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Abstract: In situ stress is a significant characteristic of underground rock masses. This work extended the time-domain recursive method
(TDRM) to study oblique wave attenuation across an in situ stressed joint wherein the normal and shear deformation behaviors were both
treated nonlinearly. Employing the Barton–Bandis (B-B) and hyperbolic nonlinear (HN) slip models, equations were established for wave
propagation across a rock mass under a combination of gravitational and tectonic stress. Then, the stress and displacement in the normal and
shear directions were calculated under different in situ stresses for P- and S-wave incidence. The waveforms of the HN slip model and the
Coulomb slip model were compared to investigate the differences therein and verify the wave propagation equation. Parametric studies were
conducted to elucidate the influences of in situ stress, lateral pressure coefficient, angle of incidence, and amplitude of the incident wave.
The results showed that the HN model depends on the stress history and shear stiffness degradation. The effect of the in situ stress on
wave propagation depends not only on the gravitational and tectonic stresses but also on the direction of the particle vibration of the incident
wave. DOI: 10.1061/(ASCE)GM.1943-5622.0001621. © 2020 American Society of Civil Engineers.
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Introduction

One of the geological characteristics of underground rock masses is
the occurrence of high in situ stress, which can be highly significant
in terms of the safety and stability of underground engineering proj-
ects (Brown and Hoek 1978). In particular, in situ stress plays an
important role in determining the strength and deformation charac-
teristics of discontinuities (Hoek 1983; Pestman and Munster 1996;
Utagawa et al. 1997; Korinets and Alehossein 2002; Zhao et al.
2008; Zhang 2010; Fairhurst 2003; Sebastian and Sitharam 2016;
Cheng et al. 2017; Meng et al. 2019). When a blast or seismic wave
encounters a discontinuity, the wave may undergo transmission, re-
flection, attenuation, and superposition with other waves. This can

cause discontinuities to slip or experience closure, and reduces the
strength of the rock mass (Aydan et al. 2010; Ning et al. 2011).

The velocity with which a wave propagates is closely related to
the in situ stress, which in turn affects the dynamic response of the
rock mass. The effect of in situ stress on the correlation between the
velocity of P-waves and initial stress was studied using a variety of
methods: uniaxial compressive tests (Kahraman 2001; Yasar and
Erdogan 2004), ultrasonic wave tests (Chen and Xu 2016), quasi-
static resonant column tests (Mohd-Nordin et al. 2014), and geo-
structural surveys (Pappalardo 2015). The results showed that the
influence of in situ stress on elastic wave attenuation cannot be
neglected. Tolstoy (1982) established dynamical equations for a
prestressed solid subjected to overburden pressure and different
stresses. Guz (2002) investigated elastic waves propagating in in
situ stressed solids using a three-dimensional linear theory. Based
on Biot’s theory (Biot 1963), Sharma (2005) revealed the velocity
and attenuation of waves propagating in anisotropic elastic solids
subjected to in situ stress. Selim and Ahmed (2006) concluded that
the propagation direction of a wave and the in situ stress in a
medium both affect wave attenuation.

To consider the effect of vertical heterogeneity and initial stress,
Singh et al. (2015) and Kumar et al. (2015) investigated SH-wave
and Love-type wave propagation in composite layer, respectively.
Shams (2016) studied wave propagation along the boundary be-
tween a half-space and a layer by considering the combined effect
of in situ stress and finite deformation of the rock mass on the speed
of Love waves.

In existing studies, the material is regarded as a continuum, and
only the effect of in situ stress on the speed of waves was studied.
The attenuation induced by discontinuities, e.g., joints, cracks,
and faults, was ignored. However, the deformation of joints,
e.g., slipping, opening up, and closure, will inevitably induce at-
tenuation of the wave, energy dissipation, and delays in propaga-
tion time (Barton 1976; Bandis et al. 1983; Cook et al. 1992; Liu
et al. 2000; Li et al. 2015; Misra and Marangos 2010; Zhou et al.
2017; Meng et al. 2018).

The displacement discontinuity method (DDM) has been widely
used to investigate wave attenuation at joints of zero thickness
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(Pyrak-Nolte et al. 1990; Zhao et al. 2006; Li et al. 2012). When a
wave propagates across the joint, the DDM assumes that the dis-
placement is discontinuous but the stress is continuous. The DDM
also has been combined with the time-domain recursive method
(TDRM) (Li et al. 2012), the method of characteristics (MC)
(Zhao and Cai 2001, 2008), and the propagator matrix method
(PMM) (Zhao et al. 2012) to study P- and S-wave propagation
across single or sets of parallel joints described by different con-
stitutive models (Zhu et al. 2011).

This paper proposes a new method which extends the TDRM to
oblique wave propagation across in situ stressed rock masses under
in situ stress, wherein the normal and shear deformation behaviors
of the joint both are treated nonlinearly. Employing the Barton–
Bandis (B-B) model and hyperbolic nonlinear (HN) slip models,
equations were established for wave propagation across rock mass
under a combination of gravitational and tectonic stress. Then the
stress and displacement in the normal and shear directions were
calculated under different in situ stresses for P- and S-wave inci-
dence. Finally, parametric studies were conducted to study the role
of in situ stress, lateral pressure coefficient, and the angle and
amplitude of the incident wave.

Theoretical Model

Problem Description

Fig. 1 is a sketch of a jointed rock subject to in situ stress that
contains a joint inclined at an arbitrary angle αj. Two types of
in situ stress are present: tectonic stress σsh, in the horizontal di-
rection, and gravitational stress σsv, in the vertical direction. Fuchs
and Müller (2001) established a map showing the tectonic stresses
occurring around the world and pointed out that the Earth’s
continental crust permanently is in a state of frictional failure equi-
librium and continually is being strengthened by a process of mi-
crofracture generation. Based on the principle of force equilibrium,
the normal (σs) and shear (τ s) stresses of a joint can be derived as
follows:

σs ¼ σsv cosαjþ σsh sinαj

τ s ¼ σsv sinαjþ σsh cosαj ð1Þ

where αj = angle of the joint in Fig. 1.
The lateral pressure coefficient kv is defined as the ratio of the

horizontal stress to vertical stress, i.e., kv ¼ σsh=σsv. Thus, Eq. (1)
also can be written in the form

σs ¼ σsvðcosαjþ kv sinαjÞ
τ s ¼ σsvðsinαjþ kv cosαjÞ ð2Þ

Brown and Hoek (1978) statistically analyzed the stress in dif-
ferent regions of the world and found that the distribution of kv is
related closely to depth. Moreover, as depth increases, the value of
kv decreases. At a depth of 500 m, kv ¼ 1.3–3.5; at 2,500 m it
decreases to 0.34–1.1. In the following calculations, the value of
kv is allowed to vary from 0.5 to 2.5.

