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a b s t r a c t 

Based on the Erdogan fundamental solutions for infinite cracked plates, a new hybrid boundary node method for 

linear fracture problems is proposed in this paper. The origin singular intensity factor for the Erdogan fundamental 

solutions is developed to overcome the singular when the field points are coincided with the source points, and no 

virtual source points are needed, a new scheme for calculating the origin singular intensity factor for the Erdogan 

fundamental solutions is developed. Based on the Erdogan fundamental solutions, the zero traction boundary 

condition on crack surfaces is naturally and strictly satisfied in this method, and no nodes are arranged on the 

crack surface in the entire calculation process. Based on the Erdogan fundamental solution of stress intensity 

factor for the mixed mode crack, the stress intensity factor of the present method can be easily interpolated 

by the Erdogan fundamental solutions. As a result, no complex scheme for calculating stress intensity factor is 

needed. Based on those theories and methods, the proposed method is further applied to analyze some linear 

crack problems, and the computational accuracy, convergence rate and the versatility of the present method are 

demonstrated in details. 
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. Introduction 

As a boundary type meshless method, boundary node method was

rstly proposed by Mukherjee [1] , in which the moving least square

as combined with the boundary integration equations. In this method,

nly boundary nodes are needed for interpolating boundary variables,

ut background elements are still needed for local boundary equation

ntegral. In order to overcome this defect, hybrid boundary node method

as developed by Zhang et al. [2] , in which hybrid displacement vari-

tional theory, three fields variables interpolation and moving least

quare were combined with each other, although no meshing is needed

or both variables interpolating and local boundary equation integral,

ut a boundary layer effect is inevitable. To solve this problem, Zhang

nd co-workers [3–6] and Wang et al. [7] further proposed the regular

ybrid boundary node method, in which the source points are arranged

utside the domain, and some virtual source points are needed. Later,

mploying the rigid body movement method, Miao et al. [8–10] devel-

ped a singular boundary node method, in which an adaptive integral
∗ Corresponding author at: State Key Laboratory of Geomechanics and Geotechn

ciences, Wuhan 430071, China. 
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cheme to deal with singular integrations and boundary layer effect was

eveloped. 

The above methods can only solve the homogenous problems, for in-

omogeneous problems, the domain integral and background elements

re inevitable. In order to keep the boundary meshless properties of

he hybrid boundary node method, Yan et al. [11–13] developed the

ual hybrid boundary node method, in which dual reciprocity method

14] was employed into hybrid boundary node method, and further-

ore, they employed this method to solve the dynamic problems [15] ,

onlinear problems [16] , convection-diffusion problems [17] and Kirch-

off plates [18] . To improve the calculating effect, the radial point in-

erpolation method was adopted into the dual hybrid boundary node

ethod by Yan et al. [19–23] . 

Later, Yan et al. [24] proposed a new shape function constructing

ethod, i.e., the Shepard and Taylor interpolation method (STIM) based

n the Shepard interpolation method and Taylor expansion, by which no

nversion operating is needed in the entire constructing process. Com-

ined multiple reciprocity method [25] , Tan et al. [26-27] proposed a
ical Engineering , Institute of Rock and Soil Mechanics , Chinese Academy of 
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Fig. 1. Infinite plane model with a central crack. 
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ultiple hybrid boundary node method to solve some practical prob-

ems. Furthermore, Wang et al. [28-29] developed fast multipole hy-

rid boundary node method combined fast multipole method [30] and

ybrid boundary node method, and employed this method into some

omplex practical problems [ 31 , 32 ]. Based on those theories, Yan et al.

33] employed hybrid boundary node method and continuous to discon-

inuous formulation, and proposed a continuous-discontinuous hybrid

oundary node method to solve the linear crack problems, in which the

eld nodes were arranged on the common boundary and the crack sur-

aces, in this method, the Kelvin fundamental solution was employed,

y which the zero traction boundary condition cannot be automatically

et, and the stress boundary condition deal is inevitable, because of the

ingularity of crack tip stress, some special elements are needed to deal

ith high stress gradient and stress intensity factor calculating. 

