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Abstract: In the traditional discontinuous deformation analysis (DDA) method, the implicit time integration scheme is used to integrate
equations of motion for modeling the mechanical behavior of a highly discrete rock block system. This requires that global equations be con-
stantly solved. Hence, the computational efficiency of the traditional DDA method will decrease, especially when large-scale discontinuous
problems are involved. Based on the explicit time integration scheme, an explicit version of the DDA (EDDA) method is proposed to improve
computational efficiency of the traditional DDA method. Since a lumped mass matrix is used, there is no need to assemble global mass and
stiffness matrices. More importantly, solving large-scale simultaneous algebraic equations can be avoided. The open–close iteration, which
can assure the correct arrangement of constraints, is kept in the EDDA method. In addition, the simplex integration method, which is capable
of conducting exact integration over an arbitrarily shaped block, is employed. Two numerical examples, including a sliding problem with an
analytical solution and an underground cavern, are solved. The numerical results indicate the accuracy and robustness of the proposed EDDA
method.DOI: 10.1061/(ASCE)GM.1943-5622.0001234.© 2018 American Society of Civil Engineers.
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Introduction

Due to long-time geologic effects, natural rock masses have been
cut by various of structural planes (joints, faults, and weak-side)
into discontinuous rock masses. Accurately studying the mechani-
cal behavior of discontinuous rock block systems under different
loading conditions using analytical, semianalytical, and experimen-
tal methods is very difficult. Therefore, many effective numerical
methods such as the finite-element method (FEM) (Desai et al.
1984; Goodman and John 1977; Katona 1983; Zienkiewicz and
Taylor 2000; Yang et al. 2017b), the boundary element method
(BEM) (Beskos 1997), the discrete element method (DEM)
(Cundall 1971), the FEM/DEM (Barla et al. 2012; Mahabadi et al.
2012; Elmo et al. 2013; Ma et al. 2014; Munjiza 2004; Antolini
et al. 2016; Yan and Zheng 2017a, b), and the numerical manifold
method (NMM) (Shi 1991; Ning et al. 2011; Wong and Wu 2014;
Zhang et al. 2010; Fan et al. 2013; Zheng et al. 2013, 2014a; Zheng
and Xu 2014; Zheng et al. 2015a, b; Wei et al. 2016; Yang et al.
2016a, b, 2017a, 2018; Yang and Zheng 2016; Zheng and Yang
2017; Yang and Zheng 2017) have been proposed to fulfill this task.

As a representative of discontinuous methods, the discontinuous
deformation analysis (DDA) method (Shi 1988; Cheng and Zhang
2002; Zheng et al. 2017) is very suitable for modeling the mechani-
cal behavior of a highly discrete rock block system. Note that the
block system used in DDA analysis is generated by joint incision.
How to establish a real three-dimensional (3D) rock block system is
still a challenging task in DDA analysis (Chen et al. 2017; Jiang and
Zhou 2017). Over the past three decades, DDA method has been
extensively investigated and applied in solving many types of engi-
neering problems such as tunnel engineering (Tsesarsky and Hatzor
2006; Zhu et al. 2016), slope engineering (Lin et al. 1996; Wu
2007), dam engineering (Dong et al. 1996; Kottenstette 1999), sta-
bility analysis of ancient masonry structures (Sasaki et al. 2011),
rock hydraulic fracturing (Jiao et al. 2015; Choo et al. 2016), seis-
mic response evaluation (Bao et al. 2013; Zhang et al. 2014), and
rock burst analysis (Chen et al. 2018).

