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ABSTRACT
Under the long-term effect of high stress, the stability problem caused by
the time-dependent deformation of brittle surrounding rock in deep engin-
eering is becoming more and more prominent. The accurate description of
the effectiveness of brittle rock is an important basis for the prediction of
mechanical response and the stability evaluation of surrounding rock in
deep engineering. To describe the accelerated time-dependent deform-
ation behavior of brittle rock, a Newtonian body with non-constant param-
eters considering the effects of stress state is proposed. Combined with
the improved Burgers model, a viscoelastic model with non-constant
parameters of brittle rock is developed. The effects of time, delay coeffi-
cient, and stress level on the viscosity coefficient, as well as the influence
of delay coefficient and initial viscosity coefficient on the accelerated time-
dependent deformation, are examined. The results show that (1) the viscos-
ity coefficient decreases with time and increases with the delay coefficient,
while the attenuation rate increases; (2) the viscosity coefficient decreases
with increasing stress level, and its attenuation rate increases with time; (3)
with the increase of the delay coefficient, the nonlinear characteristics of
the accelerated phase of the rock time-dependent deformation curve
become more and more obvious; and (4) as the initial viscosity coefficient
increases, the nonlinear characteristics of the accelerated phase of the
time-dependent deformation curve become less and less obvious. The
above laws fully reflect the evolutionary law of the nonlinear time-depend-
ent deformation of rock. By comparing the results of the marble creep test
with theoretical predictions, we found that when the stress limit is
exceeded, the established model can well describe the initial attenuation,
steady state, and accelerated characteristics of the rock time-dependent
deformation curve, thus verifying the ability of the proposed model to
describe the accelerated creep behavior, as well as the overall rationality of
the model.
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1. Introduction

Following the excavation and support of a deep underground engineering project, the surrounding rock
suffers from hysteresis along with continuous deformation and destruction. These phenomena reflect the
time-dependent mechanical behavior and properties of rock under high stress. Existing research results
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have primarily focused on the large deformation of weak rock rheology, while Martin and Chandler
(1994), Read et al. (1998), and Szczepanik et al. (2003) found that hard rock under high stress also has
significant time-dependent properties. As the scale of construction projects continues to increase and the
environmental conditions tend to become more severe, the engineering problems caused by the time-
dependent properties of the brittle rock become more and more prominent. In the Jinping II
Hydropower Station of China project, after 150 days of excavating the diversion tunnel, the damage zone
depth of the rock surrounding the excavation increased by 1.3m (Feng et al., 2016). The Jinping auxiliary
tunnel is supported by the system of spray anchoring. After nearly 10 years of operation, time-dependent
damage of the surrounding rock is still occurring. Therefore, as a large number of deep underground
engineering projects are completed and begin operation, the long-term safety state evolution, evaluation,
and prediction of engineering under high geostress conditions are key issues in the attempt to ensure
operational safety, and there is an urgent need to accurately describe the time-dependent mechanical
behavior of hard and brittle rock under high stress conditions.

In the field of rock mechanics, there are many constitutive models specifically used to describe the
rheological behavior of soft rock, but in general they can be grouped into two categories: either the
empirical rheological constitutive model or the component combination rheological model. The rock
empirical rheological constitutive model can only reflect the rheological mechanical properties of rock
under specific stress paths or stress states, and does not have universal applicability for different rock
types or engineering projects. The component combination rheological model is obtained by series and
parallel connection of elastic, plastic, and viscous mechanical elements (i.e., the Hooke body, Saint
Venant body, and Newtonian body) in different forms, and corresponding creep and relaxation equations
can be obtained under specific stress and strain conditions. Since the component combination rheo-
logical model has a simple concept and a clear physical meaning, it can comprehensively reflect various
rheological properties such as creep, relaxation, and elastic after-effect. Therefore, this type of model has
been widely used. Representative component combination rheological models include the Maxwell
model, Kelvin model, Kelvin-Voigt model, Burgers model, Bingham model, and Nishihara model.

However, since traditional component combination models are composed of linear components, they
cannot describe the accelerated creep phase of the rock. To this end, scientists have conducted extensive
and in-depth research on the theory of nonlinear rock rheology, and have achieved many meaningful
results. Chan et al. (1992, 1994, 1996) and Fossum et al. (1993) introduced continuous damage mechanics
into the rheological analysis of rock salt, pointing out that the creep caused by rock salt damage accu-
mulates from the transitional creep stage to the accelerated creep phase, and then proposing a rock salt
creep damage fracture coupling model. Boukharov et al. (1995) proposed a viscous damping element
with a certain mass and a finite damping column length to simulate the tertiary creep of rock, and it was
proved that this model can be used to describe the nonlinear creep of brittle crystalline rock. Dashnor
et al. (2005) used a meso-damage mechanics theory to establish a three-stage creep rheological model
that describes the long-term properties of natural gypsum rock. Fabre and Pellet (2006) believe that there
is a certain stress threshold switch between steady-state creep and accelerated creep. When the load
stress is less than the stress threshold, the rock only exhibits the initial creep phase, and when the load
stress is greater than the stress threshold, the steady state and accelerated creep phases occur. Sterpi
and Gioda (2009) established a rock creep model considering viscoelasticity and viscoplasticity, which
also took into account the effects of accelerated creep, including progressive mechanical damage domi-
nated by cumulative viscoplastic strain. Nedjar and Roy (2013) used a continuous damage mechanics
method to include a damage factor in the creep model to describe the accelerated creep phase. Barla
et al. (2012) and Fahimifar et al. (2015), respectively proposed nonlinear rheological models and visco-
plastic models to describe the accelerated creep phase. It can be seen that the current rheological consti-
tutive models that can describe the tertiary stage or the accelerated creep phase are mostly for soft rock;
the related models specifically for hard and brittle rock are rare.

