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This paper presents a new constitutive model for describing the strain-hardening and strain-softening behaviors of clayey rock. As
the conventional Mohr-Coulomb (CMC) criterion has its limitation in the tensile shear region, a modified Mohr-Coulomb (MMC)
criterion is proposed for clayey rock by considering the maximal tensile stress criterion. Based on the results of triaxial tests, a
coupled elastoplastic damage (EPD) model, in which the elastic and plastic damage laws are introduced to describe the
nonlinear hardening and softening behaviors, respectively, is developed so as to fully describe the mechanical behavior of clayey
rock. Starting from the implicit Euler integration algorithm, the stress-strain constitutive relationships and their numerical
formulations are deduced for finite element implementation in the commercial package ABAQUS where a user-defined material
subroutine (UMAT) is provided for clayey rock. Finally, the proposed model is used to simulate the triaxial tests and the results
validate the proposed model and numerical implementation.

1. Introduction

Clayey rock is always selected as the geological barriers for
radioactive waste disposal and considered the effective cap-
rock for CO2 sequestration and oil and gas reservoir [1–3].
Clayey rock in its natural state exhibits good plastic deforma-
tion ability and very low permeability as geological barriers.
One of the main concerns is that, due to underground exca-
vation or fluid injection, the favorable properties of clayey
formation change and the host rock loses part of its barrier
function, thus negatively influencing the performance of a
repository [4, 5]. In addition, the damage associated with
excavation or injection causes obvious degradation of
mechanical and hydraulic properties of clayey rock and thus
plays an important role in changing the stress and seepage
fields in the practical engineering.

The damage and integrity behaviors of clayey rock are the
key factors in studying the storage and environmental safety
of geological disposal in deep repository. The underground
excavation can redistribute the stress and generate irrevers-
ible damage around a gallery. The safety evaluation of a
repository in clayey rock requires accurate prediction of the
mechanical perturbations and damage zone, which is called
as excavation damaged zone (EDZ) [6–8]. Therefore, a suit-
able constitutive model, which can characterize accurately
the mechanical behavior of clayey rock, is very important
for repository design [9–11].

Clayey rock is one type of sedimentary rock, and some
characteristics of its mechanical behavior are similar to those
of soft rock [4]. Laboratory experiments show that clayey
rock has significant strain-softening behavior and good
plastic deformation ability [2, 12, 13]. The strain-softening
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behavior of clayey rock has been studied from micro- and
macromechanical viewpoints [2, 4]. The micromechanical
model can reproduce not only the crack opening, interaction
between crack surfaces, and crack closure but also the process
of strain localization or shear banding. However, the micro-
mechanical model has limited use in practical engineering
due to large number of excessive preoccupied cracks and
complex modelling approaches. Therefore, the macrome-
chanical model has been mainly used in underground engi-
neering and can be easily applied to simulate engineering
problems, for example, determining the distribution of EDZ
and extent of failure. As for plastic deformation and strain-
softening behavior for clayey rock, the modelling approaches
mainly include the following [7, 14–17]: (1) the strength
parameters are considered to be weakened during strain soft-
ening based on laboratory tests and field observations and (2)
the damage concept is introduced into the classical contin-
uum theory to describe the degradation of stiffness and
strength of clayey rock.

A large number of models, such as Cam-Clay, Drucker-
Prager, Mohr-Coulomb, Cap model, and bounding surface
model [18–21], have been developed to describe the failure
behavior of clayey rock. Among these models, the Mohr-
Coulomb failure criterion has been widely used for geotech-
nical applications due to its easy implementation. Many
researchers have noted that modelling the failure behavior
of clayey rock should take into account the damage that
governs the complex mechanical behavior [21, 22]. The lab-
oratory tests show that plastic deformation and damage are
coupled [2, 4, 11, 21, 23], indicating that the plastic yield
criterion should be used simultaneously with the damage
criteria to consider the changes of mechanical properties
of clayey rock. The damage of rock has obvious effect on
the stress, strain, elastic stiffness, strength, yield function,
potential function, and softening parameters. In the coupled
damage model developed recently for clayey rock [4, 6, 8–
10], in order to build the complex relationship between
plastic flow and damage evolution, some assumptions are
made on the basis of laboratory tests. To the best of the
authors’ knowledge, there is little available research on pro-
posing a coupled damage constitutive model for clayey rock
based on laboratory tests. This is also the motivation of the
present work.

The paper is organized as follows. In Section 2, the
MMC criterion, which combines the CMC criterion with
the maximal tensile stress criterion, is proposed to describe
the yield and plastic flow behavior of clayey rock. Section
3 presents a damage constitutive model, which considers
the stiffness degradation, strain-hardening, and plastic
softening effect. Numerical implementation of the pro-
posed model in finite element software ABAQUS is pre-
sented in Section 4. Finally, in Section 5, numerical
results are provided to show the effectiveness of the pro-
posed model.

2. Modified Mohr-Coulomb Criterion

The Mohr-Coulomb criterion is still widely used for a large
number of routine design in the geotechnical engineering,

which is the lower limit of all the linear strength criterion
[24]. According to many experimental studies [4, 11, 25,
26], the Mohr-Coulomb criterion can well reflect the elas-
toplastic mechanical behavior of clayey rock. However,
among the popular finite element software, such as ABA-
QUS, ANSYS, and COMSOL, the built-in Mohr-Coulomb
model cannot well describe the dilatancy characteristics
and the truly associated flow properties of geomaterial
because of the different expressions of yield and potential
functions [4].

