element is much less than that given by the Tetr4

Figure 5 (Color online) Regular tetrahedral mesh for the 3D cantilever
beam in Figure 4. (a) Mesh A (88 nodes, 180 elements); (b) Mesh B (378
nodes, 1200 elements); (c) Mesh C (1116 nodes, 4320 elements).

Figure 6 (Color online) Regular hexahedral mesh for the 3D cantilever
beam in Figure 4. (a) Mesh A (88 nodes, 30 elements); (b) Mesh B (378
nodes, 200 elements); (c) Mesh C (1116 nodes, 720 elements).

Table 3 Comparison of computed frequencies (Hz) for the 3D cantilever beam using Mesh A (Figures 5(a) and 6(a))

Mode
Tetr4

(88 nodes, 180 ele-
ments)

Hexa8
(88 nodes, 30 elements)

Tetr4-CNS (LS10)
(88 nodes, 180 ele-

ments)

Tetr4-CNS (LS20)
(88 nodes, 180 ele-

ments)
Ref. [3]

1 48.44 25.69 22.96 22.24 20.77

2 63.48 52.25 50.70 50.54 49.72

3 261.52 140.64 146.48 140.37 124.47

4 309.13 155.78 154.43 140.76 132.45

5 326.98 268.94 264.45 259.89 252.26

6 374.68 324.24 323.90 323.50 321.94

Table 4 Comparison of computed frequencies (Hz) for the 3D cantilever beam using Mesh B (Figures 5(b) and 6(b))

Mode
Tetr4

(378 nodes, 1200 ele-
ments)

Hexa8
(378 nodes, 200 ele-

ments)

Tetr4-CNS (LS10)
(378 nodes, 1200 ele-

ments)

Tetr4-CNS (LS20)
(378 nodes, 1200 ele-

ments)
Ref. [3]

1 31.31 22.22 20.94 20.88 20.77

2 54.10 50.52 50.01 49.89 49.72

3 182.15 133.94 126.58 125.74 124.47

4 218.31 137.24 137.25 135.31 132.45

5 271.80 257.44 253.79 252.81 252.26

6 323.71 322.78 322.55 322.36 321.94

7Zhang G H, et al. Sci China Tech Sci



Table 5 Comparison of computed frequencies (Hz) for the 3D cantilever beam using Mesh C (Figures 5(c) and 6(c))

Mode Tetr4
(1116 nodes, 4320 elements)

Hexa8
(1116 nodes, 720 elements)

Tetr4-CNS (LS10)
(1116 nodes, 4320 elements)

Tetr4-CNS (LS20)
(1116 nodes, 4320 elements) Ref. [3]

1 26.45 21.44 20.86 20.82 20.77

2 51.63 50.10 49.86 49.81 49.72

3 156.23 128.88 125.25 124.90 124.47

4 181.24 134.77 133.83 133.07 132.45

5 260.92 254.65 252.89 252.51 252.26

6 322.95 322.40 322.28 322.18 321.94

Figure 7 (Color online) Convergence of the error in the computed frequency for the first two modes for the 3D cantilever beam. (a) Mode 1; (b) Mode 2.

Figure 8 (Color online) Eigenmodes of 3D cantilever beam problem
obtained by using the Tetr4 element. (a) Mode 5; (b) Mode 10; (c) Mode
15.

Figure 9 (Color online) Eigenmodes of 3D cantilever beam problem
obtained by using the Tetr4-CNS (LS20) element. (a) Mode 5; (b) Mode 10;
(c) Mode 15.
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element. Additionally, Tetr4-CNS (LS20) element can obtain
even better results than Tetr4-CNS (LS10) element.

4.4 A three dimensional rock slope

A three dimensional rock slope shown in Figure 12 is con-
sidered in this section. The bottom surface, left surface, right
surface, front surface and back surface of the rock slope are
all constrained in normal direction. Computational para-

meters for the rock slope are listed as follows: Young’s
modulus E=19 GPa, Poisson’s ratio v=0.25 and mass density
ρ=2630 kg m−3. Since the analytical solution for this problem
is not available, a reference solution is obtained by using a
very fine mesh (Figure 13) with ABAQUS.
The first 5 natural frequencies for the discretized models

(Figure 12) calculated using the Hexa8, Hexa20, Hexa20,
Tetr10 and Tetr4-CNS (LS20) elements are listed together in
Table 9. As seen in Table 9, results obtained using the Tetr4-
CNS (LS20) element are much better than those obtained
using the Hexa8 element, but inferior to those obtained using
the Hexa20 and Tetr10 elements.

4.5 A 3D cantilever beam subjected to a harmonic
loading

The three dimensional cantilever beam presented in Section
4.2 is again investigated using the Tetr4-CNS model. The
cantilever beam shown in Figure 14 is subjected to a har-
monic loading f(t)=sinωf t. The parameters in the computa-
tion are taken as L=4, H=1, W=0.4, Young’s modulus
E=71×109, Poisson’s ratio v=0.3, mass density ρ=2700, ωf=
0.04 rad s−1, the Rayleigh damping coefficients β1=0.005,
β2=0.272 and the Newmark method parameters α=0.5, δ
=1.0 A time step with Δt=1.57 s is used for time integration,
while the total computational time is set to be 1200 s. The
discretized models shown in Figures 5(b) and 6(b) are em-
ployed in this example. The problem is solved with four
types of numerical models including the Tetr4, Hexa8, Tetr4-
CNS (LS10) and Tetr4-CNS (LS20) elements. Due to the
lack of theoretical solution, a reference solution is obtained
by using Hexa20 element with the discretized model pre-
sented in Figure 6(b) for comparison purpose. Figure 15
shows dynamic responses of the 3D cantilever beam ob-
tained using different types of elements. For a better view,
the displacement errors predicted by the Tetr4, Hexa8, Tetr4-
CNS (LS10) and Tetr4-CNS (LS20) elements are further
plotted in Figure 16. It is seen that errors obtained using the
Tetr4-CNS (LS10) and Tetr4-CNS (LS20) elements are very
small, which are much smaller as compared to those obtained
using the Tetr4 and Hexa8 elements. This shows that the

Figure 10 (Color online) One-eighth of a hollow sphere model dis-
cretized using four-node tetrahedral elements [42].