Model of Joint Subject to In Situ Stress

When a plane wave propagates across a jointed rock mass at depth,
the stresses acting on the joint includes dynamic and static in situ
stress (Fan and Sun 2015). The joint will deform under the com-
bined effect of the dynamic and in situ stresses. DDM has been
widely used to study seismic wave propagation across a joint.
In the DDM, a B-B model generally is used to describe the non-
linear elastic characteristic of normal mechanical behavior of the
joint. When a plane wave propagates across the joint, the joint’s
normal stiffness varies with the current normal stress induced by
the combined effect of the seismic wave and in situ stress.

In the B-B model, the relationship between the normal
stress and closure can be expressed using a hyperbolic equation
[Fig. 2(a)]

dn ¼
σ

kni þ σ=dmax
ð3Þ

where kni = initial normal stiffness; σ = normal stress acting on
joint; and dn and dmax = normal closure value and its maximum
allowable value, respectively. The normal stiffness increases when
the normal stress increases [Fig. 2(a)]. That is, wave propagation is
dependent upon the in situ stress. The normal deformation of
the joint includes contributions from the static closure ds (induced
by the in situ stress) and the dynamic closure dw (caused by the
stress wave).

For the shear deformation of the joint, the hyperbolic nonlinear
slip model proposed by Kulhawy (1975) is extended to describe the
relationship between the shear deformation and shear stress in the
prepeak range. That is

τn ¼
u

mþ nu
ð4Þ

where u = joint shear displacement; τn = shear stress acting on
joint; m ¼ 1=ksi = constant, where ksi = initial shear stiffness
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Fig. 1. In situ stress in a rock mass containing a joint with an arbitrary angle of inclination, αj.
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obtained using Eq. (5); and n = constant equal to reciprocal of limit-
ing value of τ .

It is clear that the current shear stiffness ks at any level of shear
and normal stress varies with τ and this can be described via the
expression

ks ¼
Δτ
Δu

¼ KjðσÞni
�
1 − τRf

cþ σ tanφ

�
¼ ksi

�
1 − τRf

cþ σ tanφ

�

ð5Þ
where Kj and ni = joint shear stiffness number and stiffness expo-
nent, respectively; τ and σ = current shear stress and normal stress
of joint, respectively; Rf = failure ratio (equal to ratio of τ to τult);
and c and φ = cohesion and friction angle of joint, respectively. The
HN model is stress-dependent and can be used to evaluate the shear
stiffness under any level of shear stress and normal stress (Kulhawy
1975). For a given normal stress, the shear stiffness decreases with

increasing shear stress. When a wave propagates across the joint,
the shear deformation is composed of two parts, namely, the static
deformation us induced by the in situ stress, and dynamic shear
deformation uw caused by the stress wave (Fig. 2).

Wave Propagation Equation

The time-domain recursive method proposed by Li et al. (2012)
was extended here to investigate the role of in situ stress on wave
attenuation. The HN and B-B models were used to describe the
shear and compressive behavior of the joint, respectively. The basic
equations used in the TDRM were derived using Snell’s law and
assuming continuous boundary conditions. By balancing the
momentum acting on the wave fronts and the interaction between
the stress wave and joint, the stress induced by the stress wave on
the two sides of the joint could be expressed as (Li et al. 2012;
Li 2013) follows:

Left-hand side

σ−
w ¼ zp cos 2βvIp þ zs sin 2βvRp − zs sin 2βvRs

τ−w ¼ ðvIp − vRpÞzp sin 2β tan β= tanα − zs cos 2βvRs
for P-wave incidence ð6Þ

σ−
w ¼ zs sin 2βvIs − zs sin 2βvRs þ zp cos 2βvRp

τ−w ¼ −zs cos 2βðvIs þ vRsÞ − vRpzp sin 2β tan β= tanα
for S-wave incidence ð7Þ

Right-hand side

σþ
w ¼ zp cos 2βvTp þ zs sin 2βvTs

τþw ¼ vTpzp sin 2β tan β= tanα − zs cos 2βvTs
for P- or S-wave incidence ð8Þ

where σm
w and τmw = normal and shear stresses on each side of joint,

respectively, where m ¼ −;þ; vIp and vIs = particle velocities of
P-wave incidence and S-wave incidence, respectively; vTp and
vRp = particle velocities of transmitted and reflected P-waves,
respectively, vTs and vRs = particle velocities of transmitted and
reflected S-waves, respectively; and zp ¼ ρcp and zs ¼ ρcs = wave

impedance of P- and S-waves, respectively, where ρ = rock density,
and cp and cs = P-wave velocity and S-wave velocity of intact rock,
respectively.