Up to now, many scholars have tried to improve the performance
of the traditional DDA method by modifying the codes developed
by Shi (Yu and Yin 2015). Ke (1995), MacLaughlin and Sitar
(1996), Cheng and Zhang (2000), and Jiang and Zheng (2015) pro-
posed different schemes to overcome false Vol. expansion of the
DDA method when simulating large rotation problems. Lin et al.
(1996) introduced artificial joints and subblocks into big blocks to
simulate fracture in blocks. Hsiung (2001) replaced the first-order
displacement function in the traditional DDAmethod with a higher-
order displacement function, while Grayeli and Hatami (2008)
adopted finite-element mesh to partition DDA blocks to obtain
more accurate stress distribution. Apart from the penalty method,
contacts between blocks are modeled by Cai et al. (2000) using a
Lagrange multiplier method, by Lin et al. (1996) and Bao et al.
(2014) using an augmented Lagrangian method (ALM), and by
Zheng and Jiang (2009) and Zheng and Li (2015) using a comple-
mentary theory. Moreover, many efforts have beenmade to develop
a 3D DDA method (Zhu et al. 2016; Yeung et al. 2003, 2007; Jiang
and Yeung 2004; Beyabanaki et al. 2010). The biggest obstacle to
thwart the 3D DDA method is the detection of contacts. In order to
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facilitate contact treatment of the 3D DDA method, Shi recently
published a new contact theory (Shi 2015).

Note that the implicit time integration scheme is used to inte-
grate equations of motion in the traditional DDA method. In each
time step, the open–close (OC) iteration, which can be considered
as a process of repeatedly adding or removing contact springs, is
used to assure the correct arrangement of constraints. During OC
iteration, global equations are constantly solved until each of con-
tacts converges to a constant state (Mikola and Sitar 2013). If the
convergence of contacts is not achieved within six iterations, the
length of time step will be reduced and all related matrices including
mass matrix, stiffness matrix, and load vector will be reassembled.
Hence, the computational workload of the traditional DDA method
is very heavy.

Moreover, the maximal allowable incremental displacement
(4umax) is specified by a user input value to ensure infinitesimal
displacements. If the maximal incremental displacement 4u is
greater than4umax, the length of time step will also be reduced and
all related matrices should also be reassembled.

For small-scale problems with a small number of contact pairs,
the traditional DDA method can use a relatively larger time step
than the DEM. For large-scale problems with a great number of
contact pairs, choosing a large time step is inappropriate; a large
time-step value may cause large penetrations and more iterations
are needed to satisfy the penetration threshold. Time-step cuts not
only reduce the length of time step but also increase cumulative OC
iterations (Mikola and Sitar 2013). Khan (2010) even concluded
that although a larger time step can be specified in the DDAmethod,
the real average time-step size is much smaller than that of the
DEMwith explicit time integration.

In order to reduce computational effort and memory require-
ment, Mikola and Sitar (2013) developed a DDAmethod using an
explicit time integration scheme. Compared with the implicit
time integration scheme, there is no need for the explicit time
integration scheme to assemble a global mass and stiffness ma-
trix. Therefore, solving large-scale simultaneous algebraic equa-
tions can be avoided.

In this study, formulations of an explicit DDA (EDDA) method
proposed by Mikola and Sitar (2013) are further optimized. In
Mikola and Sitar’s formulations, a mass matrix for each DDA block
is not lumped, and the inversion of all block mass matrices is inevi-
table. Here, each block mass matrix is a 6� 6 submatrix for a 2D
problem. To avoid the inversion of all block mass submatrices, a
scheme to lump the mass matrix of each DDA block is proposed.
The proposed EDDA method is more efficient than Mikola and
Sitar’s EDDA method, and much more efficient than the traditional
DDA method for large-scale problems. The proposed EDDA
method deserves to be further investigated for engineering compu-
tations in rock engineering. For the sake of illustration, only a 2D
version of the proposed EDDA method is discussed in this paper.
Note that the proposed EDDA method is different from the DEM
proposed by Peter Cundall (Cundall 1971) since the “open–close
iteration” and “simplex integration method” are used in the pro-
posed EDDAmethod.

Fundamental Theory of the DDAMethod

The DDA method (Shi 1988) is a numerical method for simulating
the motion of a discrete rock block system. In the DDA method,
large displacements and deformations are the accumulation of small
displacements and small deformations of many time steps. Within
each time step, displacements of all points are small and are taken
incrementally.