The CMC criterion is generally written in terms of stress
invariants [11, 27]:

F = σm sin ϕ + �σK ′ − c cos ϕ = 0, ð1Þ

where σm, �σ, c, and ϕ denote the average stress, equivalent
stress, cohesion, and friction angle, respectively.K ′ is a func-
tion of Lode angle θ and friction angle ϕ.

K ′ = cos θ −
1ffiffiffi
3

p sin ϕ sin θ: ð2Þ

In Equations (1) and (2), σm, �σ, and θ are defined by

σm =
σ1 + σ2 + σ3

3
,

�σ =
ffiffiffiffi
J2

p
,

θ =
1
3
sin−1 −

3
ffiffiffi
3

p

2
J3
�σ3

 !
,

−30° ≤ θ ≤ 30°,

ð3Þ

where σ1, σ2, and σ3 are the three principal stresses and J2
and J3 are the second and third invariant, respectively, of
the deviatoric stress.

The CMC criterion does not consider the real tensile
strength of rock, and it has the limitation for the actual tensile
shear zone. In Figure 1, σ∗m is the three-dimensional tensile
strength by the CMC criterion, which is larger than the actual
uniaxial tensile strength of rock f t. Assuming that the three-
dimensional tensile strength of rock is equal to the uniaxial
tensile strength, σt = f t, the tensile Mohr-Coulomb criterion
is defined as [4]

σ1 ≥ f t, ð4Þ

where f t is the uniaxial tensile strength of geomaterials and
σ1 = ð2/ ffiffiffi

3
p Þ�σ sin ðθ + 120°Þ + σm.

Thus, Equation (4) is rewritten in terms of stress
invariants:

F =
2ffiffiffi
3

p �σ sin θ + 120°ð Þ + σm − f t = 0: ð5Þ

Because the proposed MMC criterion considers both
tensile strength and shear strength of geomaterials, the
yield surface is a result of combination of two different
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failure criteria: shear failure and tensile failure. The yield
function is defined as follows [11] (as shown in Figure 1):

F = σm sin ϕ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σK ′
� �2

+m2c2 cos2ϕ
r

− c cos ϕ = 0, ð6Þ

where 0 ≤m ≤ 1 is a parameter reflecting the tensile
strength of geomaterials. When m = 0 indicates a higher
tensile strength, the MMC yield criterion in Equation (6)
becomes the CMC criterion; m = 1 denotes that there is
no tensile strength. In addition, the parameter m can
smooth the vertex of the yield surface and avoid the
numerical divergence and slow convergence.

The Mohr-Coulomb failure surface is a hexagonal cone
in the principal stress space with six sharp corners in the
octahedral plane [11, 28]. The six singularities occur at θ =
±30° in the octahedral plane (as shown in Figure 2), making
the numerical convergence difficult. To approach the CMC
yield surface, the parameter K ′ is expressed by using as a
piecewise function:

K ′ =
�A − �B sin 3θ
� �

,  θj j > θT,

cos θ −
1ffiffiffi
3

p sin ϕ sin θ

� �
,  θj j ≤ θT,

8><
>: ð7Þ

K ′ =
�A − �B sin 3θ
� �

,  θj j > θT,

cos θ −
1ffiffiffi
3

p sin ϕ sin θ

� �
,  θj j ≤ θT,

8><
>: ð8Þ

where

�A =
1
3
cos θT 3 + tan θT tan 3θTð

+
1ffiffiffi
3

p sign θð Þ tan 3θT − 3 tan θTð Þ sin ϕÞ,

�B =
1

3 cos 3θT
sign θð Þ sin θT +

1ffiffiffi
3

p sin ϕ cos θT
� �

,

sign θð Þ =
+1, θ ≥ 0°,

−1, θ < 0°:

(
ð9Þ

The variable θT denotes the transition angle in the vicin-
ity of the six singularities, and its value is in the range of
0° ≤ θT ≤ 30°. In the present calculations θT = 25° is adopted.
The yield function rounded in both the meridional and
octahedral planes is modified by adjusting the parameters
m and K ′ in Equations (6) and (7), where the yield surface
is continuous and differentiable for all stress states.

The plastic potential function can be defined from the
yield function as follows:

G = σm sin φ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σK ′
� �2

+m2c2 cos2φ
r

, ð10Þ

where φ is the dilatancy angle. Similarly, K ′ is a function of
Lode angle θ and dilatancy angle φ. Associated flow occurs
if φ = ϕ, while unassociated flow occurs if 0 ≤ φ < ϕ.
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Figure 1: Modified Mohr-Coulomb criterion in the meridional
plane.
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Figure 2: Smooth processing of modified Mohr-Coulomb criterion
in the octahedral plane.
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3. Coupled Elastoplastic Damage Model