The particle velocity was determined by the dynamic stress
when a plane wave propagates through a joint. Considering the
intact rock and joint to be linear and nonlinear elastic materials,
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Fig. 2. Mechanical behavior of joint considering in situ stress: (a) B-B model for normal; and (b) HN slip mode for shear.
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respectively, the normal and tangential components of the velocities
on the left- and right-hand sides of the joint can be derived, giving

v−n ¼ cosαðvIp − vRpÞ þ sin βvRs

v−τ ¼ sinαðvRp þ vIpÞ þ cosβvRs
for P-wave incidence ð9Þ

v−n ¼ sinβðvIs þ vRsÞ − cosαvRp

v−τ ¼ cos βðvRs − vIsÞ þ vRp sinα
for S-wave incidence ð10Þ

vþn ¼ cosαvTp sin βvTs

vþτ ¼ sinαvTp − cos βvTs
for P- or S-wave incidence ð11Þ

where v−n and vþn = normal velocities on left- and right-hand
sides of joint, respectively; and v−τ and vþτ = tangential velocities
on left and right sides of the joint, respectively. Based on stress-
continuous and displacement-discontinuous boundary conditions,
the stresses and displacements of the joint sides satisfy the follow-
ing equations:

σ ¼ σ− ¼ σþ ¼ σs þ σw

τ ¼ τ− ¼ τþ ¼ τ s þ τw ð12Þ

u−n − uþn ¼ σ
kni þ ðσ=dmaxÞ

¼ σ
~kn

u−τ − uþτ ¼ Δuτ ¼
τ
~ks

for jτw þ τ sj < τp ð13Þ

u−n −uþn ¼ σ
kniþðσ=dmaxÞ

¼ σ
~kn

τ ¼�τp

τp ¼ σ tanφ¼ðσsþσwÞ tanφ¼ τp0þσw tanφ

for jτwþ τ sj< τp

ð14Þ

where τp0 ¼ σs tanφ = static shear strength under in situ stress
conditions; and ~kn and ~ks = generalized normal stiffness and shear
stiffness of joint, respectively, and are given by

~ks ¼ Kjσnj

�
1 − τRf

τ0

�
¼ Kjðσs þ σwÞni

�
1 − ðτ s þ τwÞRf

τ0

�

~kn ¼
ðkni þ σ=dmaxÞ2

kni
¼ ½kni þ ðσs þ σwÞ=dmax�2

kni
ð15Þ

Differentiating Eqs. (13) and (14) with respect to time, t, yields

v−n ðiÞ− vþn ðiÞ ¼
1

~kn

σwðiþ 1Þ− σwðiÞ
Δt

v−τ ðiÞ− vþτ ðiÞ ¼
1

~ks

∂τ
∂t ¼

1

~ks

τwðiþ 1Þ− τwðiÞ
Δt

for jτw þ τ sj < τp

ð16Þ

v−τ ðiÞ− vþτ ðiÞ ¼
1

~ks

∂τ
∂t ¼

1

~ks

τwðiþ 1Þ− τwðiÞ
Δt

jτwðiÞ þ τ sj ¼ τp0 þ σwðiÞ tanφ
for jτw þ τ sj ≥ τp

ð17Þ

where Δt = small time interval.
When the shear stress reaches the shear strength of the joint,

slipping will occur. Therefore, when an incident P- or S-wave
impinges upon a joint, it may be subjected to two modes of shear

deformation: an elastic deformation mode, or a plastic slip mode.
In this analysis, we categorize the behavior into four distinct cases,
as follows:
1. An incident P-wave with jτw þ τ sj < τp

We substitute Eqs. (6) and (8) into Eq. (12) and Eqs. (9)
and (11) into Eq. (16), and combine the results with Eq. (15)
to derive an equation for the propagation of the wave across
the joint. The results are expressed in matrix form

�
vRpðiÞ
vRsðiÞ

�
¼ A−1BvIpðiÞ þ A−1C

�
vTpðiÞ
vTsðiÞ

�
ð18Þ

�
vTpðiþ 1Þ
vTsðiþ 1Þ

�
¼ G−1DvIpðiÞ þ G−1E

�
vRpðiÞ
vRsðiÞ

�

þ G−1F
�
vTpðiÞ
vTsðiÞ

�
ð19Þ

where A–G are given by

A ¼
�

zP cos 2β

zP sin 2β tan β cotα

�

B ¼
�

zP cos 2β −zS sin 2β
−zP sin 2β tan β cotα −zS cos 2β

�

C ¼
�

zP cos 2β zS sin 2β

zP sin 2β tanβ tanα −zS cos 2β
�

D ¼
� ~knΔt cosα

~ksΔt sinα

�

E ¼
� ~knΔt cosα ~knΔt sin β

~ksΔt sinα ~ksΔt cos β

�

F¼
� −~knΔtcosαþzPcos2β −~knΔtsinβþzS sin2β

−~ksΔtsinαþzP sin2β tanβcotα ~ksΔtcosβ− ~kscos2β

�

G ¼
�

zP cos 2β zS sin 2β

zP sin 2β tan β cotα −zs cos 2β
�

2. An incident P-wave with jτw þ τ sj ≥ τp
Following the same procedure, the propagation of the wave

in this case can be written

�
vRpðiÞ
vRsðiÞ

�
¼ A−1BvipðiÞ þ A−1C

�
vTpðiÞ
vTsðiÞ

�
ð20Þ
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�
vTpðiþ 1Þ
vTsðiþ 1Þ

�
¼ G−1DvIpðiÞ þ G−1E

�
vRpðiÞ
vRsðiÞ

�

þ G−1F
�
vTpðiÞ
vTsðiÞ

�
þG−1Hðτps ∓ τ sÞ ð21Þ

where A–H take the forms

A ¼
�

zP cos 2β

zP sin 2β tanβ cotα

�

B ¼
�

zP cos 2β −zS sin 2β
−zP sin 2β tan β cotα −zS cos 2β

�

C ¼
�
zP cos 2β zS sin 2β

0 0

�

D ¼
� ~knΔt cosα

0

�

E ¼
�− ~knΔt cosα ~knΔt sin β

0 0

�

F ¼
�−knΔt cosαþ zP cos 2β −knΔt sin β þ zS sin 2β

0 0

�

G¼
�

zP cos2β zP sin2β tanβcotα

zP sin2β tanβcotα∓zS sin2β −zs cos2β∓zs sin2β tanφ

�

H ¼
�

0

�1

�

The symbol ± in H represents the two different possible
sliding directions under the action of the shear stress induced
by the combined effect of the stress wave and in situ stress.