During the creep deformation process of rock under high stress, the internal cracking of the rock ini-
tiates, expands, and causes damage, and with the accumulation of damage, the rheological mechanical
properties of the rock also change, and the mechanical parameters in the rheological constitutive model
change from constant to non-constant (Zhang et al., 2016, 2018). Therefore, if the rock rheological mech-
anical parameters are regarded as non-constant parameters and used to characterize the damage degrad-
ation process of the rock, the time-dependent characteristics of the rock mass will be more directly and
objectively reflected. Gioda (1981) first studied the nonlinear properties of rock materials and concluded
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that the viscosity coefficient g should be a function of time and independent of stress levels.
Subsequently, Vyalov (1986) proposed a modified Bingham’s law considering the non-linear relationship
between flow rate and stress based on the assumption that the isochronal stress–strain curves are similar,
and changed the viscosity coefficient of the “viscous pot” in the Bingham model into a nonlinear param-
eter, thereby deducing the corresponding nonlinear creep constitutive model. Cristescu (1987, 1993)
believed that viscosity coefficient is not constant but dependent possibly on stress, strain and damage
history. And the viscosity coefficient of salt rock is generally mainly related to stress, other variables such
as, for instance, strain, damage, humidity and temperature may also be involved, if necessary.

In recent years, viscosity coefficient is considered to be a function of the accumulation of damage. Liu
et al. (2016) and Tang et al. (2018) respectively studied the accelerated creep phase of soft coal and salt
rock and concluded that the relationship between viscosity coefficient and time complies with the law of
exponential attenuate, and the attenuation index is the damage time factor. Zhao et al. (2018) proposed
that the viscous coefficient can be expressed as an exponential function based on the creep test results
of shale, the exponent of the function are related to the stress levels and cycle times. Wang et al. (2017)
assumed that the viscous coefficient can be a 2-parameter Weibull cumulative distribution function based
on the triaxial compression creep test of granite according to fractal theory. Zhang et al. (2019) used an
exponential function to fit the accelerated creep phase of the multistage creep test of coal, and proposed
that the viscous coefficient is a time-dependent exponential function.

The most important characteristics of the time-dependent mechanical behavior of hard brittle rock are
closely related to the stress conditions. Under low stress, this behavior is characterized by attenuating
time-dependent deformation. As the stress rises, it changes to steady-state time-dependent deformation.
When the stress reaches the damaging level, it quickly enters the phase of accelerated time-dependent
deformation. Due to the brittle nature of the rock itself, its viscosity coefficient varies with stress level
and time, its accelerated rheological phase is generally much shorter than that of the soft rock that has
been studied, and its deformation rate is large. Current viscoelastic plastic models for soft rock have diffi-
culty describing these time-dependent mechanical properties of hard brittle rock well.

To address this issue, based on component theory, this study proposes utilizing the Newtonian body
with non-constant parameters (called the non-constant Newtonian body below) taking into account the
effect of the stress state to describe the accelerated time-dependent deformation behavior of hard brittle
rock. Based on the effects of the delay coefficient and time on the viscosity coefficient, as well as the
effects of the delay coefficient and initial viscosity coefficient on the accelerated time-dependent deform-
ation, in combination with the improved Burgers model, the viscoelastic model with non-constant param-
eters (called the non-constant viscoelastic model below) of hard brittle rock is established. This model
describes the three-phase time-dependent deformation law of initial deformation as well as the steady
state and accelerated phase. The corresponding creep and relaxation equations are derived and the
rationality of the established model is verified by comparing the theoretical results with the experimen-
tal results.

2. Viscoplastic model with non-constant parameters based on a Bingham body

Instantaneous failures and creep failures of hard-brittle rock are induced by initiation, propagation, aggre-
gation, and connection of internal cracks. When the stress exceeds the long-term strength, the bearing
capacity of rock under the same deformation rate declines over time, i.e., with the propagation of
internal cracks, the viscosity gradually decreases and the rock is damaged when the strain reaches the
critical value. Additionally, the aforementioned process is also influenced by stress level, i.e., different
stress levels result in differing amounts of time until rock failure: the higher the stress, the lower the vis-
cosity, and the earlier the failure. When the stress exceeds a certain value, the isochronous stress–strain
curve exhibits non-linearity, showing deformation at an accelerated rate. Although the generally applied
Bingham model can describe the viscoplastic characteristics of rock, it fails to describe the accelerated
creep phase. Therefore, based on the Bingham model, a non-constant Newtonian body taking into
account the influence of stress state is proposed, as shown in Figure 1.

According to the characteristics of the strain-time curve during the accelerated creep phase of the
test, the function relationship between strain and time is as follows:

eðtÞ ¼ ðAt þ Bt3Þðr�rsÞ, (1)
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From the mathematical point of view, this function can describe the accelerated change characteristics
of the curve, and its corresponding stress equation is:

r ¼ ðð1=AÞ=ð1þ 3ðB=AÞt2ÞÞe0 þ rs, (2)

where A and B are parameters related to viscosity coefficient, so

gB ¼ ð1=AÞ=ð1þ 3ðB=AÞt2Þ, (3)

When t ¼ 0, gB0 ¼ 1=A: Furthermore, HðrÞagB ¼ B=A: So, the viscosity coefficient (gB) of the Bingham
body is calculated as follows:

gB ¼ gB0

1þ 3HðrÞagB t2
, (4)

HðrÞ ¼
0 r � rsr�rs
1� rs

r>rs :

(
(5)

where gB0 denotes the initial Bingham viscosity coefficient, in units of MPa,�t (t denotes the unit of time);
t refers to time, in units of hour, short for h; agB is the delay coefficient of the Bingham viscosity coeffi-
cient, in units of (1/t2); r is the stress level applied to rock; and rs refers to the stress level corresponding
to the long-term rock strength. At the same time, it also represents the threshold value of the stress level
when rock begins to exhibit rheological behavior at an accelerated rate. When r�rs, the stress on the
rock is less than the long-term strength and the rock fails to show rheological behavior at an accelerated
rate. In this case, the viscosity coefficient of the Bingham body is gB0. When r> rs, the stress on the rock
is greater than the long-term strength, and the rock is likely to exhibit rheological behavior at an acceler-
ated rate. In this context, the viscosity coefficient of the Bingham body is gB. In order to determine the
influences of time and stress on the viscosity coefficient, the influences of the parameters agB and r on
the viscosity coefficient are explored.