3.1. Model Description. Figure 3 schematically shows the
stress-strain curve of clayey rock observed in laboratory tests.
The mechanical properties of clayey rock are affected by frac-
tures growth, cementation degree, and stress state [4]. When
the microcracks grow, the clayey rock undergoes nonlinear
deformation, leading to deterioration of its macroscopic elas-
tic properties and strength. The interaction between the non-
linear deformation and the damage can be dealt with by a
damage model. For the purpose of simplicity, the stress-
strain curve is divided into four stages, i.e., elastic deforma-
tion, strain hardening, strain softening, and plastic flow.
Due to the complexity of stress-strain behavior under triaxial
stress state, the conventional elastoplastic constitutive model
cannot accurately describe this process. Thus, the present
work uses a piecewise method to fully characterize the
mechanical behavior of clayey rock. Based on the damage
mechanics theory, an EPD constitutive model, which con-
tains elastic law, elastic damage law for strain hardening,
and plastic damage law for strain softening, is developed.
According to the position of peak stress point, the complete
stress-strain curve is divided into two zones, i.e., elastic and
plastic. For the plastic zone, the Mohr-Coulomb failure crite-
rion is adopted to describe the progressive plastic deforma-
tion and strain-softening process.

Although anisotropic stress-induced damage has been
observed in some laboratory tests on clayey rock, it is not
obvious in this study [4, 18, 21]. Therefore, a scalar isotropic
damage variable is used in the present coupled EPD model.
Following the convention of continuum damage mechanics
[29], the effective stress ~σ is defined as follows from the
Lemaitre strain equivalent hypothesis:

~σ = σ

1 −Ω
, ð11Þ

where σ is the nominal stress and Ω is the damage variable.

According to the MMC failure criterion, the yield func-
tion in terms of effective stress can be written as

F = ~σm sin ϕ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�σK ′
� �2

+m2c2 cos2ϕ
r

− c cos ϕ: ð12Þ

By substituting Equation (11) into Equation (6), the
yield function in terms of nominal stress can be deter-
mined by

F = σm sin ϕ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σK ′
� �2

+ 1 −Ωð Þ2m2c2 cos2ϕ
r

− 1 −Ωð Þc cos ϕ,

ð13Þ

Similarly, the potential function can be defined in
terms of nominal stress as

G = σm sin φ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σK ′
� �2

+ 1 −Ωð Þ2m2c2 cos2φ
r

: ð14Þ

3.2. General Stress and Strain Relationship. Generally, the
assumption of small strain is suitable for clayey rock.
The stress-strain relationship of clayey rock shows obvious
nonlinear characteristics before peak strength [2, 4, 21].
Although the strain during the hardening after unloading
cannot be restored completely, the plastic strain in this
stage is so small that it can be neglected. For the purpose
of simplicity, the elastic damage occurs in the strain-
hardening stage and the total strain dεij is decomposed
into the following two parts:

dεij = dεRij = dεeij + dεedij , ð15Þ

where dεRij is the reversible strain, dεeij is the elastic strain,

and dεedij is the elastic damage strain.
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Figure 3: The stress-strain curve in different stages.
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The elastic damage strain dεedij is deduced from the change
of elastic parameters during the strain hardening [17]:

dεedij =
∂Cijkl Ωð Þ

∂Ω
dΩ ⋅ σkl , ð16Þ

where Cijkl is the elastic stiffness tensor and σkl is the stress
tensor.

When the stress in clayey rock reaches the peak strength,
the rock will undergo plastic deformation which is coupled
with the damage. For the stages of strain softening and plastic
flow, the irreversible strain dεIRij is decomposed into plastic
and damage parts:

dεIRij = dεpij + dεdij, ð17Þ

where dεpij is the plastic strain and dεdij is the plastic damage
strain.

According to the potential function in Equation (14), the
irreversible strain dεIRij can be defined as follows [8, 10]:

dεIRij = dλ
∂G σij,Ω
� �
∂σij

, ð18Þ

where dλ is the plastic multiplier.
The general stress and strain relationship can be expressed

as follows:

dσij = Cijkl dεkl − dεIRkl
� �

+ εkl − εIRkl
� � ∂Cijkl

∂Ω
dΩ: ð19Þ

3.3. Definition of Damage. According to stress-strain rela-
tionship of clayey rock as shown in Figure 3, the curve is lin-
ear in the elastic stage and nonlinear in the strain-hardening
stage. The transition point delineating these two stages is
considered the elastic damage starting point. The elastic
damage stage ends and the plastic damage commences when
the peak strength is reached. The evolution equation of elas-
tic damage is

Ωe = β1 �e −�e0eð Þ, ð20Þ

where β1 is the elastic damage parameter and�e0e is the energy
factor of the elastic damage starting point. The energy factor
�e is defined as [4]

�e =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εijC

0
ijklεkl

q
, ð21Þ

where C0
ijkl is the undamaged elastic stiffness tensor.

The peak stress of the stress-strain curve is defined as the
threshold of plastic damage. Actually, plastic damage is
dependent on the history of plastic deformation and its rate
tends to stabilize gradually with the increase of accumulated
deformation. The evolution equation of plastic damage is
written as follows:

Ωp =
�e −�e0p

α2 + β2 �e −�e0p
� � , ð22Þ

where �e0p is the energy factor corresponding to the plastic
damage starting point and α2β2 are the plastic damage
parameters.

3.4. Evolution of Model Parameters. According to the contin-
uum damage mechanics, the degradation of elastic modulus
during loading is defined as follows [4, 29]:

E = 1 −Ωð ÞE0, ð23Þ

where E is the damaged elastic modulus, E0 is the initial
undamaged elastic modulus, and Ω is the sum of elastic
and plastic damage variables, i.e., Ω =Ωe +Ωp.