3. An incident S-wave with jτw þ τ sj < τp
Substituting Eqs. (7) and (8) into Eq. (12) and Eqs. (10)

and (11) into Eq. (16), and combining the results with Eq. (15),
the equation for the wave propagation across the jointed rock
mass can be derived in the same form as Eqs. (18) and (19)
(Li 2013), with minor changes. Namely, vIpðiÞ is replaced by
vIsðiÞ, and A and D are changed to

A ¼
�

zs sin 2β

−zs cos 2β
�

and D ¼
�

knΔt sin β

−kSΔt cos β

�

The other parameters are the same as those in Eqs. (18)
and (19).

4. An incident S-wave with jτw þ τ sj ≥ τp
Following the same procedure, the resulting expressions

are found to be the same as those given in Eqs. (20) and (21)
but with vIpðiÞ replaced by vIsðiÞ, and

A ¼
�

zs sin 2β

−zs cos 2β
�

and D ¼
�
knΔt sin β

0

�

The other parameters are the same as previously.

Special Case and Comparison

Comparison of Different Joint Models

Unlike their linear counterparts, nonlinear elastic models depend
on the stress, and the stiffness of the joint varies as the stress wave
propagates across it. The propagation of waves across joints with
nonlinear normal behavior has been systematically studied (Li
2013; Zhao et al. 2006). The present paper focused mainly on
the effect of nonlinear shear behavior and in situ stress on wave
attenuation. Therefore, in this section the propagation of waves
across joints subject to different in situ stresses was investigated
using three different types of joint model. The first type is a linear
model wherein a linearly elastic model was used to describe both
the normal and shear behaviors of the joint. The second model is
referred to as the Nonlinear 1 model. Herein, the B-B model and
Mohr–Coulomb slip model were used to describe the joint normal
and shear behaviors, respectively. The third model is referred to as
the Nonlinear 2 model. In this model, the same model is used in the
normal direction as in Nonlinear 1 model, whereas the model in the
shear direction is changed to the HN slip model.

In the following cases, the density of the intact rock was as-
sumed to be 2,650 kg=m3, and the P-wave velocity (cp) and shear
wave velocity (cs) were taken to be 6,218 and 3,836 m=s, respec-
tively. For the Nonlinear 2 model, the initial normal stiffness (kni)
was taken to be 3.5 GPa=m and dmax ¼ 1 mm. The joint shear stiff-
ness number (Kj) was 3.88 GPa=m. The stiffness exponent (ni) and
failure ratio (Rf) were 0.000725 and 0.810, respectively. For the
Nonlinear 1 model, the parameters for the normal behavior were
same as those in the Nonlinear 2 model, whereas the shear stiffness
(ks) was set equal to kni. For the linear model, the normal and shear
stiffnesses both were set to 3.5 GPa=m. The in situ gravitational
stress (σsv) was 0.5 MPa and the lateral pressure coefficient (kv)
was 1. The joint angle (αj) was taken to be 30°. The incident
P-wave and S-wave both were assumed to have half-cycle sinus-
oidal waveforms with a frequency and amplitude of 50 Hz and
0.1 m=s, respectively.

Fig. 3 shows the results obtained using the three models for
the transmitted and reflected P-waves for two angles of incidence:
0° and 30°. When a P-wave is incident normally on the joint
[Fig. 3(a)], the transmitted and reflected P-waves obtained using
the Nonlinear 1 and 2 models are almost exactly the same. How-
ever, when the wave is incident obliquely [Fig. 3(b)], the transmit-
ted P-wave amplitude is larger in the Nonlinear 1 model than that in
the Nonlinear 2 model. For both of the angles of incidence, the
transmitted P-wave amplitude obtained from the linear model is
the smallest. This is because the transmitted wave amplitude in-
creases when the joint stiffness increases (Zhao and Cai 2001;
Li et al. 2012). For the Nonlinear 1 and 2 models, the joint normal
stiffness increases as the normal stress increases. On the other hand,
for the linear model, the normal stiffness is constant. The shear
stiffness also increases when the normal stress increases or the
shear stress decreases.

Fig. 4 illustrates the results obtained for transmitted and
reflected S-waves for different angles of incidence and vertical
stresses. When the S-wave is incident normally and σsv ¼
2.5 MPa [Fig. 4(a)], the reflected and transmitted S-waves calcu-
lated using the linear and Nonlinear 1 models are almost identical.
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Furthermore, the amplitude of the transmitted wave obtained using
the Nonlinear 2 model is the lowest. When the value of σsv is de-
creased to 0.5 MPa [Fig. 4(b)], the amplitudes of the reflected and
transmitted S-waves calculated using the Nonlinear 1 model are
equal to those calculated using the Nonlinear 2 model. The trans-
mitted S-waves calculated using these two nonlinear models are cut
off, which indicates that the shear stress reaches the shear strength
of the joint and so slipping occurs.

When the S-wave is incident on the joint obliquely [Fig. 4(c)],
the transmitted waves calculated using the three joint models are
all different, and they have different amplitudes: 0.071, 0.078,
and 0.081 m=s. These differences are caused by the differences
in the stiffness and shear strength, which is affected by the normal
and shear stresses. During the propagation of the wave, the shear
stiffness of the joint changes in the different models according to
the following rules:
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Fig. 3. Transmission and reflection of P-waves propagating across the three types of joint for two different angles of incidence: (a) normal incidence
(α ¼ 0°); and (b) oblique incidence (α ¼ 30°).
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Fig. 4. Transmitted and reflected S-waves for an incident S-wave: (a) normal incidence with σsv ¼ 2.5 MPa; (b) normal incidence with
σsv ¼ 0.5 MPa; and (c) oblique incidence with σsv ¼ 2.5 MPa and β ¼ 30°.
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1. For the linear model, the shear stiffness remains unchanged;
2. For the Nonlinear 1 model, the shear stiffness remains un-

changed until slip occurs;
3. For the Nonlinear 2 model, the shear stiffness decreases when

the shear stress increases or the normal stress decreases.
The normal stiffness of the joint changes in the different models

according to the following rules:
1. For the linear model, the normal stiffness remains unchanged;
2. For the Nonlinear 1 model, the normal stiffness increases when

the normal stress increases;
3. For the Nonlinear 2 model, the normal stiffness increases when

the normal stress increases.
The results indicate that the way a wave propagates through a

joint is closely related to the joint model used and the incident
angle. Compared with the other two models, the effect on wave
propagation of the in situ stress and mechanical behavior of the
joint can be taken into account using the Nonlinear 2 model.