For the case of a constant gB0 and r and a changing agB , the change in viscosity coefficient gB with
time is as displayed in Figure 2. It can be seen that gB decreases with time due to crack propagation.
Moreover, the value of the parameter agB reflects the rate of decrease of the viscosity coefficient gB. With
the increase of agB , the attenuation of gB increases.

Under constant gB0 and agB , the change in viscosity coefficient gB with stress level r over time is
shown in Figure 3. It can be seen that when an instantaneous load is applied to brittle rock, the
Bingham viscosity coefficient gB0 of the rock is independent of the magnitude of the load, i.e., under dif-
ferent stress levels, brittle rock exhibits the same initial viscosity coefficient. At a certain time after load-
ing, the viscosity coefficient of brittle rock will decrease with increasing stress level and the attenuation
rate of the viscosity coefficient of the brittle rock will increase with time. This indicates that the damping
of brittle rock subjected to accelerated deformation under high stress decreases.

The one-dimensional constitutive equation of the non-constant Bingham model is as follows:

r ¼ gBe0 þ rs ¼ gB0

1þ 3HðrÞagB t2
e0 þ rs, (6)

where rs represents long-term strength of rock. The long-term strength is determined by applying a sin-
gle-stage constant load to the rock at different stress levels until the rock is finally destroyed, and then
taking the minimum value of the load that is sufficiently long before the damage as the long-
term strength.

Therefore, in a constant stress state, the time-dependent deformation equation of rock can be
expressed as follows:

Figure 1. Bingham body with non-constant parameters (called non-constant Binghambody).
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e ¼ t þ HðrÞagB t3
gB0

ðr�rsÞ: (7)

Figure 4 shows the effect of the delay coefficient agB and initial viscosity coefficient gB0 on the time-
dependent deformation curve in the acceleration phase. It can be seen that under a given initial strain,
when gB0 and r are constant, and agB changes independently, the deformation will accelerate as time
increases, which fully reflects the nonlinear time-dependent deformation evolution law of the rock. As agB
increases, the nonlinear characteristics of the time-dependent deformation curve in the acceleration
phase becomes more and more pronounced, as shown in Figure 4(a). When agB and r are constant, as
the parameter gB0 increases, the nonlinear characteristics of the time-dependent deformation curve in
the acceleration phase become gradually weaker, and the nonlinear acceleration time-dependent deform-
ation characteristic of the rock becomes less apparent, as shown in Figure 4(b).

3. Viscoelastic-plastic model with non-constant parameters

Through the aforementioned analysis, the non-constant Bingham model is applicable to the description
of the viscoplastic behavior of hard brittle rock. In addition to describing the viscoelastic behavior before
the accelerated deformation stage, the Burgers viscoelastic model is introduced here. For brittle rock,
when the stress on rock masses is greater than a certain value, it mainly exhibits steady-state time-
dependent deformation characteristics; when it is less than this value, it exhibits attenuation deformation
characteristics. Considering this, a brittle component is introduced to modify the Burgers model (Shen,
2003). The brittle component is primarily used to control the effect of the viscous component in a
Maxwell body. Here, we define rd as the threshold for the failure of the brittle component. When r< rd,
the brittle component plays its role as a rigid body. Moreover, no deformation appears in the loop of the
brittle and viscous components and the Maxwell body does not come into effect. Therefore, the Burgers
model is simplified into a Kelvin model with three parameters to describe the creep at an attenuated

Figure 3. Change in viscosity coefficient with stress.

Figure 2. Change in viscosity coefficient with time.
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rate. When r�rd, the brittle component is fractured and fails and does not bear any stress. The deform-
ation in the loop of the brittle component implies viscous deformation, as shown in component assembly
b of Figure 5. The viscoelastic model presented here is the Burgers model that considers the
stress threshold.

Based on the assumption of a constant bulk modulus, the one-dimensional expression of the conven-
tional Burgers model is given by

eðtÞ ¼ 1
3GM

þ 1
9K

þ t
3gM

þ 1
3GK

1� exp �GK

gK
t

 ! ! !
r0, (8)

where eð�Þ represents the one-dimensional strain; K, GM, gM, GK, and gK are the bulk modulus of the
Burgers model, shear modulus of the Maxwell body, viscosity of the Maxwell body, and shear modulus
and viscosity coefficient of the Kelvin body, respectively. The three-dimensional (3D) creep model can be
expressed as follows:

eijðtÞ ¼ 1
2GM

þ t
2gM

þ 1
2GK

1� exp �GK

gK
t

 ! ! !
sij þ 1

9K
rkkdij, (9)

where eijð�Þ represents the 3D strain and dij is the Kronecher symbol.
The creep equation of the model in the direction of deviatoric stress is expressed as follows:

eijðtÞ ¼ 1
2GM

þ t
2gM

þ 1
2GK

1� exp �GK

gK
t

 ! ! !
sij , (10)

where eijð�Þ represents the 3D deviatoric strain and sij is the component of the 3-D deviatoric
strain tensor.

Figure 4. Effects of the delay coefficient and initial viscosity coefficient on the time-dependent deformation curve in the acceler-
ation phase: (a) effect of delay coefficientagB ; (b) effect of initial viscosity coefficient gB0:

Figure 5. Viscoelastic-plastic model with non-constant parameters (called the non-constant viscoelastic-plastic model below) for
brittle rock and related parameters; (a) Maxwell elastic component; (b) visco-brittle body; (c) Kelvin body; (d): Bingham body.
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In 3D stress states, the yield approach index (YAI) is adopted to express the variable r, namely, r¼ 1
– YAI (Zhang et al., 2011). Therefore, the Burgers model considering the stress threshold can be
expressed as follows.