In order to overcome the aforementioned defects and efficiently

olve linear fracture problems, based on the above formulation, the Er-

ogan fundamental solutions for infinite cracked plates are introduced

nto the hybrid boundary node method in the present work, and a new

ybrid boundary node method for linear fracture problems is proposed.

esides, the concept of the origin singular intensity factor (OSIF) [ 34 , 35 ]

s employed into the present method, in which the OSIF for the Erdogan

undamental solutions are developed to overcome the singular when the

eld points are coincided with the source points, and no virtual source

oints are needed, a new scheme for calculating the values of OSIF for

he Erdogan fundamental solutions is developed. Based on the Erdogan

undamental solutions, the zero traction boundary conditions on crack

urfaces are naturally and strictly satisfied, and no nodes are arranged

n the crack surface during the calculation, and no special deal is needed

or stress boundary condition on crack surfaces. Based on the Erdogan

undamental solution of stress intensity factor (SIF) for the mixed mode

rack, the stress intensity factor of the present method can be easily

nd directly interpolated by the Erdogan fundamental solutions, then no

omplex scheme for calculating stress intensity factor is needed. Based

n those theories and methods, the proposed method will be further

pplied to analyze some linear crack problems, and the computational

ccuracy, convergence rate and the versatility of the present method

ill be demonstrated in details. 

. The Erdogan fundamental solution 

Consider an infinite plate with a crack, and a couple of concentra-

ions Q, P is imposed on the point z 0 = x 0 + iy 0 , which can be seen in

ig. 1 . Based on the theory by Erdogan [36] , a complex function solution

or the above problem can be obtained, then the stress, displacement and

tress intensity factor on an arbitrary point z = x + iy on a plane can be

iven as 

𝑥 + 𝜎𝑦 = 2 
[
𝜙( 𝑧 ) + 𝜙( 𝑧 ) 

]
(1)

𝑦 + 𝑖 𝜏𝑥𝑦 = 𝜙( 𝑧 ) + Ω( 𝑧 ) + ( ̄𝑧 − 𝑧 ) 𝜙′( 𝑧 ) (2)
e

134 
 𝜇( 𝑢 + 𝑖𝑣 ) = 𝜅
𝑧 

∫
0 
𝜙( 𝑧 ) 𝑑𝑧 − 

𝑧̄ 

∫
0 
Ω( ̄𝑧 ) 𝑑 ̄𝑧 + ( ̄𝑧 − 𝑧 ) 𝜙( 𝑧 ) (3)

 = 𝐾 𝐼 − 𝑖 𝐾 𝐼𝐼 = 

1 
2 ( 1 + 𝜅) 

√
𝜋𝑎 

×
⎧ ⎪ ⎨ ⎪ ⎩ ( 𝑄 + 𝑖𝑃 ) 

⎡ ⎢ ⎢ ⎢ ⎣ 
⎛ ⎜ ⎜ ⎜ ⎝ 
𝑎 + 𝑧 0 √ 

𝑧 2 0 − 𝑎 2 
− 1 

⎞ ⎟ ⎟ ⎟ ⎠ − 𝜅

⎛ ⎜ ⎜ ⎜ ⎝ 
𝑎 + 𝑧̄ 0 √ 

𝑧̄ 2 0 − 𝑎 2 
− 1 

⎞ ⎟ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎥ ⎦ 

+ 

𝑎 ( 𝑄 − 𝑖𝑃 ) 
(
𝑧̄ 0 − 𝑧 0 

)
(
𝑧 0 − 𝑎 

)√ 

𝑧̄ 2 0 − 𝑎 2 

⎫ ⎪ ⎬ ⎪ ⎭ (4) 

n which superscript of horizontal line denotes conjugate function, and

uperscript of comma represents differential, besides, some other vari-

bles can be given as 

( 𝑧 ) = − 

𝑆 

𝑧 − 𝑧 0 
+ 𝜙0 ( 𝑧 ) (5)