Displacement Function of the DDAMethod

Assuming each block has constant stresses and constant strains, the
incremental displacements (Du, Dv) of any point (x, y) within a
block can be represented through six degrees of freedom:

fDDeg ¼ fDu0 Dv0 Dg 0 Dɛx Dɛy Dg xyg (1)

in which Du0;Dv0ð Þ is the incremental rigid body translation of a
specific point x0; y0ð Þ, typically the center of the block; Dg 0 is the
incremental rotation angle of the block, with the rotation center at
x0; y0ð Þ. The unit of angleDg 0 is given in radians; Dɛx;Dɛy;Dg xy

� �
are incremental normal and shear strains of the block.

The incremental displacements of any point within this block
can be expressed as

Du
Dv

� �
¼ Te½ �fDDeg (2)

in which

Te½ � ¼
1 0 � y� y0ð Þ x� x0ð Þ 0 y� y0ð Þ=2
0 1 x� x0ð Þ 0 y� y0ð Þ x� x0ð Þ=2

( )
(3)

Equations of Motion in a Discrete Form

Equations of motion in the DDA method can be expressed as
(Doolin and Sitar 2004)

M½ � €D½ � þ C½ �f _Dg þ K fDgð Þ½ �fDg ¼ fF t; fDgð Þg (4)

in which M½ �, C½ �, and K½ � are mass, damping, and stiffness matrices,
respectively; and F t; fDgð Þ is a loading vector varying with time.
The component forms for M½ �, C½ �, K½ �, and F t; fDgð Þ have been
presented in great detail by Shi (1988).

Let fDng and fDnþ1g respectively denote the approximation to
values fD tð Þg and fD t þ hð Þg for a time step h. Then, the discrete
form for equations of motion [Eq. (4)] for a DDA system can be
expressed as

M½ �f€Dnþ1g þ C½ �f _Dnþ1g þ K½ �fDnþ1g ¼ fFnþ1g (5)

with the initial conditions

fD 0ð Þg ¼ f0g
f _D 0ð Þg ¼ f _D0g

(
(6)

Solving Eq. (5) can adopt two methods including the direct inte-
gration method and the modal superposition method (Zienkiewicz
and Taylor 2000). The scope of usage for these two methods has
been discussed by Zienkiewicz and Taylor (2000). In the DDA
method, the Newmark direct integration method is adopted.

According to the Newmark integration scheme of constant
acceleration and let fDng ¼ f0g, we have (Shi 1988)

Dnþ1f g ¼ h _Dn

� �
þ h2

2
€Dnþ1

� �
(7)

f _Dnþ1g ¼ f _Dng þ hf€Dnþ1g (8)

Solving for f€Dnþ1g from Eq. (7) leads to

© ASCE 04018098-2 Int. J. Geomech.
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f€Dnþ1g ¼ 2
h2

fDnþ1g � 2
h
f _Dng (9)

Substituting Eqs. (8) and (9) into Eq. (5) yields

bK½ �fDnþ1g ¼ fbFg (10)

where fbKg is the general stiffness matrix, expressed as

bK½ � ¼ 2
h2

M½ � þ 2
h
C½ � þ K½ �

� 	
(11)

and fbFg is the general loading vector, expressed as
bFf g ¼ Fnþ1f g þ 2

h
M½ � þ C½ �

� 	
_Dn

� �
(12)

Note that the damping matrix C½ � is neglected in the traditional
DDA method. The time integration scheme employed by the tradi-
tional DDA method contains inherent algorithmic damping (Doolin
and Sitar 2004). Therefore, time-step size has a great influence on
the accuracy and convergence rate of numerical solutions in the tra-
ditional DDAmethod (Jiang et al. 2013).

Due to the adoption of the updated Lagrange description to
describe large displacements and deformations, configuration in the
traditional DDA method is updated at the end of each time step.
Therefore, fDng is set as f0g at the beginning of each time step.
Obviously, fDnþ1g in Eq. (10) are incremental displacements at the
step nþ 1.