When r¼ rd, Formula (9) is transformed to:

eijðtÞ ¼ 1
2GM

þ 1
2GK

1� exp �GK

gK
t

 ! ! !
sij þ 1

9K
rkkdij, (11)

When r� rd, Formula (9) is applied.
By combining the non-constant Bingham model with the Burgers model considering the stress thresh-

old, a new model called the non-constant viscoelastic-plastic model of brittle rock is proposed here, as
illustrated in Figure 5. This model can fully describe three-stage, time-dependent mechanical behavior.
This model is comprised of four parts: a Maxwell elastic component, a visco-brittle body, a Kelvin body,
and a non-constant Bingham body.

1. When r < rd

Under one-dimensional stress states, the one-dimensional stress and strain expressions of the non-con-
stant viscoelastic-plastic model are as follows:

e ¼ ea þ ec, (12)

r ¼ ra ¼ rc, (13)

ea ¼ ra
GM

¼ r
GM

, (14)

ec ¼ rc
GK

� gK

GK
e0c ¼ r

GK
� gK

GK
e0c, (15)

where ra and ea refer to the stress and strain on the elastic components in the Maxwell body; rc and ec
denote the stress and strain on the Kelvin body.

Based on Formulae (12)–(15), the constitutive equation of the non-constant viscoelastic-plastic model
can be obtained:

gK

GK
e0 þ e ¼ gK

GMGK
r0 þ GM þ GK

GMGK
r: (16)

(2) When rd � r < rs

The one-dimensional stress and strain expressions of the non-constant viscoelastic-plastic model are as
follows:

e ¼ ea þ eb þ ec, (17)

r ¼ ra ¼ rb ¼ rc, (18)

where rb and eb refer to the stress and strain on the visco-brittle body.
It can be also seen that the constitutive equation of the viscous components in a visco-brittle body

can be expressed as follows:

gMe0b ¼ rb ¼ r, (19)

Therefore, by simultaneously solving Formulae (14) and (15), and (17)–(19), the constitutive equation
of the non-constant viscoelastic-plastic model can be attained:

gMgK

GK
e00 þ gMe0 ¼ gKgM

GMGK
r00 þ gMGK þ GMgK þ GMgM

GMGK

 !
r0 þ r: (20)
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(3) When r � rs

The one-dimensional stress and strain expressions of the non-constant viscoelastic-plastic model are as
follows:

e ¼ ea þ eb þ ec þ ed, (21)

r ¼ ra ¼ rb ¼ rc ¼ rd, (22)

According to Formulae (10, 14, 15, 19, 21), and (22), it can be seen that:

e00 þ GK

gK
e0 ¼ 1

GM
r00 þ gM þ gK

gMgK
þ GK

GMgK
þ 1
gB

 !
r0 þ GK

gMgK
rþ GK

gK
� g0B

gB

 !
ðr�rsÞ

gB
: (23)

Overall, the one-dimensional constitutive equation of the non-constant viscoelastic-plastic model for
brittle rock is expressed as follows:

gK

GK
e0 þ e ¼ gK

GMGK
r0 þ GM þ GK

GMGK
r, r<rd

gMgK

GK
e00 þ gMe0 ¼ gKgM

GMGK
r00þ

gMGK þ GMgK þ GMgM

GMGK

 !
r0 þ r, rd � r<rs,

e00 þ GK

gK
e0 ¼ 1

GM
r00 þ gM þ gK

gMgK
þ GK

GMgK
þ 1
gB

 !
r0þ

GK

gMgK
rþ GK

gK
� g0B

gB

 !
ðr�rsÞ

gB
, r � rs

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(24)

It is worth noting that e in the aforementioned formulae refers to the strain, excluding the compo-
nent of strain generated due to the bulk modulus, i.e., e ¼ e��r=ð9KÞ, where, e� represents the total
strain. To calculate the total strain, the strain generated due to the bulk modulus should be added.
Therefore, e is replaced with the component eij of the deviatoric strain tensor, while the component
sij of the deviatoric strain tensor is used to replace r. By combining the volumetric strain em calcu-
lated from the volumetric stress rm, i.e., em ¼ rm=ð3KÞ, the constitutive equation in a 3D stress state
can be obtained:

gK

GK
e0 ij þ eij ¼ gK

GMGK
s0 ij þ GM þ GK

GMGK
sij, r<rd

gMgK

GK
e00 ij þ gMe0 ij ¼ gKgM

GMGK
s00 ij þ gMGK þ GMgK þ GMgM

GMGK

 !
s0 ij þ sij, rd � r<rs

e00 ij þ GK

gK
e0 ij ¼ 1

GM
s00 ij þ gM þ gK

gMgK
þ GK

GMgK
þ 1
gB

 !
s0 ij þ GK

gMgK
sij þ GK

gK
� g0B

gB

 !
ðsij�rsÞ

gB
, r � rs

em ¼ rm
3K

:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(25)

4. Non-constant viscoelastic-plastic creep equation

Under the creep condition, the load applied to the rock remains constant, i.e., r¼r0. When r0 < rd, e(t)
¼ 0 at t¼ 0; therefore, the integral is carried out based on the first equation of Formula (24) and the
part of the strain generated due to the bulk modulus is taken into account. In this way, Formula (26) can
be obtained:
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eðtÞ ¼ r0
9K

þ r0
3GM

þ r0
3GK

1� exp �GK

gK
t

 ! !
: (26)

Differentiating twice on both sides of Formula (26) yields

e0ðtÞ ¼ r0
3gK

exp �GK

gK
t

 !
, (27)

e00ðtÞ ¼ � GK

3ðgKÞ2 exp �GK

gK
t

 !
r0: (28)