Effect of In Situ Stress

In this section, the Nonlinear 2 model was used to study waves
propagating at right angles to a joint subjected to different in situ
stresses. The waveforms thus obtained for P-waves subjected to
two different values of in situ stress, and the relationship between
the closure and stress on the joint, are shown in Fig. 5.

Although the mechanical behavior is the same, the transmitted
wave amplitude is larger when σsv is 2.5 MPa than when it is
0.5 MPa [Fig. 5(a)]. Fig. 5(b) demonstrates that the initial closures
caused by in situ stresses of 0.5 and 2.5 MPa are 0.31 mm (Stage
PO-PA,) and 0.65 mm (Stage PO-PC), respectively. When a P-wave
of amplitude 0.1 m=s is subsequently incident normally at the joint,
additional displacement occurs. The dynamic closures caused by
the stress wave are 0.3 mm (Stage PA-PB) and 0.1 mm (Stage
PC-PD) when σsv ¼ 0.5 and 2.5 MPa, respectively. These results
show that the in situ stress plays an important role in the initial
closure of the joint and the stress state closely associated with wave
attenuation. In other words, the in situ stress is a significant factor
affecting the dynamic response of the underground rock mass.

The direction of the shear stress caused by an S-wave may be
opposite to that of the in situ shear stress. Therefore, to better under-
stand the effect of in situ stress, S-waves with amplitudes of 0.1 and
−0.1 m=s were applied to the model and the transmitted wave, re-
flected wave, shear deformation, and shear stress were calculated.

Here, we use the symbols + and − to represent the direction of
vibration caused by the S-wave, consistent with the work of Li
et al. (2013). The in situ shear stresses of the joint subjected to
σsv values of 0.5 and 2.5 MPa are −0.18 and −0.9 MPa, respec-
tively. The corresponding in situ normal stresses are 0.68 and
3.4 MPa, respectively. When the S-wave has a positive amplitude
(i.e., a + waveform), the dynamic shear stress has a negative am-
plitude (i.e., a − waveform), which is calculated using Eq. (7). This
means that the direction of deformation caused by the S-wave is the
same as that of the initial shear deformation caused by the in situ
shear stress. The shear deformations when σsv ¼ 0.5 and 2.5 MPa
correspond to SO–SA1 and SO–SB1, respectively [Fig. 6(b)].

The initial shear displacements caused by in situ stresses of 0.5
and 2.5 MPa are 0.06 mm (Stage SO–SA1) and 0.27 mm (Stage
SO–SB1), respectively. When the sinusoidal S-wave of amplitude
0.1 m=s is normally incident on the joint subjected to σsv ¼
0.5 MPa, the shear deformation can be divided into three parts
as wave propagation proceeds. First, as the incident vibration veloc-
ity increases to the critical value (vcri), at which point the total
shear stress (τw þ τ s) is equal to the shear strength, the shear
deformation increases along the direction of the initial shear
deformation, which corresponds to SA1–SA2 [Fig. 6(b)]. When the
incident vibration velocity increases to its peak value and de-
creases to vcri, slipping occurs and the shear deformation increases
dramatically, whereas the shear stress remains unchanged; this cor-
responds to SA2–SA3. As the incident vibration velocity decreases
to 0, the shear deformation decreases, which corresponds to
SA3–SA4.

When σsv ¼ 2.5 MPa, slipping does not occur because the total
shear stress is smaller than the shear strength. The shear deforma-
tion of the joint therefore corresponds to SB1–SB2–SB1 as the
wave propagates. As a result, the transmitted S-wave when σsv ¼
0.5 MPa is cut off, whereas that when σsv ¼ 2.5 MPa is not. The
results also indicate that the joint is more likely to slip when the in
situ stress is lower.

An S-wave with an amplitude of −0.1 m=s [Figs. 6(c and d)]
was considered. The direction of the deformation caused by the
vibration is opposite to that of the initial shear deformation induced
by the in situ shear stress. The shear deformations when σsv ¼ 0.5
and 2.5 MPa correspond to SO–SC1 and SO–SD1, respectively
(which are the same as SO–SA1 and SO–SB1 in Fig. 6(b), respec-
tively) [Fig. 6(d)]. The shear deformation induced by the S-wave is
in the opposite direction to the initial shear displacement. The paths

-0.05

0.00

0.05

0.10

 Incident P-wave
 Reflected P-wave σsv=0.5 MPa

 Transmitted P-wave σsv=0.5 MPa

 Reflected P-wave σsv=2.5MPa

 Transmitted P-wave σsv=2.5 MPa

 P
ar

tic
le

 v
el

oc
ity

 (
m

/s
)

Time (s)

0.00 0.01 0.02 0.03 0.04 0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

PO

PD

PC

PB

PA

N
or

m
al

 s
tr

es
s 

(M
Pa

)

Displacement (mm) 

 σsv=2.5 MPa

 σsv=2.5 MPa

 σsv=0.5 MPa

 σsv=0.5 MPa

(b)(a)

Fig. 5. Effect of in situ stress on P-wave propagation normally and the joint relative normal deformation: (a) transmitted and reflected P-waves; and
(b) closure and stress under different in-situ stress.
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of the shear displacements are SC1–SO–SC2 and SD1–SO–SD2
when σsv ¼ 0.5 and 2.5 MPa, respectively. When the joint is sub-
jected to σsv ¼ 0.5 MPa and v ¼ −0.1 m=s, the transmitted wave-
form is not cut off; that is, slipping does not occur (in contrast to
what happens when v ¼ 0.1 m=s). This is because the maximum
shear stress of the joint when v ¼ −0.1 m=s is 0.43 MPa, which is
smaller than the shear strength (0.478 MPa).

