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To investigate crack initiation and propagation of rock mass under coupled thermo-
mechanical (TM) condition, a two-dimensional coupled TM model based on the numer-
ical manifold method (NMM) is proposed, considering the effect of thermal damage on
the rock physical properties and stress on the heat conductivity. Then, the NMM, using
empirical strength criteria as the crack propagation critical criterion and physical cover
as the minimum failure element, was extended for cracking process simulation. Further-
more, a high-order cover function was used to improve the calculation accuracy of stress.
Therefore, the proposed method consists of three parts and has a high accuracy for simu-
lating the cracking process in the rock mass under the coupled TM condition. The ability
of the proposed model for high accuracy stress, crack propagation, and thermally-induced
cracking simulation was verified by three examples. Finally, the proposed method was
applied to simulate the stability of a hypothetical nuclear waste repository. Based on the
outcome of this study, the application of NMM can be extended to study rock failure
induced by multi-field coupling effect in geo-materials.

Keywords: Numerical manifold method; rock mass; crack propagation; coupled thermo-

mechanical; numerical simulation.
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1. Introduction

In recent years, the problem of stability in rock mass caused by construction
(e.g., geological disposal of nuclear waste, tunnels, enhanced geothermal systems,
exploitation of oil, etc.) has emerged as a major challenge. In general, fractured rock
mass in a thermal, mechanical, hydraulic, and multi-field coupling environment, and
the process of crack initiation and propagation under a coupled multi-field mainly
induces rock destruction and collapse. Therefore, understanding the multi-coupling
factors and its induced cracking process is significant for both scientific research
and engineering application.

The coupled thermo–hydro–mechanical (THM) processes in rock mass have
been investigated in detail in the past decades, and significant advances have been
achieved. In general, the interaction of coupled TM can be concluded as follows:
temperature may decrease both rock strength and elastic modulus and change
the stress field; in contrast, the stress may affect the heat conduction coefficient.
For example, Zhao et al. established a three-dimensional THM coupled model of
the fractured media to simulate the extraction of geothermal energy based on a
continuum-discrete coupling model [Zhao et al. (2015)]. Tang et al. discussed the
rock mass failure process around a high-level radioactive waste geological disposal
repository and established a micromechanical model to describe the rock mass fail-
ure process [Tang et al. (2007)]. Shen et al. proposed a boundary element code on
coupled TM processes of rock crack propagation [Shen et al. (2013)]. Huang et al.
applied the discrete element method (DEM) to simulate the random initiation and
subsequent propagation in a ceramic nuclear fuel pellet [Huang et al. (2014)]. Xia
et al. proposed a TM coupling particle model based on the particle simulation
method and simulated thermally induced rock damage [Xia et al. (2014)].

However, most of the above studies treated the fractured rock mass as a
continuous material, which cannot consider the effect of crack distribution and
propagation on the coupling process. The numerical simulation for the cracking
process under coupled TM includes two parts: coupled TM and crack propagation
simulation. A large number of studies so far focus on crack propagation simula-
tion, and these methods can be divided into the following two groups: (i) Grid
remeshing. This group includes methods such as the traditional FEM [Yang et al.
(2017); Pal et al. (2019)], finite difference method (FDM), and boundary element
method (BEM), and their common characteristic is requirement of grid remeshing
in every step during crack propagation, including; (ii) does not need grid remesh-
ing. This group includes methods such as DEM [Al-Busaidi et al. (2005); Tan et al.
(2019)], the partition of unity method, discontinuous deformation analysis [Zhao
et al. (2011)]. Besides, some newly developed numerical methods such as peridy-
namics [Wang et al. (2016, 2018); Wang and Zhou (2019a); Wang et al. (2019b)],
phase field [Tang et al. (2016); Chu et al. (2017)], general particle dynamics (GPD)
[Zhou and Bi (2018)], which have been proposed for cracking process simulation
in rocks. However, some of these methods cannot simulate the full process from
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intact to the collapse of rock, and the others may have difficulty simulating the
coupled TM.