It can be seen from Formulae (27) and (28) that at the creep rate of e0 � 0 and the creep acceleration
of e00 � 0, the model is subjected to instantaneous elastic deformation ðr0=ð9KÞ þ r0=ð3GMÞÞ (instantan-
eous elastic recovery strain under unloading) and creep deformation under increasing loading)
ðr0=ð3GKÞ½1� exp ð�GKt=gKÞ�Þ (elastic after-effect strain under unloading). On the condition that time
tends to infinity, the final deformation of materials shows a fixed value (r0=ð9KÞ þ r0=ð3GMÞ þ r0=ð3GKÞ).
In this case, deformation is unrelated to time, i.e., the system tends toward stable deformation.
Additionally, with time, the creep rate e0 constantly declines from r0=ð3gKÞ, and when time approaches
infinity e0ð1Þ ¼ 0: Additionally, the creep acceleration e00 constantly increases from �GKr0=3ðgKÞ2 with
time, eventually becoming e00ð1Þ ¼ 0: Therefore, the creep equation of the model is simplified into the
creep equation of the Kelvin model to describe the characteristics of viscoelastic creep of brittle rock at
an attenuated rate, i.e., the creep deformation reflected by the model is stable.

When rd � r0 < rs, Formula (29) can be obtained through the Laplace transform:

eðtÞ ¼ r0
9K

þ r0
3GM

þ r0
3gM

t þ r0
3GK

1� exp �GK

gK
t

 ! !
: (29)

Differentiating both sides of Formula (29) twice yields

e0ðtÞ ¼ r0
3gM

þ r0
3gK

exp �GK

gK
t

 !
, (30)

e00ðtÞ ¼ � GK

3ðgKÞ2 exp �GK

gK
t

 !
r0: (31)

Based on Formulae (30) and (31), the creep rate is e0>0, while the creep acceleration is e00 � 0: In this
context, the creep rate e0 constantly decreases from ðr0=ð3gMÞ þ r0=ð3gKÞÞ with time. When time
approaches infinity, e0ð1Þ ¼ r0=ð3gMÞ, i.e., the final creep rate of the model is stable. Additionally, the
creep acceleration e00 constantly rises from �GKr0=ð3ðgKÞ2Þ with time, eventually becoming e00ð1Þ ¼ 0: In
this case, the creep equation of the model is equivalent to that of the Burgers model, which is used to
describe the characteristics of the viscoelastic steady creep of brittle rock, i.e., the model reflects metasta-
ble creep deformation.

On the condition that the applied constant stress is r0 � rs, Formula (32) can be obtained through
the Laplace transform:

eðtÞ ¼ r0
9K

þ r0
3GM

þ r0
3gM

t þ r0
3GK

1� exp �GK

gK
t

 ! !
þ t þ Hðr0ÞagB t3

gB0
ðr0�rsÞ: (32)

Differentiating both sides of Formula (32) yields

e0ðtÞ ¼ r0
3gM

þ r0
3gK

exp �GK

gK
t

 !
þ 1þ 3Hðr0ÞagB t2

gB0
ðr0�rsÞ, (33)

e00ðtÞ ¼ � GK

3ðgKÞ2 exp �GK

gK
t

 !
r0 þ

6Hðr0ÞagB t
gB0

ðr0�rsÞ: (34)

It can be seen from Formulae (33) and (34) that when Hðr0Þ ¼ 0 or agB ¼ 0, the creep rate is e0>0, while
the creep acceleration is e00 � 0: According to the aforementioned analysis, it can be seen that in that
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case the model describes initial and steady-state creep. When Hðr0Þ 6¼ 0 and agB 6¼ 0, the creep rate is
e0>0 while e00 is probably less than, equal to, or greater than 0, i.e., in this context, the model can
describe the 3 complete stages of creep, including initial creep, steady-state creep, and accelerated creep,
as shown in Figure 6. As can be seen from Figure 6, this model can well describe the full-stage creep
characteristics of hard brittle rock under high stress, especially non-constant Newtonian body is added to
effectively describe the characteristics of the accelerated creep phase.

Thus, Formulae (26, 29), and (32) constitute the creep equation under a one-dimensional stress state.
The 3-D creep equation of the non-constant viscoelastic-plastic model for brittle rock becomes

eijðtÞ ¼

1
2GM

þ 1
2GK

1� exp �GK

gK
t

 ! ! !
ðsijÞ0 þ

1
9K

ðrkkÞ0dij , r<rd

1
2GM

þ t
2gM

þ 1
2GK

1� exp �GK

gK
t

 ! ! !
ðsijÞ0þ

1
9K

ðrkkÞ0dij , rd � r<rs

1
2GM

þ t
2gM

þ 1
2GK

1� exp �GK

gK
t

 ! ! !
ðsijÞ0þ

t þ Hðr0ÞagB t3
gB0

ððsijÞ0�rsÞ þ 1
9K

ðrkkÞ0dij , r � rs

:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(35)

where r0 refers to the stress level in the 3D stress state.

5. Non-constant viscoelastic-plastic relaxation equation

Based on the assumption of a constant bulk modulus, the stress generated due to the bulk modulus is
not taken into account during the analysis of the relaxation equation in this and subsequent sections.
For the non-constant viscoelastic-plastic model for brittle rock, when r0<rd, the constant strain e ¼ e0 is
applied, i.e., e0ðtÞ ¼ 0, and therefore r ¼ r0 at t¼ 0. Subsequently, the condition is substituted into the
first equation in Formula (24) and Laplace transformation is carried out. Based on the Laplace normal
transform, it can be seen that

e0
s
¼ P1ð�r�r0Þ þ P0�r, (36)

P0 ¼ GM þ GK

GMGK
, (37)

P1 ¼ gK

GMGK
, (38)

where �r refers to the Laplace transform function of stress and s refers to the variable in the image func-
tion of the Laplace transform.