Therefore, the propagation of S-waves across an in situ stressed
rock mass not only is closely related to the properties of the joints,
but also is dependent on the magnitude and direction of the in situ
stress. Furthermore, although the initial properties of two joints
may be the same, their deformation and transmission of propagat-
ing waves both will be different if they are subject to different in
situ stresses.

Fig. 7 shows the results obtained when the waves impinge
obliquely upon a joint subject to different in situ stress. The angle
of incidence used here is 20°, but the other parameters are the same
as those in the previous section.

To further investigate the influence of in situ stress, eight coef-
ficients (Tpp!

, T ps!
, T sp!

, T ss!, Rpp!
, Rps!

, Rsp!
, and Rss

→
) are defined

according to the following expressions:

T kc! ¼ maxðvTcÞ
maxðvIkÞ

; Rkc! ¼ maxðvRcÞ
maxðvIkÞ

ð22Þ

where T kc! = transmission coefficient; and Rkc! = reflection coef-

ficient. The subscripts k! denote the nature of the incident wave,

and the subscript c represents the nature of the transmitted wave
(Tkc

→
) or the reflection wave (Rkc!), where p signifies a P-wave

and s signifies an S-wave. Tables 1 and 2 display the values calcu-
lated for these coefficients using the data in Fig. 7. As the in situ
stress increases, the transmission coefficients (Tpp, Tps, Tsp, Tss)
increase, whereas the reflection coefficients (Rpp, Rps, Rsp, Rss)
decrease, for both P- and S-incident waves. The direction of particle
vibration of the incident wave clearly has a significant effect on
these reflection and transmission coefficients.

The corresponding joint closures and shear displacements in-
duced by the wave propagation are shown in Figs. 7(b, d, and f).
The in situ stress plays an important role in the joint deformation
induced by wave propagation. The lower the in situ stress, the
greater is the joint closure and shear displacement induced by
the stress wave. Slipping occurs when v ¼ 0.1 and −0.1 m=s for
obliquely incident S-waves, which is different from the behavior
found when the S-wave is incident normally. The normal stress
changes when the S-wave is incident obliquely, and this determines
the shear strength of the joint.

The relationship between stress and displacement induced by
the stress wave is more complicated in this case than when the
stress wave propagates normally. For the same amplitude of the
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Fig. 6. Effect of different in situ stresses on normally propagating S-waves: (a) transmitted and reflected S-waves when Av ¼ 0.1 m=s; (b) relative
shear displacements and shear stresses for different in situ stresses when Av ¼ 0.1 m=s; (c) transmitted and reflected S-waves when Av ¼ −0.1 m=s;
and (d) relative shear displacements and shear stresses for different in situ stresses when Av ¼ −0.1 m=s.
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incident S-wave (Av ¼ −0.1 m=s) and same in situ stress (σsv ¼
0.5 MPa), the transmitted S-wave is cut off if incidence is oblique,
whereas this does not occur for normal incidence. The results thus
demonstrate that the wave attenuation and joint displacement both
are affected by the angle of incidence and joint angle.

Parametric Studies

To investigate wave propagation across a stressed joint, parametric
studies were carried out. To simplify the following analyses, two
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Fig. 7. Effect of in situ stress on the propagation of obliquely incident S- and P-waves: (a) transmitted and reflected waves for incident P-waves;
(b) relative shear displacements and closure for different in situ stresses and incident P-waves; (c) transmitted and reflected waves for incident S-waves
with Av ¼ −0.1 m=s; (d) relative shear displacements and closure for incident S-waves with Av ¼ 0.1 m=s; (e) transmitted and reflected waves for
incident S-waves with Av ¼ −0.1 m=s; and (f) relative shear displacements and closure for incident S-wave with Av ¼ −0.1 m=s.

Table 1. Transmission and reflection coefficients for incident P-waves

In situ stress Tpp Tps Rps Rpp

σsv ¼ 0.5 MPa 0.94 0.02 0.30 0.30
σsv ¼ 2.5 MPa 0.98 0.13 0.23 0.08

Table 2. Transmission and reflection coefficients for incident S-waves

Incident amplitude In situ stress Tsp Tss Rss Rsp

Av ¼ 0.1 m=s σsv ¼ 0.5 MPa 0.13 0.71 0.32 0.38
σsv ¼ 2.5 MPa 0.16 0.83 0.35 0.26

Av ¼ −0.1 m=s σsv ¼ 0.5 MPa 0.11 0.54 0.29 0.34
σsv ¼ 2.5 MPa 0.10 0.92 0.25 0.22
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additional coefficients were defined: Te is the energy transmission
coefficient, and Re is the energy reflection coefficient. These can be
calculated using the expressions

Einc ¼ z
Z

tn

0

v2incðtÞdt ¼ zp
Xn
i¼1

v2incðtiÞΔt

Etra;p ¼ zp
Xn
i¼1

v2tra;pðtiÞΔt; Etra;s ¼ zs
Xn
i¼1

v2tra;sðtiÞΔt

Eref;p ¼ zp
Xn
i¼1

v2ref;pðtiÞΔt; Eref;s ¼ zs
Xn
i¼1

v2ref;sðtiÞΔt ð23Þ

Te ¼
Etra;p þ Etra;s

Einc

Re ¼
Eref;p þ Eref;s

Einc
ð24Þ

where Etra;p (Eref;p) and Etra;s (Eref;s) = energies of the transmitted
(reflected) P- and S-waves, respectively; and Einc = energy of the
incident wave.

Effects of In Situ Stress and Lateral Pressure
Coefficient

Fig. 8 illustrates the influence of the in situ stress on Te and Re.
Half-cycle P- and S-waves were used in this analysis. The ampli-
tude of incidence and frequency of the incident waves were
0.1 m=s and 50 Hz, respectively. The joint angle and the angle
of incidence and were set to 30° and 10°, respectively. The initial
normal stiffness (kni) was taken as 3.2 GPa=m, and dmax ¼ 1 mm.
The initial shear stiffness number (Kj) was 3.88 GPa=m. The stiff-
ness exponent (ni) and failure ratio (Rf) were 0.000725 and 0.810,
respectively, which are the typical values for weathered sandstone
(Bandis et al. 1983; Kulhawy 1975). The in situ gravitational stress
varied from 0.2 to 16 MPa, and the lateral pressure coefficient (kv)
varied from 0.5 to 2 (in increments of 0.5).