Table 6 Comparison of computed frequencies (Hz) for the one-eighth of
the hollow sphere using Model A (259 nodes, 972 elements)

Mode Tetr4 Tetr4-CNS
(LS10)

Tetr4-CNS
(LS20) Reference

1 8.74 8.24 7.96 7.63

2 9.03 8.28 8.09 7.92

3 9.59 8.30 8.09 7.93

4 12.12 10.88 10.34 10.11

5 12.88 11.56 10.87 10.25

6 13.52 11.74 10.90 10.29

Table 7 Comparison of computed frequencies (Hz) for the one-eighth of
the hollow sphere using Model B (549 nodes, 2304 elements)

Mode Tetr4 Tetr4-CNS
(LS10)

Tetr4-CNS
(LS20) Reference

1 8.44 7.96 7.78 7.63

2 8.57 8.08 8.01 7.92

3 8.83 8.09 8.01 7.93

4 11.29 10.39 10.21 10.11

5 11.90 10.86 10.52 10.25

6 12.24 10.92 10.53 10.29

Table 8 Comparison of computed frequencies (Hz) for the one-eighth of
the hollow sphere using Model C (1001 nodes, 4500 elements)

Mode Tetr4 Tetr4-CNS
(LS10)

Tetr4-CNS
(LS20) Reference

1 8.29 7.81 7.72 7.63

2 8.34 8.01 7.98 7.92

3 8.48 8.02 7.98 7.93

4 10.89 10.23 10.16 10.11

5 11.40 10.58 10.40 10.25

6 11.63 10.62 10.40 10.29
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Tetr4-CNS (LS10) and Tetr4-CNS (LS20) elements using
tetrahedral mesh can be applied to the forced vibration
analysis with excellent accuracy.

5 Discussion and conclusions

In this paper, the PU-based four-node tetrahedral element
with continuous nodal stress (Tetr4-CNS) is extended to
dynamic analysis of three-dimensional solids. This Tetr4-
CNS element performs very well for dynamic problems.
Some important observations from this work are as follows:
(1) Compared to the FEM, Tetr4-CNS (LS10) element

does not need a new mesh or additional nodes in the mesh. It
just uses the same mesh as the classical Tetr4 element, but
can give more accurate solution than the Tetr4 and Hexa8
elements because a higher order interpolation is used in the
Tetr4-CNS (LS10) element.
(2) The Tetr4-CNS (LS20) element can obtain even better

results than Tetr4-CNS (LS10) element, because the Tetr4-
CNS (LS20) element employs a higher global approximation
function than the Tetr4-CNS (LS10) element.

Figure 11 (Color online) Convergence of errors in the computed frequency for the first two modes of the hollow sphere. (a) Mode 1; (b) Mode 2

Figure 12 (Color online) Discritized model for a rock slope. (a) Hex-
ahedral mesh; (b) tetrahedral mesh.

Figure 13 (Color online) A very fine mesh for the rock slope (Hexa8
element with 17666 nodes and 15110 elements).

Table 9 Comparison of computed frequencies (Hz) for the rock slope

Mode
Hexa8

(246 nodes and
124 elements)

Hexa20
(839 nodes and 124

elements)

Tetr10
(1435 nodes and
744 elements)

Tetr4-CNS (LS20)
(246 nodes and
744 elements)

Reference
(17666 nodes and
15110 elements)

1 37.85 37.66 37.68 37.62 37.68

2 54.08 53.72 53.80 53.65 53.79

3 63.73 62.66 62.76 62.75 62.70

4 70.26 69.12 69.32 69.46 69.23

5 88.74 85.95 86.32 86.57 86.15
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(3) Results from the mesh distortion test show that accu-
racy obtained using the Tetr10 and Hexa20 elements are even
better than that obtained using the Tetr4-CNS (LS20) ele-

ment. However, as the value of distortion parameter in-
creases, the results obtained using the Tetr10 and Hexa20
elements deteriorate (Figure 3). Additionally, both Tetr10
and Hexa20 elements need extra nodes, resulting in a fast
expanding global stiffness matrix.
Although the Tetr4-CNS (LS10) and Tetr4-CNS (LS20)

elements perform better than the Tetr4 and Hexa8 elements
for dynamic problems, this advantage does not come without
cost. The bandwidth of the global matrix for the proposed
elements is wider than that for the Tetr4 and Hexa8 elements.
Hence, the time spent on solving global equations for the
proposed elements is longer than that for the Tetr4 and
Hexa8 elements. However, Tetr4-CNS (LS10) and Tetr4-
CNS (LS20) elements demonstrate excellent distortion tol-
erant capability, while Tetr4 element and Hexa8 element are
very sensitive to mesh quality. This advantage of the Tetr4-
CNS (LS10) and Tetr4-CNS (LS20) elements is very im-
portant for practical problems, since the time spent in gen-
erating high quality mesh for problems with complex
geometric boundaries is usually time consuming.
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