( 𝑧 ) = 

𝜅𝑆 

𝑧 − 𝑧̄ 0 
+ 

𝑆̄ 
(
𝑧̄ 0 − 𝑧 0 

)(
𝑧 − 𝑧̄ 0 

)2 + 𝜙0 ( 𝑧 ) (6)

= 

{ 

3 − 4 𝜈 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 

3 − 𝜈

1 + 𝜈
𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 

(7)

n which S and 𝜑 0 ( z ) in Eqs. (5) and (6) can be written as 

 = 

𝑄 + 𝑖𝑃 

2 𝜋( 1 + 𝜅) 
(8)

0 ( 𝑧 ) = 

1 

2 𝜋
√
𝑧 2 − 𝑎 2 

{ 

𝑆 

𝑧 − 𝑧 0 

[
𝐼 ( 𝑧 ) − 𝐼 

(
𝑧 0 
)]

− 

𝜅𝑆 

𝑧 − 𝑧̄ 0 

[
𝐼 ( 𝑧 ) − 𝐼 

(
𝑧̄ 0 
)]

− 𝑆̄ 
(
𝑧̄ 0 − 𝑧 0 

)[ 𝐼 ( 𝑧 ) − 𝐼 
(
𝑧̄ 0 
)(

𝑧 − 𝑧̄ 0 
)2 − 

𝐽 
(
𝑧̄ 0 
)

𝑧 − 𝑧̄ 0 

] } 

(9) 

n which 

 ( 𝑧 ) = 𝜋

[
± 

√
𝑧 2 − 𝑎 2 − 𝑧 

]
(10)

 ( 𝑧 ) = 𝜋

[ 
𝑧 

± 

√
𝑧 2 − 𝑎 2 

− 1 

] 
(11)

In those equations, a is the half width of the crack, 𝜇 is the shearing

odulus, and 𝜈 is the Poisson ratio. According to the theory of Erdogan

37] and reference [38] , when point z is located on the crack surface,

.e. − a ≤ z ≤ a , the calculating measure of I ( z ) and J ( z ) in Eqs. (9) - (11)

re different on the upper and bottom of surfaces. To be specific, when

oint z is located on the upper side of crack surfaces, a positive sign is

sed in Eqs. (9) - (11) ; when point z is located on the bottom side of crack

urfaces, a negative sign is used in Eqs. (9) - (11) . 

Besides, it is worth noting that 
√ 

𝑧 2 0 − 𝑎 2 and 
√ 

𝑧̄ 2 0 − 𝑎 2 result double

alues in plural space, for example, two solutions can be obtained when

alculating 
√ 

𝑧 2 0 − 𝑎 2 , and square root of this equation can be written as

 𝑘 = 

√
𝑧 2 − 𝑎 2 = 

√
𝑟 0 

[ 
𝑐𝑜𝑠 

( 

𝜃0 
2 

+ 𝑘𝜋

) 

+ 𝑖𝑠𝑖𝑛 

( 

𝜃0 
2 

+ 𝑘𝜋

) ] 
𝑘 = 1 , 2 (12)

n which r 0 and 𝜃0 are modulus and spoke angle of z 2 − a 2 , respectively.

t can be seen that w 1 = − w 0 according to Eq. (12) . Based on numerical

xamples, one can see that the value of 
√ 

𝑧 2 0 − 𝑎 2 is influenced by the

ocation of point z . For example, 𝑤 0 = 

√
𝑧 2 − 𝑎 2 is used when point z is

ocated in the first quadrant, the fourth quadrant, the positive half of x

xis and the positive half of y axis; 𝑤 1 = 

√
𝑧 2 − 𝑎 2 is used when point z

s located in the second quadrant, the third quadrant, the negative half

f x axis and the negative half of y axis. Based on those results, one can

asily use this method. 



