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Abstract
The NMM (numerical manifold method) has shown its ability to solve continuum and discontinuum engineering problems in the
same framework. In the present paper, the vector sum NMM (VSNMM) is proposed to investigate the stability of slopes. With
the (vector sum numerical manifold method) VSNMM, the FOSs (factors of safety) of slopes are obtained using the real stress
fields of the slopes. Compared with the limit equilibrium methods, the deformation and stress field of a slope can be obtained
using the VSNMM. Besides, the computational cost of the VSNMM is much less than that of the strength reduction numerical
manifold method (SRNMM), since only one elasto-plastic analysis is needed in the VSNMM, while a series of elasto-plastic
analyses is needed in the SRNMM. Based on the VSNMM, the stability analyses of two slopes including a homogeneous slope
and an inhomogeneous slope with three different materials are conducted. The numerical results based on the two slopes show
that the VSNMM can accurately calculate the FOSs of the slopes.
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Introduction

Stability analysis of slopes is still a very attractive topic in the
geotechnical engineering. To evaluate the stability of slopes,
several type of methods such as the limit analysis methods, the
limit equilibrium methods (LEMs), and the numerical
methods have been proposed (Chen 2003). However, the
LEMs and the numerical methods, to the best knowledge of
the authors, are most widely used.

Although the LEMs (Morgenstern and Price 1965; Sun et
al. 2017) including the Bishop method, the Morgenstern–
Price method, the Spence method, and the Sarma method are
simple to be used by geotechnical engineers, they suffer from
some drawbacks. For example, the sliding body of the slope is

assumed as a rigid body. Hence, the deformation of the slope
cannot be considered. Furthermore, in some LEMs the distri-
bution of internal forces between adjacent slices has to be
assumed (Griffiths and Lane 1999).

To avoid the drawbacks of the LEMs, many numerical
methods (Zienkiewicz and Taylor 2000; Zhuang et al. 2012;
Rabczuk et al. 2010; Yang et al. 2017, 2018a, c; Yang and
Zheng 2016, 2017; Xu et al. 2020; Wu et al. 2020) have been
proposed. The FEM (abbreviated form for the finite element
method) can be considered a representative. To investigate the
stability of slopes, the limit equilibrium concepts have been
implemented into the FEM (Fredlund and Scoular 1999). In
the limit equilibrium FEM, there is no need to slice the sliding
body. Furthermore, the stress field and deformation of the
sliding body of the slope can be easily obtained. However,
the meshes in the FEM have to be carefully deployed, since
the FE meshes have to match the physical meshes (material
interfaces, fracture faces, joints, and so on) (Yang et al. 2017).
For very complex problems, such as the soil-rock-mixtures
presented in (Chen et al. 2018, 2019; Yang et al.
2019d, 2019c, 2020a, 2020c), it is very difficult to avoid the
generation of poor quality meshes. Note that accuracy
assessed from some iso-parametric elements is very sensitive
to the quality of the FE meshes (Lee and Bathe 1993).
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Alternatively, the NMM (numerical manifold method) is
proposed to overcome the difficulty arising in the FEM (Shi
1991; Zheng and Yang, 2017; Yang et al. 2020b, 2020d). In
the NMM, there is no need for the mathematical meshes to
match the physical meshes. To be more specifically, regular
meshes which perform better than distorted meshes can con-
sistently be adopted. Additionally, the discontinuity can be
easily captured in the NMMwithout introducing any addition-
al functions, such as the Heaviside functions used in the
XFEM (Mohammadnejad and Khoei 2013). Due to these at-
tractive characteristics, the NMM has been proposed for many
different types of engineering problems (Wu and Wong
2012; Yang et al. 2016, 2018b, 2019a, 2019b). However,
application of the NMM for the analysis of slope stability is
still very limited.

In order to obtain the FOSs (factors of safety) of the slopes,
other techniques such as the strength reduction method (SRM)
(Matsui and San 1992; Zheng et al. 2002, 2005) and the vector
sum method (VSM) (Guo et al. 2011) should be implemented
into the numerical methods. In regard to the SRM, a series of
elasto-plastic analyses with a numerical method should be
conducted. Once the slope is exactly in a failure verge state,
the processes of elasto-plastic analysis are terminated, and the
FOS of the slope can be obtained. However, the elasto-plastic
analysis is usually time-consuming. Hence, the computational
cost of the SRM cannot be neglected. In regard to the VSM,
only one elasto-plastic analysis is needed. According to the
real/current stress field assessed from a numerical method, the
FOS of the slope can be calculated directly using the VSM.