The numerical manifold method (NMM) was proposed by Shi [1991] and uses two
cover systems to simulate the discontinuity between the surfaces of crack, making
it possible to simulate cracking process from continuous to discontinuous [Ma et al.
(2010)]. Therefore, the NMM has been applied in many fracture problems. Zhang
et al. modeled crack propagation problems containing multiple or branched cracks
by the NMM [Zhang et al. (2010)]. Wu and Wong [2012] investigated the effects
of friction and cohesion on the crack growth from a closed flaw under compression
with NMM [Wu and Wong (2012)]. Yang et al. developed the NMM to analyze the
3D crack propagation and validated the proposed algorithm with three benchmark
problems [Yang et al. (2016)]. Liu et al. modified the contact model of NMM and
proposed NMM for crack initiation and propagation [Liu et al. (2017, 2018)].

In recent years, the NMM was extended to study the heat conduction and
coupling problems in fractured mass. He et al. developed NMM to simulate the
thermo-elastic fracturing of rocklike granular materials [He et al. (2018)]. Zhang
et al. proposed the NMM to simulate heat conduction process and the thermal shock
cracking [Zhang et al. (2017)], and further developed an NMM to solve TM frac-
ture problems [Zhang et al. (2014)]. Yang et al. proposed coupled hydro-mechanical
model with enriched NMM and verified the model with some benchmark problems
[Yang et al. (2018)]. Liu et al. proposed NMM for TH coupling simulation in frac-
tured EGS based on discrete fracture network model [Liu et al. (2019a)]. Based
on these reports, the application of NMM was extended and enriched. The litera-
ture data indicate that most of the studies are focus on the single heat conduction
problems, and the coupling and cracking are less considered, and the NMM for
simulation of TM coupling is needs further investigation.

In this study, the NMM, including a method and algorithm for coupled TM
and crack propagation condition, was extended to simulate the crack initiation and
propagation processes under coupled TM condition. The coupled TM governing
equation was first used to obtain NMM discretization format, and the corresponding
coupling algorithms are presented. Then, the high-order and crack propagation
numerical manifold simulation method was proposed. Finally, the proposed method
and the numerical approach were validated by four examples.

2. Basic Theory

2.1. Fundamentals of the NMM

The most innovative feature of the NMM is two covers, namely mathematical cover
(MC) and physical cover (PC), from which the manifold elements (ME) are gener-
ated. The MCs are a set of overlapped small patches to cover the problem domain,
and the PCs are the intersection of MCs and the physical domain. Obviously,
the physical domain is problem dependent. Thus, PCs are a subdivision of MCs
in the physical domain, and the ME is the intersection of PCs. In the NMM,
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the weight functions are defined by the MC, and the integral area is defined by
the MEs.

Then, a cover function (local approximation function) should be defined on each
PC to describe the local field characteristic. A convenient way to form a basis of
local approximation spaces is polynomial functions, which can be expressed by the
following equation [Shi (1991)]:

Sc = p(x, y) = {1, x, y, . . . , xn, xn−1y . . . xyn−1, yn} (n = 0, 1, 2 . . .). (1)

Therefore, the local cover function on each PC is defined by the following
equation: {

ui(x, y)

vi(x, y)

}
=

m∑
j=1

{
pij(x, y) 0

0 pij(x, y)

} {
di,2j−1

di,2j

}
,

= PDi (2)

where P is polynomial basis shown by Eq. (1), and dij is the multinomial coefficient.
For different n values, the displacement field can be constant, linear, or other

higher order polynomials. A constant cover function with n = 0 and higher order
functions with n ≥ 1, can be used to improve the approximation accuracy. In this
study, the complete first order cover function is chosen as a local approximation,
such that the stress and strain in ME is the first order, and Eq. (2) can be written
as the follows:

P =

[
1 0 x 0 y 0

0 1 0 x 0 y

]
Di =




di1

di2

di3

di4

di5

di6




i = 1, 2, 3. (3)

The element stiffness matrix, initial stress matrix, loading matrix, and fix point
matrix will be changed. For example, the element stiffness matrix can be determined
by the following equation:

Keij =
∫∫

(BT
ei · E · Bej)dA i, j = 4, 7, 8, (4)

where [E] is the elastic matrix and Bei is the strain matrix, which can be given by
the following equation:

Bei =




∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x




[
wi 0 wix 0 wiy 0

0 wi 0 wix 0 wiy

]
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=




fi2 0 fi1 + 2fi2x + fi3y 0

0 fi3 0 fi3x

fi3 fi2 fi3x fi1 + 2fi2x + fi3y

fi2y 0

0 fi1 + fi2x + 2fi3y

fi1 + fi2x + 2fi3y fi2y




3×6

i = 4, 7, 8. (5)

Therefore, the element stiffness matrix is an 18× 18 order matrix. Furthermore,
the local cover functions can be connected together by weight functions to form a
global field function on a particular ME. The weight functions depend on the shape
of the mathematical mesh, and regular triangular meshes were used in this study.
As a result, the weigh functions are same as the three node triangular finite element
shape functions.