Fig. 8(a) shows the results for incident P-waves; Te increases
nonlinearly, and Re decreases nonlinearly, as the gravitational stress
σsv increases. The slopes of both sets of curves (Te and Re)
decrease in magnitude as σv increases. After σv reaches 4 MPa,
the values of Te and Re remain approximately constant. This is
because the joint effectively becomes welded if the in situ stress
is sufficiently large (Fan and Sun 2015).

Fig. 8(b) shows the case of S-wave propagation with
Av ¼ 0.1 m=s. For kv ≤ 1, Te first increases rapidly as the in situ
stress increases and then increases much more slowly as it asymp-
totically approaches a constant value; correspondingly, Re first de-
creases rapidly and then more slowly as it approaches a constant
value. When kv ¼ 1.5, Te increases linearly and Re fluctuates when
the gravitational stress increases from 0 to 1 MPa. As the gravita-
tional stress increases, Te increases slightly to a constant value
(about 0.68) and Re decreases slightly to a constant value (about
0.32). When kv ¼ 2, Te increases linearly and Re deceases at first
and then increases as the gravitational stress increases from 0 to
6 MPa. As the in situ stress increases further, Te increase slightly
to a constant value (about 0.43) and Re decreases slightly to a con-
stant value (about 0.58). In addition, increasing the kv value results
in a decrease in Te and an increase in Re.

Fig. 8(c) shows the results for S-wave propagation with
Av ¼ −0.1 m=s. When kv ≤ 1, with the in situ stress increasing,
Te and Re change in a way that is similar to the variation found
when Av ¼ 0.1 m=s. When kv > 1, Te increases rapidly at first
and then falls to a constant value (0.70 for kv ¼ 1.5 and 0.41
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Fig. 8. Effect of in-situ stress on transmission coefficients Te and re-
flection coefficients Re: (a) P-wave; (b) S-wave with Av ¼ 0.1 m=s;
and (c) S-wave with Av ¼ −0.1 m=s.
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for kv ¼ 2). At the same time, Re decreases rapidly at first and then
gradually rises to a constant value (0.29 for kv ¼ 1.5 and 0.47
for kv ¼ 2).

These results confirm that the in situ stress and lateral pressure
coefficient have a significant effect on wave propagation across the
joint. The wave propagation is controlled by the combined effect of
the stress wave and in situ stress. The direction of shear stress τw
induced by the dynamic stress wave may not be consistent with that
of the initial shear stress τ s caused by the in situ stress. When the
direction of τw is the same as that of τ s, the combined effect of
shear stress on the joint becomes larger and the joint is more likely
to slip. When the direction of τw is different from that of τ s, the
displacement caused by the stress wave counteracts the displace-
ment caused by the initial displacement (which can be considered
to correspond to unloading), and deformation can occur in the
opposite direction to the initial shear displacement.

When the in situ stress is sufficiently large, its effect on the
wave attenuation can be neglected. This agrees with the conclu-
sions drawn by Cui et al. (2017) and Fan and Sun (2015). The
greater the in situ stress, the greater are the shear strength, shear
stiffness, and normal stiffness. As a result, more energy is transmit-
ted through the joint, which reduces the likelihood that the joint
will fail.

Effect of Angle of Incidence

The effect of angle of incidence on wave propagation has been
systemically studied for incident P-waves using a linear model
(Li et al. 2012; Zhao et al. 2006) and the B-B model (Li 2013).
This section focuses mainly on waves propagating obliquely across
an in situ stressed joint using three different joint deformation mod-
els, the parameters of which are given in section “Special Case and
Comparison.”

Fig. 9 shows how the transmission and reflection coefficients
vary for P- and S-waves as a function of their angle of incidence
for the three different joint models. Clearly, the varying effect of
the incidence angle differs depending on the joint model used. For
P-waves [Fig. 9(a)] and using the linear joint model, Te gently
increases as α increases from 0° to 40°, and Re gently decreases.
However, with further increases in α, from 40° to 75°, Te in-
creases substantially to about 0.81, and Re decreases substantially
to 0.05.

For the nonlinear joint models, two critical angles (αA and αB)
divide the pattern of behavior into three parts [Fig. 9(a)]. When
α ≤ αA, Te decreases and Re increases as α increases. When
αA < α ≤ αB, this variation is reversed, and Te increases and Re
decreases as α increases. Finally, as α is increased beyond αB
and approaches 90°, Te decreases dramatically and Re increases
dramatically. For the Nonlinear 1 model αA ∼ 50°, and for the Non-
linear 2 αA ∼ 35°; the corresponding values of αB are both ∼80°.

Let Te0 and Re0 represent the values of the coefficients when the
P-wave is incident normally, and define Tev as the ratio of the maxi-
mum change ΔTe to Te0, where ΔTe is the change in Re value,
i.e., ΔTev ¼ jTe − Te0j [similarly, Rev ¼ maxðΔRe=Re0Þ]. As α
increases from 0° to 90°, Tev and Rev are ∼28% and ∼86% for
the linear model, respectively. The corresponding figures for the
Nonlinear 1 model are ∼11% and ∼140%, and for the Nonlinear
2 model they are ∼5% and ∼85%. Thus, compared with the other
two joint models, the Nonlinear 2 model is much less sensitive to
angular variation.

Fig. 9(b) shows the effect of varying the angle of incidence of
S-waves (β) on the reflection and transmission energy coefficients
for the different joint models. Here, the value of β varies from 0° to
the critical angle 36°, as suggested by Li et al. (2012). The curves
produced using the three models are significantly different, espe-
cially for the reflection coefficients.

For the linear model, increasing the angle of incidence leads to
an increase in both the transmitted and reflected energy. For the two
nonlinear models, Te increases and Re decreases as the incident
angle increases for both Av ¼ 0.1 and −0.1 m=s. This is because
the shear strength of the nonlinear joint models is dependent on the
normal stress, which is related to the angle of incidence. Therefore,
the nonlinear model has considerable merit when calculating
the effect of the energy dissipation. It also is apparent that the
Nonlinear 2 model is more sensitive to the direction of the particle
vibration than is the Nonlinear 1 model.