In the present work, a vector sum numerical manifold
method (VSNMM) is proposed. The VSM is implemented
into the NMM to predict the FOSs of the slopes. Based on
the proposed VSNMM, stability analyses of two slopes in-
cluding a homogeneous slope and an inhomogeneous slope
with three materials are conducted. The results show that the
VSNMM can accurately calculate the FOSs of the slopes. The
proposed VSNMM deserves a further investigation.

Brief the numerical manifold method

Some concepts in the NMM

In this section, the basic concepts in the numerical manifold
method (NMM) are introduced, although they have been pre-
sented in many literature (Zheng and Xu 2014). For the con-
venience of description, we adopt Fig. 1 as an example.

There are two important cover systems (CSs) in the NMM,
which are mathematical CS and physical CS. The mathemat-
ical CS is usually generated from a series of mathematical
patches (MPs). A MP (such as the MP1 and the MP2) is gen-
erated through several rectangular meshes having a mutual
node. The physical CS is usually generated from a series of

physical patches (PPs). The PPs are obtained through slicing
the MPs with the physical meshes (PMs). Cutting MP2 using
PMs will yield PP2; cutting MP3 using PMs will yield PP3

and PP4. Note that a NMM node will be attached to a PP. For

example, GNP
2 is attached to PP2. The MEs (manifold ele-

ments) are the mutual parts for four neighboring PPs.
Over a ME, the global displacement function uh(x) can be

obtained using Eq. (1).

uh xð Þ ¼ ∑
4

k¼1
wk xð Þuk xð Þ ð1Þ

in which wk(x) and uk(x) separately represent the weight func-
tion and cover function.

Since rectangular meshes are used to form the MPs and the
mathematical CS, the shape function of the four-node quadri-
lateral element can then be conveniently adopted to construct
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Fig. 1 Some basic concepts in the NMM
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Fig. 2 A sketch for the potential sliding surface of a simple slope
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wk(x). Furthermore, to avoid the linear dependent problem,
constant is adopted to construct the uk(x). The formulation
for uh(x) can then be formulated as:

uh xð Þ ¼ Nd ð2Þ
in which d and N separately represent the vector of DOFs and
matrix of shape function.

The discretized form

In regard to elasto-plastic problems, the corresponding weak
form can be defined as

∫Ω δεð ÞTDepεdΩ ¼ ∫ΩδuTbdΩþ ∫Γtδu
TtdΓ; ð3Þ

in which δu represents the virtual displacement, Ω represents
the problem domain, b represents the body force, ε represents
the strain, Dep represents the elasto-plastic matrix, and t rep-
resents the specified traction defined on traction boundary Γt.

Substitution of Eq. (2) into Eq. (3), the system equations in
the discretized form will be obtained and expressed as:

Kd ¼ f ; ð4Þ
in which K and f are the global stiffness matrix and the vector
of global nodal force, respectively:

K ¼ ∫ΩBTDepBdΩ; f ¼ ∫ΩNTbdΩþ ∫ΓtN
TtdΓ ð5Þ

(a) A sketch for the slope

(b) Model A (1247 MEs, 1336 PPs)

(c) Model B (2744 MEs, 2875 PPs)

(d) Model C (7761 MEs, 7982 PPs)
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Fig. 3 A homogeneous slope and
its three discretized models. a A
sketch for the slope. b Model A
(1247 MEs, 1336 PPs). c Model
B (2744 MEs, 2875 PPs). d
Model C (7761 MEs, 7982 PPs)

Table 1 Properties of material used in Validation example: A
homogeneous slope section

Parameter Magnitude

Young’s modulus (Pa) 80 × 106

Poisson’s ratio 0.43

Angle of internal friction(°) 11.31

Cohesion(Pa) 58.86 × 103

Unit weight (kN/m3) 19.62

Stability analysis of slopes using the vector sum numerical manifold method



in which

B ¼ LdN ; Ld
T ¼

∂
∂x

0
∂
∂y

0
∂
∂y

∂
∂x

2
664

3
775 ð6Þ

The vector sum method

The vector sum method (VSM) was firstly proposed by Ge et
al. (Ge 2010; Guo et al. 2011) to investigate slope stability.
According to the vector feature of forces, the FOS in the VSM
is expressed as the ratio of vector sum of ultimate resistance
forces to those of driving forces projected to the potential
global sliding direction. To describe the basic idea of the
VSM, we take Fig. 2 as an example.