Equation (23) shows that the elastic modulus decreases
gradually during the damage deformation. When the rock
approaches a complete damage, the damage variable Ω is
close to 1 and thus, the elastic modulus tends to be 0. How-
ever, this is not in accordance with engineering application,
where the elastic modulus of clayey rock retains its residual
value even after a significant damage. In order to overcome
this problem, here the elastic modulus is expressed by using
a bilinear function of the damage variable:

E = E0 − E0 − Erð Þ Ω

Ωlim

� �
, 0 ≤Ω ≤Ωlim,

E = Er, Ωlim ≤Ω ≤ 1,

8><
>: ð24Þ

where Er is the residual elastic modulus of clayey rock and
Ωlim is the critical damage value and Ωlim = 0:99 is adopted
in this study.

During the strain-softening stage, the strength of clayey
rock decreases while the plastic damage variable and plastic
deformation increase. As the friction angle has small change
during the strain-softening process [4, 30], it is assumed that
the strength parameter evolution is only described by the
cohesion, which is expressed as follows:

c = c0 − c0 − crð Þ ⋅Ωp
η, ð25Þ

where c0 and cr denote the initial and residual cohesions,
respectively; η ∈ ð0, 1� is a model parameter controlling the
slope of the strain-softening curve.

4. Numerical Implementation

4.1. Implicit Constitutive Integration Algorithm

4.1.1. Backward Euler Implicit Integration (BEII) Algorithm.
The fully BEII method is used in this study to return the
stresses for predicting the yield surface when the stresses
exceed the yield strength [31–33]. Given the responses at
time tn, i.e., stress σn, damage variable Ωn, and a total strain
increment Δεn+1, the objective is to determine these state var-
iables σn+1, εn+1, and Ωn+1 at time tn+1. The BEII method
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includes mainly three steps, i.e., elastic predictor, plastic cor-
rector, and damage corrector.

In the elastic predictor step, the scalar damage Ωn is
assumed to be a constant. A trial damage is defined as

Ωtrial
n+1 =Ωn, ð26Þ

and a trial stress σtrialn+1 is defined based on the elastic predictor

σtrialn+1 = σn +CΔεn+1, ð27Þ

where C is the elastic stiffness matrix, which is a function of
the trial damage Ωtrial

n+1.
The onset of plastic flow and deformation is determined

by the loading condition, which is expressed as follows:

F σtrialn+1,Ω
trial
n+1

� �
= 0,

dλ ≥ 0,

F σtrialn+1,Ω
trial
n+1

� �
⋅ dλ = 0:

ð28Þ

The trial stress at point B, σtrialB , is obtained by the elastic
predictor (as shown in Figure 4)

σtrialB = σn +CΔεn+1 = σn + Δσe, ð29Þ

where Δσeis the increment of elastic stress.
In order to return the trial stress σtrialn+1 for predicting the

yield surface, the stress increment is defined as

Δσn+1 =C Δεn+1 − ΔεIRn+1
� �

=CΔεn+1 − ΔλCb = Δσe − ΔλCb,
ð30Þ

where b = ð∂Gðσtrialn+1,Ωtrial
n+1Þ/∂σÞn+1. The derivatives of the

potential function and yield function are given in the
appendix.

Thus, the trial stress at point C is expressed as

σtrialC = σtrialB − ΔλCb: ð31Þ

The first-order Taylor expansion of the yield function at
point B gives

F = FB +
∂F
∂σ

� �T
Δσ + ∂F

∂c
∂c
∂Ωp

ΔΩp +
∂F
∂Ω

ΔΩ = 0: ð32Þ

In the plastic corrector step, the scalar damage Ωtrial
n+1 is

regarded as constant. Then, Equation (32) reduces to be

F = FB +
∂F
∂σ

� �T
Δσ = FB − ΔλaTBCbB = 0, ð33Þ

where a = ∂F/∂σ and FB = FðσtrialB ,Ωtrial
n+1Þ.

Here the plastic multiplier Δλ can be determined explic-
itly as

Δλ =
FB

aTBCbB
: ð34Þ

The backward Euler algorithm is based on the equation

σC = σB − ΔλCbC: ð35Þ

where σB is the elastic trial stresses and the variables with
subscript C are related to the current configuration. A start-
ing estimate for σC is defined as

σC = σB − ΔλCbB: ð36Þ

Generally, this starting value of stress σC does not satisfy
the yield function and further iterations will be required
because the normal at the trial position B is not equal to the
final normal (as shown in Figure 4). To control the iterative
loop, a vector r is used to represent the difference between
the current stresses and the backward Euler calculations, i.e.,

r = σ − σB − ΔλCbCð Þ = σ − σB + ΔλCbC: ð37Þ

The iterations continue until the norm of vector r is small
enough (almost zero) while the final stresses should satisfy
the yield criterion.

With the trial stresses σB being kept fixed, a truncated
Taylor expansion can be applied to Equation (37). A new
residual vector rN is expressed as follows:

rN = r0 + _σ + _λCb + ΔλC ∂b
∂σ _σ, ð38Þ

where r0 is the residual vector at point B, _σ is the change in σ,
_λ is the change of Δλ, and N is the number of iteration.