When the problem domain includes discontinuities, the mathematical meshes
first form MCs. Then, the formed MCs and the physical boundaries will define the
PCs. If the crack splits a whole MC into two parts, two different PCs will be formed
for the same MC located on both sides of the crack. Finally, the NMM elements are
generated by these overlapping PCs. Therefore, two different MEs may come from
different PCs, but the same MC. As a result, these two MEs will have same weight
function but different cover functions, causing different global field function. In this
simple way, the discontinuities in the physical domain can fully be captured and
described.

2.2. TM governing equations of rock mass

Coupled TM governing equations are given as follows [Pan and Feng (2013)]:


kT,ii + Q = ρcṪ ,

σij,j + Fi = 0,

σij = λεmnδij + 2Gεij − β∆Tδij ,

(6)

where,

β = Kα, (7)

λ =
Ev

(1 + v)(1 − 2v)
, (8)

µ =
E

2(1 + v)
, (9)

K = 3λ + 2µ = E/(1 − 2µ), (10)

where σij and εij are the components of stress and strain, respectively, λ and µ are
the lame constants, u is the displacement, F is the body force, T is the temperature,
∆T is the temperature increment, K is the bulk modulus, E is the elastic modulus,
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G is the shear modulus, v is the Poisson ratio, k is the coefficient of heat conduction,
ρ is the density, α is the coefficient of thermal expansion, c is the specific heat
capacity, and Q is the heat source.

The thermal stress would affect the stress field. At the same time, increasing of
rock temperature, will change the mechanical properties of the rock mass. In this
study, elastic modulus was used to define the damage variable, and the relationship
between the temperature and elastic modulus can be expressed as the following
equation [Liu and Xu (2000)]:

ET = E0[1 − F (T )] (11)

with

F (T ) = 6.8 × 10−3 − 1.7 × 10−3T + 1.07 × 10−5T 2 − 8.77 × 10−9T 3, (12)

where ET and E0 are the elastic modulus at temperature T and 20◦C, respectively,
F (T ) is the thermal impact factor.

Besides, the rock mass thermal conductivity decreases with increasing tempera-
ture and increases with increasing axial stress [Görgülü et al. (2008)]. The empirical
expression for the relationship between the thermal conductivity, temperature, and
stress is as follows [Chen et al. (2010)]:

k =
k0 + aσb

1.007 + (0.0036 − 0.0072/k0)T
, (13)

where k0 is the initial thermal conductivity, σ is the compressive stress, and a, b

are the fitted constant coefficients.

3. NMM for Cracking Process Under Coupled TM

3.1. NMM for crack propagation

The first problem is choosing a suitable crack propagation criterion, which can
determine the time and occurrence of the new crack. Many critical crack propaga-
tion criteria, including maximum circumferential tensile stress, the minimum strain
energy release rate, and the maximum energy release rate have been extensively
used in literature. However, these criteria can only simulate the cracking process
containing pre-existing cracks. To describe the effect of pre-existing cracks and con-
fining pressure on the rock mass strength, Liu et al. proposed a new empirical
strength criterion described as follows [Liu et al. (2017)]:

σ1 = σ3 + kασc

1 + Aσ2+σ3
2σc

1 + B σ2+σ3
2σc

, (14)

where σc is the UCS of intact rock, A and B are the constants related to confining
pressure. σ1, σ2, and σ3 are the major, intermediate, and minor principal stresses,
respectively, and kα is the adjustment parameter related to the inclination angle α.

When σ3 < −T0 (T0 is the tensile strength of the intact rock), the tensile failure
will be considered first. In the other case, the shear failure will occur when the stress
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Fig. 1. Strength curve of crack propagation criteria.

state satisfies Eq. (14). Therefore, the final critical criteria for crack propagation is
described as follows: 


σ3 = −T0

σ1 = σ3 + kασc

1 + Aσ2+σ3
2σc

1 + B σ2+σ3
2σc

.
(15)

The strength curve of new criterion in the local coordinates of σ1 − σ3 is shown
in Fig. 1, easily indicating that rock tensile and shear propagation modes can be
obtained using the improved strength criterion. Therefore, the failure mode can be
distinguished by selection the critical criteria during calculation.