Due to the use of the implicit time integration scheme to inte-
grate equations of motion, the traditional DDA method needs to
assemble global mass and stiffness matrices. This requires that
global equations be constantly solved. For large-scale problems
under different loading conditions, the configuration of blocks will
change with time, and some elements of the general global stiffness
matrix may gradually move away from the diagonal. This will make
solving the problemmore time consuming and difficult.

Explicit Time Integration Scheme for the DDAMethod

Compared with the implicit time integration scheme, the explicit
time integration scheme can improve computational efficiency of
large-scale problems. In the proposed EDDA method, an explicit
forward central difference scheme is employed. This scheme can be
modified by using the Verlet algorithm, in which velocity is calcu-
lated at each half time step (Langston et al. 1995). The Verlet algo-
rithm can be expressed as (Qu et al. 2014)

f _Dnþ1=2g ¼ f _Dn�1=2g þ f€Dng � h

f _Dnþ1g ¼ f _Dnþ1=2g þ 1
2 f€Dng � h

fDnþ1g ¼ fDng þ f _Dnþ1=2g � h

8>>>><>>>>: (13)

Substituting Eq. (13) into Eq. (5) yields

M½ �f€Dnþ1g ¼ f�Fg (14)

where

f�Fg ¼ fFnþ1g � fFDg � fFIg (15)

where fFDg ¼ C½ �f _Dnþ1g is the damping term and the direction
is such that the energy is always dissipated. fFIg is the internal
force vector.

Lumped Mass Matrix

The mass matrix in Eq. (14) is normally called the global consist-
ent mass matrix. As in FEM, the global consistent mass matrix in
the DDA method can be easily obtained by assembling all block-
consistent mass matrices. The block-consistent mass matrix for a
given block e can be expressed as

Me½ � ¼
ðð

A
Te x; yð Þ
 �T r Te x; yð Þ
 �

dxdy (16)

where Te x; yð Þ
 �
has been defined in Eq. (3).

In the FEM, based on the elemental consistent mass matrix (sim-
ilar to the block-consistent mass matrix in the DDA method), the
row-sum lumping technique (Zhu 2009) is often used to obtain the
lumpedmassmatrix for low-order elements.

As discussed by Shi (1988) and Chen et al. (2001), the block
displacement function in the traditional DDA method is equiva-
lent to a complete first-order displacement approximation func-
tion. Therefore, row-sum lumping technique should also apply to
the DDA method. However, according our test, the row-sum
lumping technique fails in the DDAmethod. This may be because
rotation angle and strains are treated as degrees of freedom in the
traditional DDA method, and negative elements may not only
exist in Te½ � [Eq. (3)] but also exist in Me½ � [Eq. (16)]. Therefore, if
the row-sum lumping technique is applied on Me½ �, the resulting
lumped mass matrix ( ~Me


 �
) of a block may have negative ele-

ments, which do not conform to an actual physical meaning.
If Te½ � is replaced with a matrix ~Te


 �
in which all terms are non-

negative, then the resulting lumpedmatrix ~Me


 �
will not have nega-

tive terms. Therefore, we rewrite the DDA block displacement
function in the following form (Chen et al. 2001):

u x; yð Þ ¼ a1 þ a2xþ a3y; v x; yð Þ ¼ b1 þ b2xþ b3y (17)

where ak and bk (k = 1, 2, 3) are parameters yet to be determined.
In NMM (Zheng and Xu 2014), displacements (u, v) of any point

(x,y) within a manifold element can be obtained by multiplying all
weight functions wk x;yð Þ with local approximation functions
uk x;yð Þ and expressed as

u x;yð Þ ¼
Xnp
k¼1

wk x;yð Þuk x;yð Þ; x;yð Þ 2 Ei (18)

where np is the number of physical patches associated with manifold
element Ei.

If triangular mesh is adopted to construct the mathematical
mesh, and the shape function of constant strain triangular element is
employed to construct weight functions, and constant parameters
are employed to construct local approximation functions, the dis-
placement function of NMMwould be identical to Eq. (17).