Figure 6. Creep characteristics of the viscoelastic-plastic rheological model.
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By calculating the aforementioned formulae, Formula (37) can be acquired:

�r ¼ e0
P1s2 þ P0s

þ P1
P1sþ P0

r0 ¼ 1
sðsþ P0=P1Þ
� �

e0
P1

þ 1
sþ P0=P1

� �
r0: (39)

Inverse Laplace transformation of Formula (39) gives

L�1 1
sðsþ P0=P1Þ
� �

¼ P1
P0

1� exp � P0
P1

t

� �� �
, (40)

L�1 1
sþ P0=P1

� �
¼ exp � P0

P1
t

� �
, (41)

where L�1(�) expresses the inverse Laplace transform.
Therefore, the relaxation equation in that stress state can be obtained:

rðtÞ ¼ e0
P0

þ r0 � e0
P0

� �
exp � P0

P1
t

� �
: (42)

Substituting P0 and P1 into Formula (42) yields

rðtÞ ¼ GMGK

GM þ GK
e0 þ r0 � GMGK

GM þ GK
e0

� �
exp �GM þ GK

gK
t

 !
: (43)

The stress relaxation of the model equation begins at r0, progressively decreases with time in a nega-
tive exponential manner, and finally stabilizes at a constant value, i.e., GMGKe0=ðGM þ GKÞ: It is worth not-
ing that the stress induced by the bulk modulus is not considered, i.e., r0 ¼ r��9Ke0, where r� refers to
the total stress. In this case, the stress finally relaxes to ðGMGKe0=ðGM þ GKÞ þ 9Ke0Þ:

When rd � r0<rs, the constant strain e ¼ e0 is applied, i.e., e0ðtÞ ¼ e00ðtÞ ¼ 0, so that r ¼ r0 and
r0ðtÞ ¼ r00ðtÞ ¼ 0 at t ¼ 0: Substituting this condition into the second equation in Formula (24) and con-
ducting Laplace normal transformation yields

e0ðq1 þ q2sÞ ¼ �rð1þ P1sþ P2s2Þ, (44)

P1 ¼ gMGK þ GMgK þ GMgM

GMGK
, (45)

P2 ¼ gKgM

GMGK
, (46)

q1 ¼ gM, (47)

q2 ¼ gMgK

GK
: (48)

By simultaneously calculating the above formulae, the following can be derived:

�r ¼ q1 þ q2s
1þ P1sþ P2s2

e0 ¼ q1
1þ P1sþ P2s2

þ q2s
1þ P1sþ P2s2

¼ 1
P2

q1
ðsþ aÞðsþ bÞ þ

q2s
ðsþ aÞðsþ bÞ

� � , (49)

1þ P1sþ P2s2 ¼ ðsþ aÞðsþ bÞP2, (50)

a ¼ 1
2P2

ðP1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P21�4P2

q
Þ, (51)

b ¼ 1
2P2

ðP1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P21�4P2

q
Þ: (52)

Inverse Laplace transformation of Formula (49) yields

L�1 1
ðsþ aÞðsþ bÞ
� �

¼ 1
�aþ b

ðe�at�e�btÞ, (53)
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L�1 s
ðsþ aÞðsþ bÞ
� �

¼ 1
�aþ b

ð�ae�at þ be�btÞ, (54)

Therefore, the relaxation equation in the stress state can be obtained:

rðtÞ ¼ e0
b� a

�
ð�q1 þ aq2Þe�at þ ðq1 � bq2Þe�bt

�
: (55)

By substituting the values of a and b, the following formulae are obtained:

rðtÞ ¼ e0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P21�4P2

p �q1 þ P1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P21�4P2

p
2P2

q2

 !
exp � P1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P21�4P2

p
2P2

t

 ! 

þ q1 � P1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P21�4P2

p
2P2

q2

 !
exp � P1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P21�4P2

p
2P2

t

 !!
: (56)

where the expressions of P1, P2, q1, and q2 are shown in Formulae (45)–(48).
According to Formula (56), r0 ¼ q2e0=P2 ¼ GKe0, which is the initial stress at t¼ 0. It is worth noting

that the stress borne by the bulk modulus is not taken into account, i.e., r0 ¼ r��9Ke0, where r� refers
to the total stress. It can also be seen that if the stress borne by bulk modulus is considered, the stress
relaxation is nearly equivalent to ð9Ke0Þ over time.

When r0 � rs, the applied constant strain e ¼ e0, i.e., e0ðtÞ ¼ e00ðtÞ ¼ 0, and thereforer ¼ r0 and
r0ð0Þ ¼ 0 at t¼ 0. By substituting this condition into the third equation of Formula (24) and performing
Laplace transformation according to the aforementioned method, the relaxation equation at that stress
state can be acquired. Additionally, it can be seen that, over time, the stress relaxation is nearly equiva-
lent to ð9Ke0 þ rsÞ, i.e., incomplete relaxation, which conforms to the characteristics of the rock materials
themselves. In a 3D stress state, the result can be deduced using a similar method based on the 3D con-
stitutive equation.

6. Model suitability test

In this study, the ability of the non-constant viscoelastic-plastic model to describe the time-dependent
deformation of hard brittle rock was tested based on the creep test results of Jinping marble. In the
model verification, the elastoplastic mechanical behavior of hard and brittle marble is described by the
hardening-softening constitutive model proposed by Huang et al. (2020). The elastoplastic mechanical
parameters of marble are shown in Table 1. The mechanical parameters of this model were first identi-
fied. Then, the step-by step loading numerical simulation test was conducted to obtain the curves of the
various stages of the time-dependent deformation of the marble, which could then be used to test the
ability of the model to describe the time-dependent deformation characteristics of rock under different
stress conditions.