Moreover, crack propagation directions were determined as follows: For the ten-
sile failure, the intersection angle between the propagation direction and the mini-
mum principal stress is 90◦. For the shearing failure, the intersection angle between
the propagation direction and the maximum principal stress can be determined as
following:

α1 = π/4 + φ/2, (16)

where, the parameter φ is the internal friction angle of the intact rock.
The second problem is deciding the crack propagation length during simulation.

In this study, the PC is defined as a basic failure element, meaning that the location
and orientation of new cracks are determined by the stress state of the PC, and the
new crack tip will propagate and stay at the edge of the PC. As a result, the
newly formed crack will cut the PC in two parts at every calculation step. However,
when two neighboring PCs, which means these two PCs own at least one same ME,
satisfying the failure criterion at the same time step, and choosing one will be hard.
This problem was solved by two methods, namely the weakest path method and
the shortest path method.

The weakest path method is proposed for the situation that arises when the PC
without the crack tip satisfies the failure criterion, as shown in Fig. 2. If both of
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Fig. 2. Illustration of the weakest path and the shortest path methods.

the PCs, namely PC(1) and PC(2), meet the critical conditions, deviatoric stress
will be compared first for both of PCs.

∆σ = σ1 − σ3. (17)

Then, the newly formed crack will initiate in the PC with the maximum devi-
atoric stress. As illustrated in Fig. 2, if (σ1 − σ3)PC(2) ≥ (σ1 − σ3)PC(1), the new
crack will initiate in the PC (2). Furthermore, the new crack is assumed to pass
through the center of the PC.

When a PC, containing a crack tip, satisfies the failure criterion, the new crack
was assumed to propagate from the crack tip. If the crack tip is in the two PCs at
the same time, the shortest path method should be used. As shown in Fig. 3(a), two

(a) (b)

(c) (d)

Fig. 3. Illustration of the shortest path method. (a) One crack example. (b) Two cracks example.

(c) Crack propagation path for crack 2. (d) Final crack propagation paths.
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PCs satisfy the failure criterion, and the potential new crack is in AB1 and AB2.
The newly formed crack will propagate with the shortest length path, AB1.

When a PC contains two or more crack tips to satisfy the failure criterion,
as illustrated for PC(1) in Fig. 3(b), the shortest path method can still be used
assuming the following two steps: first, calculate the whole potential length of new
cracks for a certain crack tip according to the simulation results; then, choose the
shortest path as the potential new crack for this step. As shown in Figs. 3(a) and
3(c), AB1 and CD1 are the potential new cracks for crack tips A and C, respectively.
The second step entails comparing the length of all potential new cracks in a certain
PC and then choosing the shortest path as the newly formed crack. As shown in
Fig. 3(d), there are two potential new cracks in PC(1), and CD1 is the last newly
formed crack.

After the crack initiation and propagation, the new cracks then split the PCs
into two or more sub-domains. The PCs and the MEs will be subsequently updated
for the next calculation step. Therefore, the effect of crack propagation on the stress
and temperature distribution can be represented directly in each step.

3.2. NMM algorithm

Numerical manifold method for temperature calculation has been developed, and
the NMM discretization format for a transient temperature field can be written by
the following equation [Liu and Liu (2013)]:

(K + H/∆t)Dn+1 = F + (H/∆t)Dn, (18)

where K is the whole stiffness matrix, H is the whole heat capacity matrix, ∆t is
the time increment, Dn is the temperature cover coefficient matrix of the nth step,
and F is the whole load matrix.

Crack can affect the rock heat conduction in two different ways: one is preven-
tion of heat conduction and the other is the transfer of heat between rock block.
Recent studies indicate that [Liu and Liu (2013)] when the temperature is calcu-
lated by the NMM, the discontinuity of temperature field between the two surfaces
of crack can be naturally expressed. When a crack prevents heat conduction, the
crack will become a part of the heat conduction. In the other instance, the crack
will become boundaries. Both of these situations will affect the governing equations
and simulation results.