Based on the above discussion, a DDA block can be considered as
a manifold element. In other words, DDA is a spatial case of NMM.
Fig. 1 shows a DDA block (or a manifold element) covered by an
equilateral triangle mesh. The complete first-order displacement in
incremental formwithin amanifold element can be expressed as

Du
Dv

� �
¼ ~Te


 �
fD~Deg (19)

in which

© ASCE 04018098-3 Int. J. Geomech.
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~Te


 �
¼

w1 0 w2 0 w3 0

0 w1 0 w2 0 w3

( )
(20)

and

D~De


 �
¼ f u1 v1 u2 v2 u3 u3 gT (21)

The weight functionwi xð Þ is expressed as
w1 xð Þ ¼ L1; w2 xð Þ ¼ L2; w3 xð Þ ¼ L3 (22)

where Li is the area coordinate (Zienkiewicz and Taylor 2000). In
Fig. 1, the value of Li would always be nonnegative. Note that the
value of Li is identical to the shape function of a three-node triangu-
lar element.

The new formulation of a consistent block mass matrix for a
given block e is then expressed as

Me½ � ¼
ðð

A

~Te x; yð Þ
h iT

r ~Te x; yð Þ
h i

dxdy (23)

Since the value of Li would always be nonnegative, there would
be no negative terms in Me½ � [Eq. (23)]. The row-sum lumping tech-
nique can now be applied on Me½ � [Eq. (23)] to obtain a rational
lumped block mass matrix ~Me


 �
.

In the proposed EDDAmethod, each variable in f€Dnþ1g is inde-
pendent of other variables in f€Dnþ1g, and can be solved independ-
ently in each time step. In other words, there is no need to use any
equation solver to solve Eq. (14), and the need to solve a complete
system of equations can be totally avoided. There is also no need for
the proposed EDDA method to assemble global mass and stiffness
matrices.

Internal Force

Internal force fFIg in Eq. (15) can be calculated by a block stiffness
matrix Ke½ �. In a continuous problem, each block internal force
fFe

I g is generated by Ke½ �, which satisfies the equations of motion:

Me½ �f€Dnþ1g ¼ f�Feg (24)

f�Feg ¼ fFe
nþ1g � fFe

Dg � fFe
I g (25)

For a discontinuous deformation analysis problem, Ke½ � includes
two parts, namely, the block stiffness matrix ~K

e½ � and the contact
matrix ~K

c½ �
:

Ke½ � ¼ ~K
e½ � þ ~K

c½ � (26)

Therefore, the internal force can be expressed as

fFe
I g ¼ Ke½ �fDnþ1g ¼ ~K

e½ � þ ~K
c½ �� �

fDnþ1g (27)

For a discrete block system, assuming a contact pair exists
between block i and j, the contact stiffness matrix Q½ � corresponding
to this contact pair can be expressed as

Q½ � ¼
~K
c
ii

~K
c
ij

~K
c
ji

~K
c
jj

24 35 (28)

in which ~K
c
ij

h i
is defined by the contact spring between contact

blocks i and j. The value of ~K
c
ij

h i
is zero if blocks i and j have no

contact. The matrix ~K
c
ij

h i
is a 6� 6 submatrix and the formulation

of ~K
c
ij

h i
will be discussed in detail in the following content. The

vector fDnþ1g can be calculated by Eq. (13).
Apart from the contact stiffness matrix, a contact spring will also

bring in a submatrix of contact force, and the friction force will pro-
duce the corresponding submatrix of frictional force, which will all
be added into the loading vector f�Fg.

In the DDA method, there are two types of contact springs: the
normal contact spring, and the tangential contact spring. Calculating
the normal spring stiffness matrix, the tangential stiffness matrix,
and the corresponding subvectors of contact force will yield differ-
ent ~K

c½ �, fFc
i g, and fFc

j g.

Submatrix for a Normal Contact Spring
Assuming P1 is a vertex, P2P3 is the entrance line. Then (xk, yk) and
(uk, vk) are coordinates and displacements of Pk (k = 0, 1, 2, 3),
respectively (Fig. 2).