𝜎

A

B

CN

C0

FB > 0

F = 0

Figure 4: Sketch map of the backward Euler integration algorithm.
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Setting rN to zero gives

_σ = − I + ΔλC ∂b
∂σ

� �−1
r0 + _λCb
� �

= −Q−1r0 − _λQ−1Cb,

ð39Þ

where I is the unit matrix; Q = I + ΔλCð∂b/∂σÞ.
Similarly, a truncated Taylor series on the yield func-

tion is

FCN = FC0 +
∂F
∂σ

� �T
_σ = 0: ð40Þ

By substituting Equation (39) into Equation (40), the
change of Δλ is determined by

_λ =
FC − aTCQ−1r0
aTCQ−1Cb

, ð41Þ

and the plastic multiplier after N times of iteration is
obtained:

Δλ Nð Þ = Δλ N−1ð Þ + _λ N−1ð Þ: ð42Þ

The modified stress vector σC after N times of itera-
tions is

σC Nð Þ = σB − Δλ N−1ð ÞCbC N−1ð Þ: ð43Þ

The strain vector εn+1 at time tn+1 is expressed as

εn+1 = εn + Δεn+1: ð44Þ

The third step in the BEII method is the damage cor-
rector. The updated damage at time tn+1 is

Ωn+1 =Ωn + ΔΩ, ð45Þ

where ΔΩ = ΔΩe + ΔΩp.
After the damage corrector is completed, the final stress

at time tn+1 is determined:

σn+1 = Cn+1 : εen+1 =Cn+1 : εen + Δεn+1 − ΔεIRn+1
� �

=
Cn+1
Cn

σtrialn+1 − Cn : ΔεIRn+1
� �

=
1 −Ωn+1
1 −Ωn

σC Nð Þ:
ð46Þ

4.1.2. Consistent Tangent Stiffness Matrix. The consistent
tangent stiffness matrix is related to the convergence speed
of global equilibrium iteration, and it does not influence
the final results of stress updating. By dropping the subscript
C in Equation (35), the standard back-Euler algorithm is
expressed as

σ = σB − ΔλCb: ð47Þ

It should be noted that the variables without subscript
“C” in Equation (47) are related to the current configuration.

When the change of damage in plastic corrector is omitted,
differentiation of Equation (47) gives

_σ = C_ε − _λCb − ΔλC ∂b
∂σ _σ, ð48Þ

which is simplified to be

_σ = I + ΔλC ∂b
∂σ

� �−1
C _ε − _λb
� �

=Q−1C _ε − _λb
� �

= R _ε − _λb
� �

,

ð49Þ

where R =Q−1C.
To retain the current stress σ on the yield surface, _F

should be zero. The consistency conditions of yield function
F is expressed as follows:

_F =
∂F
∂σ

� �T
_σ + ∂F

∂c
∂c
∂Ωp

_Ωp +
∂F
∂Ω

_Ω = aT _σ = 0: ð50Þ

By substituting Equation (49) into Equation (50), _λ is
determined by

_λ =
aTR_ε
aTRb : ð51Þ

The consistent tangent stiffness matrix,Dct, can be
obtained by substituting _λ into Equation (49):

_σ = R −
RbaTRT

aTRb

 !
_ε =Dct _ε: ð52Þ

4.2. Procedure of the Constitutive Integration Algorithm. In
the fully implicit backward Euler algorithm [31, 34], the
increment of irreversible strain and damage variable is calcu-
lated at the end of increment step n. The constitutive model
integration algorithm can be expressed as

ε n+1ð Þ = ε nð Þ + Δε,

εIRn+1ð Þ = εIRnð Þ + Δλ n+1ð Þb n+1ð Þ,

Ω n+1ð Þ =Ω nð Þ + ΔΩ,

σ n+1ð Þ =C : ε n+1ð Þ − εIRn+1ð Þ
� �

,

F n+1ð Þ = F n+1ð Þ σ n+1ð Þ,Ω n+1ð Þ
� �

:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð53Þ

Equation (53) is a system of nonlinear equations of
εðn+1Þ, εIRðn+1Þ, and Ωðn+1Þ. At any time tn, a set of values ðεðnÞ,
εIRðnÞ,ΩðnÞÞ and strain increment Δε = Δt _ε are given. The

updated variables come from the convergence value at the
end of the previous time step, which achieves the effect of
avoiding nonphysical meaning. The solution of the
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nonlinear equations is solved by Newton-Raphson iterative
method. For the updated variables, the superscript k repre-
sents the number iteration and the subscript n represents
the increment step.

The stress update algorithm flow is as follows:

Step 1. Set the initial value. The initial value of irreversible
strain and damage variable is the convergence value at
the end of the last load step. The incremental value of

plastic parameter is set to zero, and the elastic trial stress
is calculated.

k = 0 : εIR 0ð Þ
n+1ð Þ = εIRnð Þ,

Ω
0ð Þ
n+1ð Þ =Ω nð Þ,

Δλ
0ð Þ
n+1ð Þ = 0,

σ 0ð Þ
n+1ð Þ =C : ε n+1ð Þ − εIR 0ð Þ

n+1ð Þ
� �

:

ð54Þ

Step 2. Check the yield condition and convergence at the
iteration number k.