Especially, when considering the effect of heat on an elastic modulus and stress
state for crack propagation, the average temperature of the whole problem domain
and average stress of every PC should be obtained. The weighted average was used
as expressed by the following equations:

T =
∑
N

R
Ae

TedAe

Ae

N
, (19)

σP =

∫
A

σedAe

Ae
, (20)
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Table 1. The algorithm of the proposed method.

1. Meshes generation and parameter initialization

2. Loop for time n

2.1 Estimate the initial rock temperature at time step T n
w0 = T n−1

w

2.2 Loop for the TM coupling iteration j

a. Obtain the temperature T n
j by Eq. (18)

b. Calculate damage variable F (T ) by Eq. (12) and Eq. (19)
c. Calculate stress state
d. Calculate thermal conductivity k by Eq. (13)
e. Repeat steps a–d

2.3 End TM coupling iteration until convergence criterion is met
2.4 Crack propagation calculation by Eqs. (15) and (20)
2.5 Update crack networks and cover system
2.6 Repeat steps 2.1–2.5 until no new crack generation

3. End loop if the simulation complete

where T is the average temperature of the domain, Te is the temperature distri-
bution of a ME, and N is the amount of the total MEs. The parameter σP is the
average stress of a PC, and σe is the stress distribution of a ME, and Ae is the area
of a ME.

When using the NMM to simulate crack propagation under coupled TM physics,
the process can be divided into two modules. The first is the TM solving module,
which first establishes a numerical model, considering the thermal effect on the
material properties and uses the NMM to obtain the stress and temperature fields.
The second module is the crack propagation module, which simulates the crack
propagation process. The algorithm for the proposed method is listed in Table 1.

The first step is the generation of meshes and parameter initialization. Then,
calculate the temperature distribution T (x, y) according to the boundary condi-
tions, and initial conditions. Furthermore, obtain the average temperature of the
whole MEs and calculate the thermal impact factor according to Eqs. (12) and (19),
elastic modulus ET by Eq. (11), and stress distribution. At this time, thermal con-
ductivity k will be calculated by Eq. (13) and the above steps will be repeated until
convergence criterion is met. Finally, go to the crack propagation simulation module
and modify the PCs and MEs information until no more new crack generated.

4. Numerical Examples

Four numerical examples are presented to verify the capability of the developed
method in deformation, cracking propagation under biaxial compression, thermally-
induced cracking process, and coupled TM condition simulation.

4.1. High-order example

As shown in Fig. 4(a), a cantilever beam is first considered. The parameters of the
beam are as follows: length (l), 3 m; height (h), 0.6m; thickness (b), 1m; elastic
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P
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w
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t y
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(m
)

Constant cover function NMM
ABAQUS—FEM 
First order NMM
Analytical

(a) (b)

Fig. 4. High-order example. (a) Cantilever beam. (b) Bending deflection under different numerical
methods.

modulus (E), 20GPa; Poisson ratio (v), 0.25. A concentrated force is applied at the
right end of the beam, keeping the left side clamped. This example was designed to
demonstrate the accuracy of the proposed high-order NMM and calculation codes.
The bending deflection of the middle line along the x-axis was compared by different
numerical methods. The analytical solution is given by the following equation:

w =
Plx2

2EI
− Px3

6EI
, (21)

where x is the coordinate in x direction.
For the NMM, four different MEs were applied and 360 elements were applied

for FEM. Figure 4(b) shows the analytical and numerical solutions, indicating that
the complete first order NMM improves the accuracy of the solution compared to
that achieved using the constant cover function or FEM.

4.2. Crack propagation example

The second example is a biaxial compression test on the rock-like material with
an incline crack [Liu et al. (2019b)]. As shown in Fig. 5(a), a rectangle plate with
length and width are 60mm and 120mm, respectively. The boundary conditions
are listed as follows: the y directional displacement of bottom is fixed; the left and
right sides are applied a confining pressure of 1 MPa and a changed axial pressure
is applied on the top boundary. According to the experimental results, the elastic
modulus is 1.3GPa, internal cohesion is 2.44MPa, internal friction angle is 9.03◦,
uniaxial compressive strength is 5.45MPa and tensile strength is 0.9MPa.