Based on the principle of minimum potential energy, four sets of

6� 6 submatrices, namely, ~K
c
ii

h i
, ~K

c
ij

h i
, ~K

c
ji

h i
, and ~K

c
jj

h i
, and two

sets of 6� 1 subvectors, namely, fFc
i g and fFc

j g, can be obtained for
a normal contact spring. Expressions for submatrices and subvectors
related to normal spring are presented as follows (Shi 1991):

~K
c
ii

h i
¼ pnfHgfHgT

~K
c
ij

h i
¼ pnfGgfHgT

~K
c
ji

h i
¼ pnfHgfGgT

~K
c
jj

h i
¼ pnfGgfGgT

8>>>>>>>>>><>>>>>>>>>>:
(29)

Fc
if g ¼ � pnS0 Hf g

l

Fc
j

� � ¼ � pnS0 Gf g
l

8>>><>>>: (30)

where pn is the stiffness of the normal contact spring,

Fig. 1. ADDAblock covered by an equilateral triangular mesh. Fig. 2. Contact model.
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Hf g ¼ 1
l

~T i x1; y1ð Þ
h iT y2 � y3

x3 � x2

( )

Gf g ¼ 1
l

~T j x2; y2ð Þ
h iT y3 � y1

x1 � x3

( )

þ 1
l

~T j x3; y3ð Þ
h iT y1 � y2

x2 � x1

( )

8>>>>>>>>>>>><>>>>>>>>>>>>:
(31)

and

S0 ¼
����� 1 x1 y1
1 x2 y2
1 x3 y3

����� (32)

Submatrix for a Tangential Contact Spring
Similar to the normal contact spring, and based on the principle of
minimum potential energy, four sets of 6� 6 submatrices, namely,

~K
c
ii

h i
, ~K

c
ij

h i
, ~K

c
ji

h i
, and ~K

c
jj

h i
, and two sets of 6� 1 subvectors,

namely, fFc
i g, and fFc

j g, can also be obtained for a tangential con-
tact spring. Expressions for submatrices and subvectors associated
with the tangential contact spring are as follows (Shi 1991):

~K
c
ii

h i
¼ ptfHgfHgT

~K
c
ij

h i
¼ ptfGgfHgT

~K
c
ji

h i
¼ ptfHgfGgT

~K
c
jj

h i
¼ ptfGgfGgT

8>>>>>>>>>><>>>>>>>>>>:
(33)

Fc
if g ¼ � ptS0 Hf g

l

Fc
j

� � ¼ � ptS0 Gf g
l

8>>><>>>: (34)

where pt is the stiffness of the tangential contact spring,

Hf g ¼ 1
l

~T i x1; y1ð Þ
h iT x3 � x2

y3 � y2

8<:
9=;

Gf g ¼ 1
l

~T j x0; y0ð Þ
h iT x2 � x3

y2 � y3

8<:
9=;

8>>>>>>>><>>>>>>>>:
(35)

and

S0 ¼ x1 � x0ð Þ x3 � x2ð Þ þ y1 � y0ð Þ y3 � y2ð Þ (36)

Submatrix for Friction Force
The friction force is calculated from the normal contact compres-
sive force, and the direction of the friction force depends on the
movement of P1 relative to P0 in the direction from P2 to P3. Let pn
be stiffness of the normal contact spring, then the friction force can
be obtained through Eq. (37):

F0 ¼ pn � dn � sgn drð Þ � tan wð Þ (37)

where dn is the normal penetration distance; w is the friction angle;
tan wð Þ is the friction coefficient; dr is the movement of P1 relative
to P0 in the direction from P2 to P3; and sgn is a symbolic function
defined as

sgn xð Þ ¼
1;

0;

�1;

if x > 0;

if x ¼ 0;

if x < 0:

8>><>>: (38)

Subvectors for the friction force can then be expressed as (Shi
1991)

fFc
i g ¼ �F0fHg

fFc
j g ¼ F0fGg

(
(39)

where

Hf g ¼ 1
l

~T i x1; y1ð Þ
h iT x3 � x2

y3 � y2

8<:
9=;