F kð Þ
n+1ð Þ = F σ kð Þ

n+1ð Þ,Ω
kð Þ
n+1ð Þ

� �
: ð55Þ

For a given stress error tolerance TOL, if FðkÞ
ðn+1Þ < TOL,

convergence; otherwise, go to Step 3.

Step 3.Calculate the increment of plastic parameters, then the
increment of stress and damage variables can be obtained.

δλ
kð Þ
n+1ð Þ =

F kð Þ
n+1 − a kð Þ

n+1ð Þ
� �T

Q−1r0

a kð Þ
n+1ð Þ

� �T
Q−1Cb

,

δσ kð Þ
n+1ð Þ = − I + ΔλC ∂b

∂σ

� �−1
r0 + _λCb
� �

,

δΩ
kð Þ
n+1ð Þ = δ Ω

kð Þ
e n+1ð Þ +Ω

kð Þ
p n+1ð Þ

� �
:

ð56Þ

Increment step starting
Call subroutine UMAT

Calculate elastic
tentative stress

Calculate yield function
judging whether yield

Calculate Jacobian matrix, and update stress

Plastic flow rule

Stress update algorithm

Pullback of stress to
yield surface

Exit subroutine UMAT, increment step end

No yield

Yield

Judge damage state according to
damage equation, if 𝛺 = 0

Yes

Parameter correction of the model

No

Calculate elastic matrix

Calculate modified elastic matrix

Figure 5: Flow chart of the UMAT subroutine.

76 mm

38 mm

𝜎1

𝜎1

𝜎3𝜎3

Figure 6: Geometrical model for triaxial tests.
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Step 4. Update plastic multiplier, strain, damage, and stress.

Δλ
k+1ð Þ
n+1ð Þ = Δλ

kð Þ
n+1ð Þ + δλ

kð Þ
n+1ð Þ,

Ω
k+1ð Þ
n+1ð Þ =Ω

kð Þ
n+1ð Þ + δΩ

kð Þ
n+1ð Þ,

εIR k+1ð Þ
n+1ð Þ = εIR kð Þ

n+1ð Þ + C−1 : δσ kð Þ
n+1ð Þ,

σ k+1ð Þ
n+1ð Þ = σ kð Þ

n+1ð Þ + C : ε n+1ð Þ − εIR k+1ð Þ
n+1ð Þ

� �
:

8>>>>>>>><
>>>>>>>>:

ð57Þ

Let k = k + 1; go to Step 3.

4.3. Secondary Development of UMAT Subroutine. The
numerical formulations discussed above are programmed as
a UMAT subroutine in ABAQUS with FORTRAN language
[28]. The material properties are defined in this UMAT sub-
routine, in which the stress and other related state variables
are updated at the end of each time step. The UMAT subrou-
tine can also work with a user subroutine to redefine field
variables at a material point (USDFLD) to update the field
variables [4, 21]. The stress, elastic, and plastic strain are
obtained by iteration in the UMAT subroutine, and then,
the state variables such as plastic parameters and damage
variable are updated. The change rate of _σ with respect to _ε
is provided by the constitutive Jacobian (DDSDDE) in the
UMAT subroutine as the Jacobian matrix of the material
constitutive model. The flow chart of the UMAT subroutine
for the proposed model is shown in Figure 5.

5. Application of the Proposed Model

5.1. Model Validation. The proposed constitutive model was
developed and implemented in the UMAT subroutine of
ABAQUS. In order to test the calculation ability, accuracy,
and efficiency of this UMAT subroutine, the performance
of the constitutive formulation was evaluated for uniaxial
tension and confined compression scenarios. In the special

case when no damage is mobilized, the proposed EPD model
reduces to an ideal elastoplastic model. For the purpose of
numerical illustration, the numerical results using the
UMAT subroutine based on the MMC criterion were com-
pared with those by using the built-in Mohr-Coulomb crite-
rion in ABAQUS.

Figure 6 shows the geometrical model for one cylinder
rock sample with a diameter of 38mm and a height of
76mm. The bottom of the sample is fixed, and a vertical dis-
placement load is applied on the top surface of the sample.
The elastic modulus E = 700MPa and Poisson’s ratio μ =
0:25. The plastic properties of rock include the friction angle,
cohesion, and dilatancy angle, whose values are φ = 18°, c =
0:3MPa, and ϕ = 18°, respectively. For the nonassociated
flow rule, the dilatancy angle is ϕ = 0°. The parameter m =
0:05 is used in the MMC criterion for avoiding the numerical
divergence in this study.

Figures 7 and 8 compare the stress-strain relationship for
uniaxial and triaxial compression, respectively, between the
present MMC model and the built-in Mohr-Coulomb model
in ABAQUS. It can be found that the numerical results of
deviatoric stress and volumetric strain predicted from both
models are in good agreement. For a given axial strain under
a specific confining pressure, the yield stress obtained from
the MMC model (with the UMAT subroutine) is slightly
smaller than that obtained from the built-in model. This is
due to the fact that the yield surface of the MMC criterion
is inside that of built-in Mohr-Coulomb criterion. In partic-
ular, the volumetric strain predicted from both models agree
very well. This indicates that the proposed MMC model is
feasible to describe the ideal plastic response under compres-
sion conditions.