The meshes of NMM and simulated crack propagation paths are shown in
Fig. 5(b). The meshes contain 264 physical covers and 462 manifold elements. The
experimental result is shown in Fig. 5(c). Compared with Figs. 5(b) and 5(c), it
can be found that the crack propagation paths from simulation and test are almost
same. Two new cracks were firstly observed to initiate from the two pre-existing
crack tips separately and then propagated towards the bottom and top sides of the
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L=60mm

1σ

2σ
2σ

H=120mm

x(m)
0 0.01 0.02 0.03 0.04 0.05 0.06

y(
m

)

0

0.02

0.04

0.06

0.08

0.1

0.12

(a) (b) (c)

Fig. 5. Crack propagation simulation example. (a) Calculation model. (b) Meshes and crack prop-
agation paths of NMM. (c) Experimental result.

specimen gradually until the final failure. However, the initiation strength for these
two methods have some tiny difference. For the numerical simulation, the initia-
tion strength is 3.42MPa, while this value for the test was 3.20MPa. The initiation
strength of test is lower than that of numerical simulation result. The main reason
of this result is that the simulation do not consider the influence of heterogeneous
and micro-damage on rock strength. The example in here validates the ability of
proposed method on crack propagation simulation.

4.3. Thermally-induced cracking example

The crack initiation and propagation process induced by cooling is studied. A rect-
angle plane with length of 400mm and high of 200mm, as shown in Fig. 6(a).
The y directional displacement of bottom and x directional displacement of left-
and right-hand sides are fixed. The initial temperature in the plane is 1,000◦C
and the bottom, left, and right surfaces are insulated. The top surface is applied
a constant boundary condition with a temperature of 0◦C to simulate the cooling
circumstance.

The calculation cover system is shown in Fig. 6(b), which contains 598 physi-
cal covers and generated 1,098 manifold elements. The simulation model with an
elastic modulus of 30GPa, Poisson’s ratio of 0.3, initial thermal conductivity of
3.0 W/(m·K) and a coefficient of thermal expansion of 5×10−6(1/◦C). The uniaxial
compression strength is 200MPa and tensile strength is 10MPa. The cohesion of
rock is 30MPa, and the internal friction angle is 35◦. Parameters a, b are 0.4 and
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L=400mm

H=200mm

1 0°CT =

0 1000°CT =

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

(a) (b)

(c) (d)

Fig. 6. Thermally-induced cracking example. (a) Calculation model. (b) Meshes. (c) Crack prop-
agation paths and temperature distribution. (d) Literature result [Huang et al. (2016)].

0.12. Besides, it is noting that there is no heat conduction across the cracks during
calculation.

Figure 6(c) shows the simulation results, indicating that an array of small crack
initiated at the top surface firstly due to the thermal contraction. With increase of
time, some new cracks stop propagation while others keep growing. Further, most
of crack propagates along the direction of temperature gradient and towards the
bottom side of plane. Compared with Figs. 6(c) and 6(d), it is clearly that the
numerical results in here are agree well with that obtained by Huang et al. [2016],
which verified the effectiveness of the proposed method on simulation of thermally
induced cracking.

4.4. Hypothetical nuclear waste repository

A hypothetical nuclear waste repository in intact granite with a laboratory scale
was studied. There is a 4 m × 4 m rectangular area with a storage cavern with size
of 0.4 m × 0.4m, as shown in Fig. 6(a). The boundary conditions are as follows:
the internal and external surface temperatures are 200◦C and 20◦C, respectively,
whereas the rock initial temperature is 20◦C; The displacement of the y direction
on the bottom is fixed, while the displacement that in the x direction is fixed on
the left- and right-hand sides. There is a vertical downward distributed load on the
top with a value of 30MPa.

Five temperature monitoring points, marked as A, B, C, D, and E, are assigned
in the model, as shown in Fig. 7(b), with the coordinates of (0, −0.3m), (0, −0.5m),
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4m
4m

T2=200°C

T1=20°C
0.4m

x

y

T0=20°C

(a) (b)

Fig. 7. Simulate model. (a) Boundary conditions. (b) Monitoring line and points.

(0, −1m), (0, −1.5m), and (0, −1.8m), respectively. In addition, a monitoring line
(marked as MN) is assigned to monitor the change in the displacement and stress,
at a location of y = 0.5.