Gf g ¼ 1
l

~T j x0; y0ð Þ
h iT x3 � x2

y3 � y2

8<:
9=;

8>>>>>>>><>>>>>>>>:
(40)

OC Iteration

In the traditional DDAmethod, a penalty method is adopted to deal
with contact problems. The penalty method is incorporated into the
DDAmethod by adding contact springs to produce contact stiffness
matrices and force vectors and then assembling them into global
equations to obtain incremental displacements of each time step.
There are three types of contacts in DDA method: vertex–vertex,
vertex–edge, and edge–edge. Each contact pair may have one (only
normal) or two (both normal and tangential) contact springs. To
ensure the correct arrangement of contact springs, the OC iteration
technique is used in the DDA method. During the process of OC
iteration, global equations are constantly solved until each of con-
tacts converges to a constant state within a time step (Mikola and
Sitar 2013). If contact convergence is not achieved within six itera-
tions, the length of the time step will be reduced and the analysis
will be repeated with this reduced time step. Additionally, the maxi-
mal allowable incremental displacement 4umax is specified by a
user input value to ensure infinitesimal displacements. If the maxi-
mal incremental displacement is greater than 4umax, the length of
the time step will also be reduced and the analysis will also be
repeated. As expected, in dealing with discontinuous problems with
a large number of contact pairs, the number of OC iterations will be
significantly increased and the process will become increasingly
time consuming.

Since the length of time step in the proposed EDDA method is
relatively small, OC iteration can converge in one time step. More
importantly, due to the adoption of lumped mass matrix, there is no
need to assemble global mass and stiffness matrices. Hence, the
proposed EDDA method is very efficient in terms of solving equa-
tions, even with the OC iteration involved.

The explicit time integration scheme is conditionally stable,
that is, the time-step size must be smaller than a certain critical
value (i.e., critical time step, Dtc) for numerical errors not to grow
unbounded (Mikola and Sitar 2013). The time increment must
satisfy the well-known criterion presented in Eq. (41):
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Dt ¼ 2
vmax

(41)

wherevmax is the maximum element eigenvalue.
The damping in the DDA method has already been studied by

Jiang et al. (2013), hence we will not discuss damping in this
study.

Integration

In the traditional DDA method, the simplex integration method is
normally employed to carry out integration. By using the simplex
integration method, exact integration over an arbitrarily shaped
block can be carried out without difficulty and no extra considera-
tion is needed. The element partitioning scheme, which is often
used in other methods, such as in the extended finite-element
method (XFEM) (Fries and Belytschko 2010) to conduct numerical
integration, is totally unnecessary in the DDA method. Therefore,
the simplex integration method will be used in the proposed EDDA
method.

Numerical Examples

Typical numerical tests solved with the proposed EDDA method
were carried out, and the results are compared with those of the tradi-
tional DDA method. The physical units used in the present work are
based on the International System of Units (SI) without specification.

Fig. 3. Block slides along a ramp: (a) slope angle a = 30°; and
(b) slope angle a= 45°.

Fig. 4. Comparisons between the proposed EDDAmethod and the traditional DDAmethod under slope angles a = 30° and different friction angles:
(a) f = 10°; and (b) f = 15°.

Fig. 5. Comparisons between the proposed EDDAmethod and the traditional DDAmethod under slope angles a = 45° and different friction angles:
(a) f = 10°; and (b) f = 15°.
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Sliding Problem

Using this classical example, accuracy obtained through the pro-
posed EDDA method is compared with that obtained through the
traditional DDA method. Fig. 3 shows a sliding rectangle block
with dimensions 2� 1 m on a ramp with a slope angle of a. The
block and the ramp have the same material parameters: Young’s
modulus E = 200 MPa; Poisson’s ratio� = 0.25; and density r =
2,750 kg/m3. Bottom and right sides of the ramp are all fixed by stiff
springs with a stiffness of 1,000E in both horizontal and vertical
directions.