H.-b. Wang, F. Yan and L.-w. Zhang et al. Engineering Analysis with Boundary Elements 119 (2020) 133–139 

3

 

n  

t

3

 

s  

n  

p  

v  

a  

t  

a

 

p

𝑢  

i  

f  

s  

b  

j

 

s

𝑢  

 

s  

c  

o{
 

i  

t  

e  

t  

i  

w

𝚽

 

v

𝐮  

i  

n  

b

𝐭̃  

i

3

 

m  

o  

p  

e  

w  

i  

t  

s

 

i

𝑢  

𝑣  

𝑡  

i  

E  

w  

s  

G  

o  

i  

c

 

i  

b  

l  

p  

(  

i  

s  

m  

f

𝑢

𝑢

𝜎

𝜎

𝜏

i

 

t  

l  

n  

N  

o  

m

𝑢

𝑡

. Singular hybrid boundary node method 

Three field variable interpolation scheme is used in hybrid boundary

ode method, then boundary variables and internal variables interpola-

ion are constructed in this section. 

.1. Boundary variable interpolation by radial point interpolation method 

The traditional hybrid boundary node method used the moving least

quare to construct the shape function, and the boundary conditions can-

ot be easily and directly applied by this method. As a result, the radial

oint interpolation method (RPIM) is used to interpolate the boundary

ariable, by which the boundary conditions can be easily and directly

pplied to the linear equations. Besides, the boundary variables are in-

erpolated on different independent continuous segments, so the bound-

ry is divided into several independent continuous segments. 

Take a continuous segment of boundary as an example, then dis-

lacement u on this interpolating segment can be written as 

 ( 𝑟, 𝑠 ) = 

𝑁 𝑆 ∑
𝑖 =1 
𝑅 𝑖 ( 𝑟 ) 𝑎 𝑖 + 

𝑚 ∑
𝑗=1 

𝑃 𝑗 ( 𝑠 ) 𝑏 𝑗 (13)

n which r is the polar coordinate, and s is the parameter coordinate

or interpolating point; N S denotes the node number on interpolating

egment, and m is the number of monomials basis; R i ( r ) is the radial

asis function, which can be seen in references [11] , and P j ( s ) = s j − 1 ,

 = 1, 2, …, m; a i , b j are interpolating coefficients. 

Applying Eq. (13) into each interpolating node on the interpolating

egment, one can get 

 

(
𝑟 𝑘 , 𝑠 𝑘 

)
= 

𝑁 𝑆 ∑
𝑖 =1 
𝑅 𝑖 

(
𝑟 𝑘 
)
𝑎 𝑖 + 

𝑚 ∑
𝑗=1 

𝑃 𝑗 
(
𝑠 𝑘 
)
𝑏 𝑗 (14)

As we know, only Eq. (14) can not get the interpolating coefficients,

o a constraint of the monomial basis and constant coefficient a i is built,

ombining Eq. (14) and this constraint, one can get the system equation

f RPIM 

 

𝐮 0 
0 

} 

= 

[ 
𝐑 0 𝐏 0 
𝐏 T 0 0 

] { 

𝐚 
𝐛 

} 

= 𝐆 𝐚 0 (15)

n which 𝐚 T 0 = [ 𝑎 1 , 𝑎 2 , … , 𝑎 𝑁 𝑆 
, 𝑏 1 , 𝑏 2 , … , 𝑏 𝑚 ] , and R 0 and P 0 are the ma-

rixes of values for radial basis functions and the monomials basis on

ach interpolating nodes respectively, based on Eq. (15) , one can get

he interpolating coefficients a 0 = G 

− 1 u 0 . Substituting this interpolat-

ng coefficient into Eq. (13) , one can get the shape function of RPIM,

hich can be written as 

T ( 𝑟, 𝑠 ) = 

[
𝜙1 ( 𝑟, 𝑠 ) , 𝜙2 ( 𝑟, 𝑠 ) , … , 𝜙𝑁 𝑆 ( 𝑟, 𝑠 ) , … , 𝜙𝑁 𝑆 + 𝑚 ( 𝑟, 𝑠 ) 