Effect of Amplitude of Incident Wave

Fig. 10 shows the effect on the energy coefficients of varying
the incident wave amplitude for the three different joint models.
The other parameters used in this case are the same as those
used in section “Effect of Angle of Incidence.” It is immediately
obvious that the reflection and transmission energy coefficients
for P- and S-waves propagating across a linear joint remain
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Fig. 9. Variation of the energy coefficients Te and Re as a function of the angle of incidence of the incident wave for different joint models when the
incident waves are (a) P-waves; and (b) S-waves.
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constant irrespective of the incident wave amplitude. This is be-
cause the stiffness and strength of the linear joint are independent
of the stress and remain unchanged as the wave propagates. How-
ever, when P-waves are incident on either of the nonlinear joint
models [Fig. 10(a)], moderate increases in Te and decreases in
Re occur as the incident amplitude is increased. In fact, Te in
the Nonlinear 2 joint model is slightly larger than that obtained us-
ing the Nonlinear 1 joint model. This is because the shear stiffness
of the Nonlinear 2 model depends on both the normal and shear
stress during wave propagation.

When S-waves are incident on the Nonlinear 1 joint model
[Fig. 10(b)], Te and Re barely change when the incident amplitude
is kept below 0.12 m=s. This is because the shear stiffness stays the
same before the joint slips. Increasing the incident amplitude
beyond this value causes Te to decrease sharply because energy
is dissipated when slipping occurs.

The behavior of S-waves incident on a joint described using the
Nonlinear 2 model is more complicated [Fig. 10(b)]. As the inci-
dent amplitude increases from 0.02 to 0.14 m=s, Re increases
dramatically, whereas Te decreases at first and then recovers some-
what. As the incident amplitude continues to increase, both Te and
Re decrease significantly, indicating that there is considerable dis-
sipation of the energy. The normal stiffness increases with increas-
ing normal stress, and the shear stiffness is affected by both the
normal and shear stress. Therefore, the variation of the transmitted
and reflected energy is a result of the combined effect of varying
normal and shear stiffness.

When a wave propagates across a joint, the deformation
and damage of the joint causes dissipation and absorption of stress
wave energy. To compare the relationship between the energy
absorption of the stress wave and the incident wave amplitude
under different joint models, two parameters, energy absorption
coefficient eab, and transmission and reflection of incident
energy coefficient etar, are defined in Eq. (25), which is based
on Eq. (23)

etar ¼
Etra;p þ Etra;s þ Eref;p þ Eref;s

Einc
¼ Te þ Re

eab ¼ 1 − etar ð25Þ

where Etra;p (Eref;p) and Etra;s (Eref;s) = energies of transmitted
(reflected) P- and S-waves, respectively; and Einc = energy of
the incident wave.

The relationships between eab and etar and the amplitude of the
incident wave are different (Fig. 11).

The shear strength and stiffness of the joint for Nonlinear 1
model remain unchanged when it is not destroyed. Therefore,
the amount of energy absorbed by joint is constant (albeit small).
When the shear stress of the joint exceeds the shear strength, the
joint is destroyed, and more wave energy is absorbed. For the
Nonlinear 2 model, the large amount of wave energy also is ab-
sorbed by the joint for an incident S-wave of large amplitude.
The direction of vibration of the incident S-wave is important in
the Nonlinear 2 model. When the S-wave has a positive amplitude,
which means that the direction of deformation caused by the
S-wave is the same as that of the initial shear deformation caused
by the in situ shear stress, the value of eab first decreases and then
increases. The negative value of eab denotes a release of in situ
stress. Under dynamic disturbance, the energy associated with the
in situ stress also may be released, so the sum of the energy in the
reflected and transmitted waves is greater than the incident energy
of the stress wave. The wave absorption of the joint increases rap-
idly after joint slip; this explains why a small dynamic disturbance
generates a relatively large geological hazard. The comparison of
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Fig. 10.Variation of the energy coefficients Te and Re as a function of the amplitude of the incident wave for different joint models when the incident
waves are (a) P-waves; and (b) S-waves.
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the two models shows that the effect of in situ stress on stress wave
propagation can be better considered by the Nonlinear joint
2 model.

Conclusions

This study extended the TDRM to investigate seismic wave propa-
gation through a joint in an in situ stressed rock mass. The gravi-
tational and tectonic stress and dip angle of the joint were used to
calculate the initial stresses in normal and tangential directions. The
B-B model and hyperbolic nonlinear slip model were used to in-
vestigate of the effect of the joint on waves propagating obliquely
across the jointed rock mass.

A comparison of the HN model and previous joint models
(linear and Coulomb slip models) showed that the HN model
depends on the stress history and shear stiffness degradation. Ex-
tensive parametric analyses subsequently were conducted to study
the effect of gravitational stress, lateral pressure coefficient, and
amplitude and angle of incidence of the seismic wave. Compared
with the other two models, the HN model is less sensitive to the
angle of incidence but is more dependent upon the incident wave
amplitude.

This study showed that the combined influence of in situ stress
and dynamic stress is complicated and affects the dynamic dis-
placement of the joint induced by wave propagation. The effect
of the in situ stress on wave attenuation depends not only on
the gravitational and tectonic stress but also on the direction of
the particle vibration of the incident wave. The deformation
of the joint and the probability that failure will occur because
of the stress induced by waves of identical amplitude therefore
may be different even if the value of the in situ stress is the same.
That is, the behavior of the joint depends on whether or not the
direction of the initial shear stress is consistent with the direction
of wave propagation.

A simplified waveform (half-sine) was used for the incident
wave in this work to study the combined effect of dynamic and
in situ stresses. More-complicated waveforms, e.g., those of real
seismic waves and blast waves, need to be studied in future work.
In addition, the rock in the present study was simulated using a
linear model. Therefore, nonlinear rock materials and rock masses
featuring more joints also need to be investigated further.
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