It is easy to derive the exact sliding displacement of the block:

s ¼ 1
2

sina� m cosað Þgt2 (42)

at time t (s), where s = sliding distance of the block center point (m);
g = gravity speed (9.8 m/s2); m = tanf ; and f = friction angle.

Let the length of time step (Dt) = 1� 10−4s and the total compu-
tation time = 0.1 s, with a set of combinations of slope angles and
friction angles assumed. Figs. 4 and 5 display the relative error dis-
tributions obtained from the proposed EDDA and traditional DDA
methods during sliding. The results obtained through the proposed
EDDA method are slightly better than those obtained through the
traditional DDAmethod.

To study the effect of the length of time step on the accuracy of the
solution obtained through the proposed EDDA method, three types
of time-step lengths (Dt = 1 � 10−5 s, 1 � 10−4 s, and 1 � 10−3 s)
were tested. In this example, only the case with the slope angle a =
30° and the friction angle f = 15° was investigated. Fig. 6 displays
the relative error distributions obtained through the proposed EDDA
method. The accuracy obtained through the proposed EDDAmethod
becomes better and better as the length of time step decreases.

Underground Cavern

As shown in Fig. 7, a cavern built in the stratum cut by two sets of
joints (Shi 1988) is simulated by both the traditional DDA method
and the proposed EDDA method. Material parameters are assumed
as follows: Young’s modulus E = 19 GPa; Poisson’s ratio � = 0.25;
density r = 2,630 kg/m3; and unit weight g = 26,300 N/m3. Input
parameters for the computation are stiffness of contact springs g0 =

190 GPa; length of time step g1 = 1� 10−7s; and ratio of maximum
displacement g2 = 5� 10−6. Cohesion and friction angle of contact
surfaces are assumed to be 0° and 5°, respectively. The bottom, top,
left, and right sides of the model are all fixed by stiff springs with a
stiffness of 1,000E in both horizontal and vertical directions.

Fig. 8 displays displacements of monitoring points calculated by
the proposed EDDA and traditional DDA methods. As can be seen
in Fig. 8, results obtained through the proposed EDDA method
agree well with those obtained through the traditional DDA
method.

Discussion and Conclusions

Based on the explicit time integration scheme, an explicit version
of the DDA (EDDA) method is proposed to reduce the computa-
tional effort and memory requirement. Due to the numerical sta-
bility, a smaller time-step length is needed in the proposed EDDA
method than in the traditional DDA method. However, the pro-
cess of assembling global stiffness and mass matrices can be
avoided in the proposed EDDA method. Hence, the memory
requirement can be significantly reduced. More importantly, the
proposed EDDA method can avoid solving simultaneous alge-
braic equations. Numerical tests conducted in this paper show
that accuracy obtained through the proposed EDDA method is
slightly better than that obtained through the traditional DDA
method (Figs. 4 and 5).

Compared with the EDDA method proposed by Mikola and
Sitar (2013), the global mass matrix in the proposed EDDAmethod
is lumped and the computational effort and memory requirement
are further reduced.

Compared with the OC iteration used in the traditional DDA
method, the OC iteration in the proposed EDDAmethod is more ef-
ficient in terms of convergence. This is because solving simultane-
ous algebraic equations can be avoided in the proposed EDDA
method at each iteration. In addition, a smaller penetration is
incurred due to a smaller time-step length being used.

Additionally, the simplex integration method, which is capable
of conducting exact integration over an arbitrarily shaped block, is
employed in the proposed EDDAmethod.

Fig. 6. Influence of time-step length on accuracy of the proposed
EDDAmethod (slope angle a = 30°, friction angle f = 15°).

Fig. 7. Underground cavern intersected by two sets of joints.
(Reprinted with permission from Shi 1988.)
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In view of the above characteristics, the proposed EDDA
method is more suitable for solving large-scale problems, and it is
worth further investigation for engineering computations in rock
engineering. However, real rock mechanics problems are in three
dimensions. Extension of the proposed 2D EDDAmethod to the 3D
EDDA method is essential. In a future study, we will develop a 3D
EDDAmethod to solve real rock mechanics problems.
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