The mechanical response of the sample under uniaxial
tension is shown in Figure 9 for different values of m
reflecting the tensile strength of rock. It can be seen that
when m = 0:05, the numerical results calculated from the
present model are in agreement with those obtained by
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Figure 7: Stress-strain relationship under uniaxial compression: (a) nonassociated flow and (b) associated flow.
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the built-in model in ABAQUS. In this case, the calculated
tension strength from the MMC model is 0.424MPa, which
is very close to the calculated value of 0.436MPa from the
built-in model. When m = 0:2, the tension strength obtained
by the MMC model is 0.353MPa, and it is significantly
lower than that predicted by the built-in model. Therefore,

the actual tension strength of rock is dependent on the
parameter m.

5.2. Triaxial Tests and Numeric Simulation on Clayey Rock.
In this subsection, the mechanical characteristics of clayey
rock are studied by using the proposed EPD model.

The clayey rock in this study is a stiff clay. The undis-
turbed samples (Φ38 × 76mm) used in the undrained triaxial
tests are extracted from clayey rock formation at a depth of
247m. Considering the low permeability of clayey rock (with
an order of magnitude 10−19m2), these tests can be used to
estimate the undrained shear strength by analogy with quick
excavation and tunneling for repository [18, 35].

The tests were performed in a triaxial apparatus with a
confining pressure between 0.89MPa and 5.42MPa accord-
ing to following sequences [4, 36]. First, samples were loaded
in increment of approximately 0.5MPa to the scheduled con-
fined pressure, and then, a valve is opened to apply a back
pressure (nominally 50% of cell pressure) allowing consoli-
dation to commence. Once consolidation and pore pressure
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Figure 9: Stress-strain relation in uniaxial tensile cases.

Table 1: Initial damage points under different confining pressures.

Confining pressure (MPa) �e0e (MPa1/2) �e0p(MPa1/2)

0.89 0.273 0.354

2.50 0.227 0.413

2.85 0.197 0.322

5.42 0.191 0.553

Table 2: The known parameters for clayey rock.

Parameters
E0

(MPa)
Poisson’s
ratio μ

c0
(MPa)

ϕ (°) k (m2)

Value 300 0.13 0.30 18 3 × 10−19

Table 3: The results of unknown parameters by back analysis.

Confining
pressure

β1 α2 β2
cr

(KPa)
η

Er
(MPa)

φ (°)

0.89 1.381 0.569 0.990 58.132 0.608 77.418 7.290

2.50 0.860 0.583 1.243 97.946 0.404 95.593 2.501

2.85 0.939 1.190 1.886 44.399 0.693 66.270 0.804

5.42 0.590 2.008 0.951 49.008 0.699 117.196 0.921
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Figure 8: Stress-strain relationship under triaxial compression with a confining pressure 3MPa: (a) nonassociated cases and (b) associated
flow.
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dissipation were completed, the specimens were sheared by
the application of small increments in axial stress.

The finite element model is shown in Figure 6. The
boundary conditions and simulation sequences are the same
as those in laboratory tests. Simulation of undrained triaxial
test involves solving a coupled hydromechanical problem,
and the computational precision depends mainly on the
mesh size and time step, especially the stage at the beginning
of calculation. In order to ensure a uniform excess pore pres-
sure in the sample, the initial time step Δt is estimated based
on the following formula [28, 37]:

Δt ≥
γw
6E′k

Δhð Þ2, ð58Þ

where E′ is the drained elastic modulus, γw is the density of
pore water, k is the permeability of clayey rock, and Δh is
the characteristic length of the mesh.

The elastic modulus, Poison’s ratio, peak cohesion, fric-
tion angle, and two energy factors of the damage starting
point can be obtained directly from tested results, which are

listed in Tables 1 and 2. The unknown parameters in the pro-
posed EPDmodel can be determined by using a back analysis
[4], which are listed in Table 3.

The stress-strain curves under varying confining pres-
sures from 0.89 to 5.42MPa are shown in Figure 10. The
undrained triaxial tests show that clayey rock exhibits obvious
strain hardening and strain softening during the shearing
deformation, and the stress-strain curves can be classified into
four stages. Moreover, large plastic deformation during strain
softening is the main feature of the mechanical response of
clayey rock. It can be observed that the numerical results from
the proposed model are in good agreement with the test
results. This indicates that the proposed EPDmodel is capable
of effectively capturing the strain-hardening and strain-
softening characteristics of the clayey rock. When the defor-
mation of clayey rock reaches the initial elastic damage point,
the elastic damage increases slowly and then remains constant
during plastic deformation stage. From Figure 10, it can also
be seen that the total damage variable increases gradually
with the increase of axial strain and the plastic damage behav-
ior plays an important role in the irreversible deformation.
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Figure 10: Comparison of the stress-strain curves under different confining pressures between the numerical analysis and experiments: (a)
confining pressure 0.89MPa, (b) confining pressure2.5MPa, (b) confining pressure 2.85MPa, and (d) confining pressure 5.42MPa.
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6. Conclusions

In the present work, a new coupled elastoplastic damage (EPD)
model was developed by using a modified Mohr-Coulomb cri-
terionwhich considers themaximal tensile strength. Elastic and
damages were introduced to describe the strain-hardening
and strain-softening processes, respectively.