In Table 1, Cpea, Cres, epv, c, /pea, /res, epv,/1, epv,/2, epv,w represent the peak cohesive stress, the residual
cohesive stress, the plastic volume strain corresponding to the starting point of residual cohesive stress,
the peak internal friction angle, the residual internal friction angle, the plastic volume strain correspond-
ing to peak internal friction angle, the plastic volume strain corresponding to the residual internal friction
angle, and the plastic volume strain corresponding to the peak expansion angle, respectively.

By using the non-linear least squares method based on the Levenberg-Marquardt (LM) algorithm, the
parameters of the proposed model were identified. This technique combines the Gauss-Newton method
and the gradient descent algorithm, thereby exhibiting the rapid convergence of the Gauss-Newton
method while overcoming the drawbacks of Newton’s method, i.e., failure to effectively overcome singu-
lar and non-positive definite matrices and having a strict requirement on initial point selection.
Additionally, the combined approach also exhibits the global searching characteristic of the gradient des-
cent algorithm, whose search velocity is faster than that of the gradient method owing to the application

Table 1. Mechanical parameters for the numerical simulation test.

Cpea (MPa) Cres (MPa) epv, c /pea (�) /res (
�) epv,/1 epv,/2 epv,w Tensile strength (MPa)

13.57 2.55 1.5e-3 50 40 1.5e-3 3.0e-3 5.1e-2 1.5
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of approximate second-order derivative information. Moreover, in this method, fewer parameters need to
be adjusted, thus avoiding the influence of human factors to some extent. Therefore, this method dem-
onstrates superiority in identifying parameters.

For rheological tests under multi-stage loading, the total load can be expressed as r ¼PN
m¼1 Drm:

According to the Boltzmann superposition principle, the strain etðXÞ at time t can be calculated as fol-
lows:

etðXÞ ¼
XN
m¼1

DrmJðt � tmÞ, (57)

where X represents the parameter vector of the rheological model and Drm denotes the stress increment
(Dr1 ¼ r1, at the first-stage load) for the mth load. Moreover, Jðt�tmÞ, tm, and N represent the creep
compliance related to the parametric variable X, the starting time of the mth load, and the times of
multi-stage loading at t, respectively. The objective function for identifying parameters can be calculated
according to the following formula:

fijðXÞ ¼
XtT
t¼t0

½etðXÞ�e exp ðtÞ�2: (58)

where e exp ðtÞ and tT represent the test value and total duration of the rheological test, respectively.
Based on the aforementioned objective function, the repeated iterative optimization was carried out

using the LM algorithm for parameter identification until the objective function satisfied the pre-
set allowable error limit. In this context, the calculation was ended to acquire the parameters.

Here, the results of the graded loading creep test for Jinping marble were adopted. Pore pressure was
also applied in this test, but no matter how the pore water pressure affects the rheological mechanical
properties of the rock, it has no effect on the rheological mechanical parameters of marble under differ-
ent conditions.

Based on the results of the creep test under multi-stage loading, the creep parameters obtained under
multi-stage loads were separately obtained and then averaged. The acquired creep parameters are listed
in Table 2. It can be seen that the rheological parameters acquired based on different rock samples
showed certain discrete properties while generally exhibiting a certain regularity. Under the same water
pressure, the instantaneous elastic parameters K and GM increased with confining pressure. Moreover, gM

also increased with confining pressure, while delay time (s ¼ gK=ðGKÞ) decreased with increasing confin-
ing pressure. These results indicate that the rheological capacity of brittle rock weakens with increasing
confining pressure.

Figure 7 shows the comparison of the calculated and experimental values of the time-dependent
deformation of marble. It can be seen that the calculated results agree well with the test results. The

Table 2. Results of parameter identification for the viscoelastic-plastic NRCM for marble.

Confining
pressure
(MPa)

Pore water
pressure
(MPa)

Stress
level
(MPa)

K
(GPa)

GM

(GPa)
GK

(GPa)
gM

(GPa�h)
gK

(GPa�h)
gB0

(GPa�h)
agB
(1/h2)

Residual
sum of
squares
(	10–8)

Correlation
coefficient

R

15 0 51 6.59 4.34 26.15 30,711.42 60.10 – – 5.36 0.96
73 10.81 7.12 5.31 3407.05 12.32 – – 4.18 0.99
99 8.28 5.45 2.05 3226.19 0.33 866.37 0.53 7.73 0.99

Mean 8.56 5.64 11.17 12,448.22 24.25 866.37 0.53 – –
15 5 35 3.84 2.53 8.10 6150.71 112.93 – – 15.66 0.98

55 7.97 5.25 17.09 4286.69 103.81 – – 2.25 0.99
73 5.88 3.87 13.95 3394.82 79.17 – – 2.05 0.99

Mean 5.90 3.88 13.05 4610.74 98.64 – – – –
25 5 48 6.71 4.42 69.57 32,794.95 56.35 – – 0.97 0.96

83 10.94 7.20 15.98 7711.46 22.52 – – 4.26 0.99
111 8.29 5.46 6.90 55,36.78 27.58 – – 103.32 0.98

Mean 8.65 5.69 30.82 15,347.73 35.48 – – – –
35 5 65 9.52 6.27 45.65 8226.91 262.38 – – 1.90 0.98

100 12.57 8.28 25.69 6082.43 86.26 – – 9.11 0.97
130 12.45 8.20 14.49 6222.39 70.25 – – 10.26 0.98

Mean 11.51 7.58 28.61 6843.91 139.63 – – – –
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maximum and minimum of the residual sums of squares were 1.03	 10�6 and 0.97	 10�8, respectively,
with correlation coefficients never less than 0.96. Figure 8 is the evolution curve of deformation with
time at q¼ 99MPa in Figure 7(a). The comparison of the theoretical and experimental values reveals that
the proposed model can describe the evolutionary characteristics of the three stages of time-dependent
deformation, i.e., initial attenuation, steady state, and accelerated time-dependent deformation.