In Fig. 2, d represents the potential global sliding direction,
α represents the included angle between d and x-axis. σs, στ,
and σn separately represent the stress vector, the normal stress
vector, and the shear stress vector at point A on the potential
sliding surface S. Formulations for σs, στ, and σn can be
expressed as

σs ¼ σ•n ð7Þ
σn ¼ σs•nð Þn ð8Þ
στ ¼ σs−σn ð9Þ
in which σ and n separately represents the stress tensor and
unit normal vector at point A.

The normal stress at A applied by the bedrock is

σ′
n ¼ −σn ð10Þ

The FOS in the VSM can be expressed in the following
form:

F ¼ R
T

ð11Þ

where

T ¼ ∫S σsdð ÞdS ð12Þ
R ¼ ∫Sσ′

s −dð ÞdS ð13Þ

in whichσ′
s represents the maximum anti-sliding stress vector.

T and R separately represent the total sliding force and anti-
sliding force projected to d.

The maximum anti-shear stress σ′
τ at point A is formulated

according to the M-C yield criterion (Zheng et al. 2005; Owen
and Hinton 1980) and expresses as

σ′
τ ¼ − c−σntanϕð Þdr ð14Þ

in which c represents the strength of cohesion, ϕ represents the
angle of internal friction, and dr represents the unit shear stress
direction.

The formulation of σ′
s is expressed as

σ′
s ¼ σ′

τ þ σ′
n ð15Þ

0 200 400 600 800
-200

-100

0

100

200

300

400

Fig. 4 Location of potential sliding surface for the homogeneous slope
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Fig. 5 Convergence of solution for the stability analysis of the
homogeneous slope

Fig. 6 Equivalent plastic strain contours of the homogeneous slope based
on the SRNMM using the Model B (FOSi = 1.36)

Table 2 The FOS of the
slope assessed from the
VSNMM

Discretized models FOS

Model A 1.395

Model B 1.375

Model C 1.367

Reference solution 1.360

Y. Yang et al.



The formulation of d is expressed as (Guo et al. 2011)

d ¼ −∫S c−σntanϕð ÞdrdS
‖∫S c−σntanϕð ÞdrdS‖

ð16Þ

As discussed in (Guo et al. 2011), the VSM is very similar
to those traditional methods. Note that each method has its
own advantages and disadvantages. The LEMs are easy to
be implemented and have been adopted by geotechnical engi-
neers for many years. However, the deformation and stress
field of the slope cannot be calculated in the LEMs. More
importantly, the stress distribution on the interface of two
neighboring slices has to be assumed. Although the critical
failure surface (sliding surface) in the SRM can be located
automatically, it will take relatively a very long time to obtain
the FOS of the slope, since a series of elasto-plastic analyses
which are usually time-consuming should be carried out in the
SRM. According to the vector characteristics of the forces, the
VSM is able to obtain the FOSs using the real/current stress
fields of the slopes (only one elasto-plastic analysis is needed).
However, the failure surface should be located in the VSM.

Numerical tests

Two numerical tests are adopted to evaluate the performance
of the VSNMM. The following methods will be adopted in
this section, which are:

(1) VSNMM (vector sum numerical manifold method), the
vector sum method is implemented into the numerical
manifold method to investigate the stability of the slope.

(2) SRNMM (strength reduction numerical manifold meth-
od), the strength reduction method is implemented into
the NMM to investigate the stability of the slope. In
SRNMM, the potential sliding surface can be obtained
automatically.

(3) VSBEM (vector sum boundary element method) (Deng
et al. 2010). the vector sum method is implemented into
the boundary element method to investigate the stability
of the slope.

(4) Morgenstern–Price method, one of the LEMs
(Morgenstern and Price 1965).

(a) A sketch for the slope

(b) discretized model (5112 MEs, 5529 PPs)
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Fig. 7 An inhomogeneous slope
and its discretized model. a A
sketch for the slope. b discretized
model (5112 MEs, 5529 PPs)
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Fig. 8 Location of potential sliding surface based on the Morgenstern–
Price method (unit: m)

Table 3 Properties of material used in An inhomogeneous slope section

Physical parameters Magnitude

Material I Material II Material III

Young’s modulus(Pa) 200 × 106 250 × 106 300 × 106

Poisson’s ratio 0.35 0.30 0.28

Angel of internal friction(°) 20 25 26

Cohesion (KPa) 12.38 15 20

Unit weight (Kg/m3) 20 22 23

Stability analysis of slopes using the vector sum numerical manifold method



For the convenience of comparison, the potential sliding
surfaces used in the VSNMM and VSBEM to predict the
FOSs of the slopes are based on the sliding surfaces obtained
from the Morgenstern–Price method.