]
= 

[
𝐑 

T ( 𝑟 ) 𝐏 T ( 𝑠 ) 
]
𝐆 

−1 (16) 

According to Eq. (16) , the boundary variables can be interpolated

ia the above shape function, then one can obtain 

̃
 ( 𝑟, 𝑠 ) = 𝚽T ( 𝑟, 𝑠 ) 𝐮 (17)

n which 𝐮 T = [ 𝑢 1 , 𝑢 2 , … , 𝑢 𝑁 𝑆 
] is displacement vector for boundary

odes. The same as Eq. (17) , boundary variables of traction can also

e interpolated by the same shape function, 

 ( 𝑟, 𝑠 ) = 𝚽T ( 𝑟, 𝑠 ) 𝐭 (18)

n which 𝐭 T = [ 𝑡 1 , 𝑡 2 , … , 𝑡 𝑁 𝑆 
] is traction vector for boundary nodes. 

.2. Internal variable interpolation based on OSIF 

Internal variable interpolation in traditional hybrid boundary node

ethod is based on fundamental solution interpolation, but singular

r near singular cases can occur when the source points and the field

oints coincide with each other. In order to overcome this problem, Yan
135 
t al. [38] proposed a dual singular hybrid boundary node method, in

hich the origin singular intensity factor is employed, and the calculat-

ng scheme of OSIF for potential problems is given in this work, and in

his section, the calculating scheme of OSIF for the Erdogan fundamental

olutions is developed. 

According to the theory of the origin singular intensity factor, the

nternal variables can be interpolated by 

 

(
𝑧 𝐼 
)
= 

𝑁 ∑
𝐽 =1 ,𝐽 ≠𝐼 

𝑈 

(
𝑧 𝐼 , 𝑧 𝐽 

)
𝑥 𝐽 + 𝑂𝐼𝐹 𝑈 

(
𝑧 𝐼 , 𝑧 𝐼 

)
𝑥 𝐼 (19)

 

(
𝑧 𝐼 
)
= 

𝑁 ∑
𝐽 =1 ,𝐽 ≠𝐼 

𝑉 
(
𝑧 𝐼 , 𝑧 𝐽 

)
𝑥 𝐽 + 𝑂𝐼𝐹 𝑉 

(
𝑧 𝐼 , 𝑧 𝐼 

)
𝑥 𝐼 (20)

 𝑖 

(
𝑧 𝐼 
)
= 

𝑁 ∑
𝐽 =1 ,𝐽 ≠𝐼 

𝐺 𝑖 

(
𝑧 𝐼 , 𝑧 𝐽 

)
𝑥 𝐽 + 𝑂𝐼𝐹 𝑇 

(
𝑧 𝐼 , 𝑧 𝐼 

)
𝑥 𝐼 (21)

n which N is the total boundary node number, U ( z I ,z J ), V ( z I ,z J ) are the

rdogan fundamental solution of displacements for x and y direction,

hich can be solved by Eq. (3) , G i ( z I ,z J ) is the Erdogan fundamental

olution of traction, which is related to 𝜎x , 𝜎y , 𝜏xy , and the relation is

 i ( z I ,z J ) = 𝜎ij ( z I ,z J ) n j , and n j is the outward normal vector component

f boundary, and OIFU ( z I ,z I ), OIFV ( z I ,z I ), OIFT ( z I ,z I ) are origin singular

ntensity factor of displacement and traction, and x I is the interpolation

oefficient. 