Based on the mechanical parameters in Tables 1 and 2, a creep simulation test under multi-stage load-
ing was carried out on a cylindrical sample (diameter, 50mm; height, 100mm). We assigned 100.7 GPa�h
to gB0, 0.01/h2 to agB. During testing, a confining pressure of 10MPa was imposed and an axial load was

Figure 7. Comparison between the values obtained from the creep testing of marble and those from theoretical analysis: (a) Pc ¼
15MPa, Pi ¼ 0MPa; (b) Pc ¼ 15MPa, Pi ¼ 5MPa; (c) Pc ¼ 25MPa, Pi ¼ 5MPa; (d) Pc ¼ 35MPa, Pi ¼ 5MPa (Pc is confining pres-
sure; Pi is pore water pressure).

Figure 8. Comparison of test results with theoretical values at q¼ 99MPa in Figure 7(a).
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applied in a stepwise fashion, at 30, 50, 60, 70, and 80MPa. The creep stage lasted for 24 h under each
load, until the rock sample was damaged at an accelerated rate. Figure 9 shows the evolution axial strain
curve of the sample with time under different axial loads (as simulated). It can be seen that the proposed
model can reasonably describe the nonlinear rheological characteristics of brittle rock.

7. Conclusions

The deep underground engineering work required during large construction projects is undertaken in a
high geostress environment over an extended period of time, resulting in increasingly significant prob-
lems concerning the operational safety of engineering caused by the long-term mechanical responses of
the surrounding rock. To describe the rheological mechanical behavior of brittle rock under high geos-
tress, a non-constant viscoelastic-plastic model was proposed. The following conclusions are drawn:

1. The rheological mechanical behavior of hard brittle rock is related to the stress conditions. To describe
the influence of stress conditions on the viscoplastic behavior of rock, a non-constant Newtonian fluid
taking into consideration the influence of stress state was proposed. Moreover, the relationship between
the viscosity coefficient of the non-constant Bingham body and stress level was established. Analysis
revealed that the viscosity coefficient decreases with time, reflecting the law that the viscosity coefficient
of rock gradually decreases due to crack propagation. The viscosity coefficient decreases with increasing
stress level, a finding that can be used to describe the development of deformation in brittle rock at an
accelerated rate under the effect of high stress. The nonlinear characteristics of the time-dependent
deformation curves of rock become more and more significant with increasing viscosity coefficient. As
the initial viscosity coefficient increases, the nonlinear characteristics of the acceleration phase of the
time-dependent deformation curve become less and less obvious.

2. Under lower stress, brittle rock rapidly changes to an attenuated time-dependent deformation stage
after the initial stage. Steady-state time-dependent deformation behavior is only exhibited under
higher stress conditions. The proposed non-constant viscoelastic-plastic constitutive model can well
describe the attenuation behavior and steady-state behavior of rock under different stress conditions.

Notation

e strain
e0 creep rate

Figure 9. Changes in axial strain of the cylindrical sample with time under different axial loads calculated by the non-constant
viscoelastic-plastic model (data on the curve refer to axial load).
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e00 creep acceleration
e� total strain
e0 initial strain at t¼ 0
ea strain on the elastic components in the Maxwell body
eb strain on the visco-brittle body.
ec strain on the Kelvin body.
em volumetric strain
r stress
r0 stress rate
r00 stress acceleration
r� total stress
rs long-term rock strength
r0 initial stress at t¼ 0
ra stress on the elastic components in the Maxwell body
rb stress on the visco-brittle body
rc stress on the Kelvin body
rd threshold for the failure of the brittle component
ra stress on the elastic components in the Maxwell body
rb stress on the visco-brittle body
rm volumetric stress
�r Laplace transform function of stress
t time
A parameters related to viscosity coefficient, gB0 ¼ 1=A
B parameters related to viscosity coefficient, HðrÞagB ¼ B=A
gB viscosity coefficient of the Bingham body when r > rs
gB0 viscosity coefficient of the Bingham body when r � rs
gM viscosity coefficient of the Maxwell body
gK viscosity coefficient of the Kelvin body

HðrÞ HðrÞ ¼
0 r � rsr�rs
1� rs

r>rs

(

agB the delay coefficient of the Bingham viscosity coefficient
GM shear modulus of the Maxwell body
GK shear modulus of the Kelvin body
K bulk modulus of the Burgers model
eij strain tensor in three-dimensional coordinate system
sij the component of the 3D deviatoric strain tensor
rkk stress tensor invariant
dij Kronecker Delta
eij the 3D deviatoric strain

P1 P1 ¼ gMGKþGMgKþGMgM

GMGK

P2 P2 ¼ gKgM

GMGKP0P0 ¼ GMþGK

GMGK

s variable in the image function of the Laplace transform
L�1(�) inverse Laplace transform

q1 q1 ¼ gM

q2 q2 ¼ gMgK

GK

a a ¼ 1
2P2

P1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P21�4P2

p� �
b b ¼ 1

2P2
P1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P21�4P2

p� �
e natural logarithm in Laplace transform
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Cpea peak cohesive stress
Cres residual cohesive stress
epv, c plastic volume strain corresponding to the starting point of residual cohesive stress
/pea peak internal friction angle
/res residual internal friction angle
epv,/1 plastic volume strain corresponding to peak internal friction angle
epv,/2 plastic volume strain corresponding to the residual internal friction angle
epv,w plastic volume strain corresponding to the peak expansion angle
e exp ðtÞ test strain of the rheological test
etðXÞ strain at time t
Drm stress increment for the mth load
Jðt�tmÞ creep compliance related to the parametric variable X
tm starting time of the mth load
tT total duration of the rheological test
N times of multi-stage loading at t
fijðXÞ objective function for identifying parameters
Pi pore water pressure
Pc confining pressure
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