The parameters during the simulation are listed as follows: The density is
2.7 g/cm3; the elastic modulus of rock at room temperature (20◦C) is 70GPa, while
the Poisson’s ratio is 0.25; the uniaxial compressive and tensile strength are 200MPa
and 10MPa, respectively. The cohesion of rock is 30MPa, and the internal friction
angle is 35◦. The coefficient of initial heat conduction is 2.7 W/(m ·K), parameters a,
b in Eq. (13) are 0.4 and 0.12. The coefficient of thermal expansion is 5×10−6(1/◦C).
The time step used in the simulation of heat conduction is 1d.

Figure 8(a) shows the temperature evolution process at five monitoring points,
and the results show that temperature increases rapidly at the beginning and then
the slows down gradually until the temperature at points A, B, C, D, and E

reached 178.2, 141.9, 84.2, 48.4 and 31.1◦C finally. The temperature distribution
around the storage cavern is shown in Fig. 8(b), indicating symmetric distribution
while no cracks existed in the nuclear waste repository.

Furthermore, the displacement and stress of the monitor line were compared
under two conditions. As shown in Fig. 9(a), the displacement in y direction under
the thermal influence is lower than that without thermal effect, probably because
increasing temperature increases the elastic modulus in this case, thus reducing the
displacement. Similarly, the maximum principal stress for two different conditions is
compared, as shown in Fig. 9(b). The results show differences in the two conditions.
However, it also can be found that the changing of these two parameters have the
same tendency under two conditions, indicating that the original distribution char-
acteristics of stress and displacement will not change significantly by the thermal
effect.
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Fig. 8. Temperature results. (a) Temperature versus time at different points. (b) Temperature
distribution (Unit: ◦C).
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Fig. 9. Calculation results under two different conditions. (a) Displacement in y direction. (b) The
maximum principal stress.

Figure 10 shows the stress distribution under single mechanical and coupled
TM conditions. Comparing with Figs. 10(a) and 10(b), it is easily found that the
stress distribution in the repository changed significantly under the coupled TM.
Specially, as shown in Fig. 10(b), the stress in the surrounding rock concentrated,
especially at the corner of the floor roof of the cavern. The results indicate that
the temperature may affect the original distribution characteristics of the stress
field in some content, and can control the stress state sometimes, especially near
the region of the heat sources. The results also indicate that the more the change
in temperature, more the influence of temperature on stress. These stresses may
exceed the tensile strength or shear strength of the rock mass; therefore, cracking
around the cavern would occur.
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Fig. 10. Comparison of stress distribution under different conditions (Pa). (a) Single mechanical.
(b) Coupled TM.
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Fig. 11. Predicted rock cracking in repository.

Finally, the crack initiation and propagation process under the coupled TM was
calculated. Figure 11 shows distribution of the final cracks in the nuclear waste
repository. The results indicate that connected tensile cracks initiated at the roof of
the cavern, while a connected crack composing of tensile and shear cracks appeared
at a certain depth of the cavern floor. Obviously, the coupled TM affects the stress
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and temperature distribution and then changes the crack modes, verifying the effec-
tiveness of the present method as a tool for calculating and predicting cracking
induced by a coupled TM process in the rock mass.

5. Conclusion

In conclusion, the NMM was successfully extended to simulate the 2D cracking
process under TM coupling. The effects of thermal damage on rock physical prop-
erties and stress on heat conductivity were considered in the coupled TM governing
equations. Besides, the weighted average method was used to calculate the average
temperature of the whole problem domain and average stress of every PC.

Then, the NMM, using empirical strength criteria as the crack propagation
critical criterion and physical cover as the minimum failure element, was extended
for crack initiation and propagation simulation. A high-order cover function was
used to improve the stress accuracy during the calculation. Two principles, namely
the weakest path method and the shortest path method, were chosen to decide the
place and length of the new cracks formed. Furthermore, the NMM algorithms for
cracking and TM coupling simulation were introduced.

The newly developed NMM algorithm was validated by four examples. The first
one is a cantilever beam, and the results shows that the complete first-order NMM
improved the solution accuracy significantly. The second example was used to check
the capability of proposed method on crack propagation simulation under biaxial
compression. The third example verified the effectiveness of the proposed method
on simulation of thermally induced cracking.

Finally, a hypothetical nuclear waste repository was studied. The results show
that the thermal effect on the rock can change the temperature distribution directly
and the stress distribution changed immensely at the regions near the heat sources.
Due to coupled TM, cracks appeared at a certain depth of the cavern floor and roof.
The results in here validated the capability and accuracy of the proposed method.
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