As we know, after substituting the source point and the field point

nto Eqs. (1) to (12) , the value of the Erdogan fundamental solutions can

e easily got, but from those equations, one can not easily get the ana-

ytical form of the Erdogan fundamental solutions. As a result, the main

roblem is solving the origin singular intensity factor in Eqs. (19) to

21) . According to reference [37] , one can see that the OSIF exists, and

t is not infinite. Then the method of fundamental solution is used to

olve the origin singular intensity factor. In the present work, the mixed

ode displacement, stress field of crack tip are used as the simple field

unctions, which can be given as 

 𝑥 = 

𝐾 𝐼 

2 𝜇

√ 

𝑟 

2 𝜋
cos 𝜃

2 

(
𝜅 − 1 + 2 si n 2 𝜃

2 

)
+ 

𝐾 𝐼𝐼 

2 𝜇

√ 

𝑟 

2 𝜋
sin 𝜃

2 

(
𝜅 + 1 + 2 co s 2 𝜃

2 

)
(22) 

 𝑦 = 

𝐾 𝐼 

2 𝜇

√ 

𝑟 

2 𝜋
sin 𝜃

2 

(
𝜅 + 1 − 2 co s 2 𝜃

2 

)
− 

𝐾 𝐼𝐼 

2 𝜇

√ 

𝑟 

2 𝜋
cos 𝜃

2 

(
𝜅 − 1 − 2 si n 2 𝜃

2 

)
(23) 

𝑥 = 

𝐾 𝐼 √
2 𝜋𝑟 

cos 𝜃
2 

(
1 − sin 𝜃

2 
sin 3 𝜃

2 

)
+ 

𝐾 𝐼𝐼 √
2 𝜋𝑟 

sin 𝜃
2 

(
2 + cos 𝜃

2 
cos 3 𝜃

2 

)
(24) 

𝑦 = 

𝐾 𝐼 √
2 𝜋𝑟 

cos 𝜃
2 

(
1 + sin 𝜃

2 
sin 3 𝜃

2 

)
+ 

𝐾 𝐼𝐼 √
2 𝜋𝑟 

sin 𝜃
2 
cos 𝜃

2 
cos 3 𝜃

2 
(25) 

𝑥𝑦 = 

𝐾 𝐼 √
2 𝜋𝑟 

sin 𝜃
2 
cos 𝜃

2 
cos 3 𝜃

2 
+ 

𝐾 𝐼𝐼 √
2 𝜋𝑟 

cos 𝜃
2 

(
1 − sin 𝜃

2 
sin 3 𝜃

2 

)
(26) 

n which K I = 1, K II = 1 are used in the present method. 

In order to solve the OSIF, some calculating points are arranged in

he calculating domain, and it is assured that the distances from calcu-

ating points to the source points are larger than half of the adjacent

odal distance of boundary nodes, and the calculating node number is

 c , which is much larger than the total number of boundary nodes N , in

ther words, N c ≥ N . In this case, an interpolation scheme based on the

ethod of fundamental solution can be built, which can be given as 

 𝑐 

(
𝑧 𝑖 
)
= 

𝑁 ∑
𝐽=1 

𝑈 

(
𝑧 𝑖 , 𝑧 𝐽 

)
𝛼𝐽 (27) 

 𝑐 

(
𝑧 𝑖 
)
= 

𝑁 ∑
𝐽=1 

𝑇 
(
𝑧 𝑖 , 𝑧 𝐽 

)
𝛽𝐽 (28) 
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Substituting Eqs. (22) and (23) into Eq. (27) , one can get 

 

 

 

 

 

 

𝑈 

(
𝑧 1 , 𝑧 1 

)
𝑈 ( 𝑧 1 , 𝑧 2 … 𝑈 

(
𝑧 1 , 𝑧 𝑁 

)
𝑈 

(
𝑧 2 , 𝑧 1 

)
𝑈 

(
𝑧 2 , 𝑧 2 

)
… 𝑈 

(
𝑧 2 , 𝑧 𝑁 

)
⋮ ⋮ ⋱ ⋮ 

𝑈 

(
𝑧 𝑁 𝑐 

, 𝑧 1 

)
𝑈 

(
𝑧 𝑁 𝑐 

, 𝑧 2 

)
… 𝑈 

(
𝑧 𝑁 𝑐 

, 𝑧 𝑁 

)
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝛼1 
𝛼2 
⋮ 
𝛼𝑁 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑢 𝑐 
(
𝑧 1 
)

𝑢 𝑐 
(
𝑧 2 
)