Validation example: A homogeneous slope

As the first example, a homogeneous slope subjected to grav-
ity load is considered. The dimension and boundary condi-
tions are shown in Fig. 3(a). The parameters used for this
example are listed in Table 1. To investigate the convergence
of solution assessed from the VSNMM, three discretized
models, namely, Model A, Model B, and Model C (Fig. 3b–
d) are adopted. Due to the lack of analytical solution for this
problem, the Morgenstern–Price method is adopted to obtain
the reference solution.

The location of potential sliding surface for the homoge-
neous slope based on theMorgenstern–Pricemethod is plotted
in Fig. 4.

The FOS of the slope assessed from the VSNMM using
different discretized models are list together in Table 2. For
the purpose of observation, the results presented in Table 2 are
also plotted in Fig. 5. As can be seen in Fig. 5, the FOS of the
slope approaches to the reference solutions as the number of
physical patches increases.

The SRNMM is also adopted to predict the FOS. The
equivalent plastic strain contour (EPSC) of the homogeneous
slope using Model B is plotted in Fig. 6. As can be seen in
Fig. 6, the FOS assessed from the SRNMM is 1.36, which is
close to that assessed from the VSNMM. However, the FOS
assessed from the SRNMM is obtained by solving a series of
elasto-plastic problems. Note that this process is usually very
time-consuming.

In addition, the FOS of the slope assessed from the
VSBEM is 1.410 (Deng et al. 2010). Obviously, the results

from the VSNMM are better than those from the VSBEM,
even the Model A is used.

An inhomogeneous slope

In this section, an inhomogeneous slope with three materials is
investigated. Figure 7(a) presents the dimension and boundary
conditions for this slope. The discretized model is shown in
Fig. 7(b). The computational parameters of the three materials
are listed together in Table 3. The location of potential sliding
surface based on the Morgenstern–Price method is presented
in Fig. 8. The EPSC of the inhomogeneous slope based on the
SRNMM is presented in Fig. 9. In addition, the EPSC of the
inhomogeneous slope is also plotted on the deformed model,
as shown in Fig. 10. As can be seen in Fig. 9 and Fig. 10, when
the strength reduction factor (FOSi) is 1.66, a continuous plas-
tic zone which passes from the toe of the slope to the top of the
slope is formed. For comparison, the FOS of this slope based
on different methods are presented in Table 4. As can be seen
in Table 4, FOSs of the slope assessed from the SRNMM and
the VSNMM are almost the same. Furthermore, the FOSs
assessed from the SRNMM and the VSNMM agree well with
those from the Morgenstern–Price method.

Conclusions

In this study, a vector sum numerical manifold method
(VSNMM) is developed to investigate the slope stability.
With the VSNMM, the stability of two slopes is investigated.
According to the results, we can draw the following
conclusions:

(a) In the first example, a homogeneous slope is considered.
The numerical results show that the FOS (factor of safe-
ty) of the slope assessed from the VSNMM approach to
the reference solution as the number of physical patches
increases. In addition, the FOS assessed from the
VSNMM agrees well with that from the SRNMM, and
better than that from the VSBEM.

(b) In the second example, an inhomogeneous slope with
three different materials is considered. The numerical
results show that the FOS assessed from the VSNMM
agrees well with those from the SRNMM and the
Morgenstern–Price method.

Fig. 9 Equivalent plastic strain contour of the inhomogeneous slope
based on the SRNMM (FOSi = 1.66)

Table 4 The FOSs
assessed from different
methods for the example
presented in An
inhomogeneous slope
section

Methods FOS

Morgenstern-Price method 1.652

SRNMM 1.660

VSNMM 1.659

Fig. 10 Equivalent plastic strain contour of the inhomogeneous slope
plotted on the deformed model (FOSi = 1.66)
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Only a two-dimensional static analysis is considered in the
present paper. However, all the real geotechnical problems are
in three-dimensional space. Hence, it is necessary to develop a
numerical model that can consider three-dimensional prob-
lems. In our future work, we will extend our numerical model
for three-dimensional static and dynamic problems. In addi-
tion, the risk analysis (Luo and Bathurst 2018) will also be
conducted, and the random field will be implemented into the
proposed numerical model to consider the spatial variability of
soil.
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