Based on the implicit Euler stress integration algorithm,
the constitutive integrating formulations and the consistent
stiffness matrix for the coupled EPD model were deduced.
For engineering application, the proposed model was coded
as a subroutine UMAT in ABAQUS.

To validate the EPD model, the triaxial compression test
and uniaxial tension test were first simulated without consid-
ering the damage effect. The comparison of the numerical
results between the EPDmodel (with the UMAT subroutine)
and built-in Mohr-Coulomb model in ABAQUS indicates
that the proposed model is capable of effectively describing
the tensile and compression responses of rocks. Then, the
coupled EPDmodel is used to simulate the undrained triaxial
tests of clayey rock. Comparisons between numerical simula-
tions and experimental data show that the proposed model
can characterize the strain hardening, strain softening, and
plastic flow of clayey rock very well.

Further experimental studies are necessary to obtain
more data for a better understanding of the plastic and
damage mechanical behavior of clayey rock, especially
when some parameters in the proposed model have strong
dependence on the confining pressure. In the future, the
proposed model will be extended to consider the effect of
confining pressure.

Appendix

Derivatives of Yield Function and
Potential Function

Numerical implementation of the backward Euler algorithm
requires the first derivative of yield and potential functions
and the second derivative of potential function.

The first derivative of the yield function with respect to
stress is

a = ∂F
∂σ = C1′

∂σm
∂σ + C2′

∂�σ
∂σ + C3′

∂J3
∂σ , ðA:1Þ

where C1′, C2′, C3′, ∂σm/∂σ, ∂�σ/∂σ, and ∂J3/∂σ are defined
as follows:

C1′ =
∂F
∂σm

= sin ϕ,

∂σm
∂σ =

1
3
1, 1, 1, 0, 0, 0½ �T,

C2′ =
∂F
∂�σ

−
tan 3θ

�σ

∂F
∂θ

= α′ K ′ − tan 3θ
dK ′
dθ

 !
,

∂�σ
∂σ =

1
2�σ

sx, sy, sz , 2τxy , 2τxz , 2τyz
	 
T,

C3′ = −
ffiffiffi
3

p

2 cos 3θ�σ3
∂F
∂θ

= α′ −
ffiffiffi
3

p

2 cos 3θ�σ2
dK ′
dθ

 !
,

∂J3
∂σ =

sysz − τ2yz ,

sxsz − τ2xz ,

sxsy − τ2xy,

2 τyzτxz − szτxy
� �

,

2 τxyτyz − syτxz
� �

,

2 τxzτxy − sxτyz
� �

,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

+
�σ2

3

1,

1,

1,

0,

0,

0,

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ðA:2Þ

where

α′ = �σK ′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2K ′2 +m2c2 cos2ϕ

q ,

dK ′/dθ =
−3�B cos 3θ,  θj j > θT,

−sin θ −
1ffiffiffi
3

p sin ϕ cos θ,  θj j ≤ θT:

8><
>:

ðA:3Þ

The first derivative of potential function with respect
to stress, denoted by vector b, is similar to that of the
yield function ∂F/∂σ and can be obtained by replacing
ϕ in the formula of K ′ðθÞ, C1, C2, C3, α′, and dK ′/dθ
with φ:

b = ∂G
∂σ = C1

∂σm
∂σ + C2

∂�σ
∂σ + C3

∂J3
∂σ , ðA:4Þ

where C1 = ∂G/∂σm, C2 = ∂G/∂�σ − ðtan 3θ/�σÞð∂G/∂θÞ and
C3 = −ð ffiffiffi

3
p

/2 cos 3θ�σ3Þð∂G/∂θÞ. They are simplified to be

C1 = sin φ, ðA:5Þ

C2 = αCmc
2 = α K ′ − tan 3θ

dK ′
dθ

 !
,

C3 = αCmc
3 = α −

ffiffiffi
3

p

2 cos 3θ�σ2
dK ′
dθ

 !
,

ðA:6Þ

where α = �σK ′/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2K ′2 +m2c2 cos2φ

q
.

The second derivative of the plastic potential function is
determined by

∂b
∂σ =

∂2G
∂σ2 =

∂C2
∂σ

∂�σ
∂σ + C2

∂2�σ
∂σ2 +

∂C3
∂σ

∂J3
∂σ + C3

∂2 J3
∂σ2 , ðA:7Þ

where ∂C2/∂σ = αð∂Cmc
2 /∂σÞ + Cmc

2 ð∂α/∂σÞ and ∂C3/∂σ = α
ð∂Cmc

3 /∂σÞ + Cmc
3 ð∂α/∂σÞ. ∂Cmc

2 /∂σ, ∂Cmc
3 /∂σ,∂α/∂σ, ∂2�σ/∂

σ2, and ∂2 J3/∂σ2 are defined as follows:
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where ∂θ/∂σ = −
ffiffiffi
3

p
/2�σ3 cos 3θð∂J3/∂σ − ð3J3/�σÞð∂�σ/∂σÞÞ.

In the special cases when jθj = 300, C2, C3, ∂θ/∂σ, ∂α/∂σ,
∂C2/∂σ, and ∂C3/∂σ become infinite, which makes numerical
implementation difficult. These singularities can be dealt
with appropriately through setting the values of C2, C3, ∂θ/
∂σ, ∂α/∂σ, ∂C2/∂σ, and ∂C3/∂σ as zero.
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