⋮ 

𝑢 𝑐 

(
𝑧 𝑁 𝑐 

)
⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(29)

From Eq. (27) , one can easily obtain the interpolation coefficient,

hen one can get the OSIF of displacement, which is 

𝐼𝐹 𝑈 

(
𝑧 𝐼 , 𝑧 𝐼 

)
= 

𝑢 𝑐 
(
𝑧 𝐼 
)
− 

∑𝑁 

𝐽 =1 ,𝐽 ≠𝐼 𝑈 

(
𝑧 𝐼 , 𝑧 𝐽 

)
𝛼𝐽 

𝛼𝐼 
(30)

Using the same method, one can easily get the interpolating coeffi-

ient, then the OSIF of stress can also be obtained as 

𝐼𝐹 𝐺 𝑥 

(
𝑧 𝐼 , 𝑧 𝐼 

)
= 

𝜎𝑥 
(
𝑧 𝐼 
)
− 

∑𝑁 

𝐽 =1 ,𝐽 ≠𝐼 𝐺 𝑥 

(
𝑧 𝐼 , 𝑧 𝐽 

)
𝛽𝐽 

𝛽𝐼 
(31)

𝐼𝐹 𝐺 𝑦 

(
𝑧 𝐼 , 𝑧 𝐼 

)
= 

𝜎𝑦 
(
𝑧 𝐼 
)
− 

∑𝑁 

𝐽 =1 ,𝐽 ≠𝐼 𝐺 𝑦 

(
𝑧 𝐼 , 𝑧 𝐽 

)
𝛽𝐽 

𝛽𝐼 
(32)

𝐼𝐹 𝐺 𝑥𝑦 

(
𝑧 𝐼 , 𝑧 𝐼 

)
= 

𝜏𝑥𝑦 
(
𝑧 𝐼 
)
− 

∑𝑁 

𝐽 =1 ,𝐽 ≠𝐼 𝐺 𝑥𝑦 

(
𝑧 𝐼 , 𝑧 𝐽 

)
𝛽𝐽 

𝛽𝐼 
(33)

Based on OIFT ( z I ,z I ) = OIFG ij ( z I ,z J ) n j , one can get the origin intensity

actor of traction. 

.3. Singular hybrid boundary node method 

According to the hybrid displacement variational theory, the local

oundary integral equation can be given as 

∫
𝑆 

(
𝑡 − ̃𝑡 

)
ℎ 𝐽 ( 𝑄 ) 𝑑Γ = 0 (34)

∫
𝑆 

( 𝑢 − ̃𝑢 ) ℎ 𝐽 ( 𝑄 ) 𝑑Γ = 0 (35)

n which h J ( Q )is the test function, and the complete function can be

eferred as references [11-13] , u, t are displacement and traction on

nternal points, which are interpolated by Eqs. (19) - (21) , 𝑢̃ , 𝑡 are dis-

lacement and traction on boundary nodes, which are interpolated by

PIM, and they are based on Eqs. (17) and (18) . 

Substituting Eqs. (17) – (21) into Eqs. (34) and (35) , one can get the

inear system equation of the present method, which are 

𝐱 = 𝐇𝐭 (36)

𝐱 = 𝐇𝐮 (37)

n which matrices T, U, H can be referred in references [11-13] . 

Based on Eqs. (19) - (21) , one can get the field function of stress, dis-

lacement on any points, which can be written as 

 𝑖 

(
𝑧 𝐼 
)
= 

𝑁 ∑
𝐽 =1 ,𝐽 ≠𝐼 

𝑈 𝑖 

(
𝑧 𝐼 , 𝑧 𝐽 

)
𝑥 𝐽 + 𝑂𝐼𝐹 𝑈 

(
𝑧 𝐼 , 𝑧 𝐼 

)
𝑥 𝐼 (38)

 𝑖 

(
𝑧 𝐼 
)
= 

𝑁 ∑
𝐽 =1 ,𝐽 ≠𝐼 

𝐺 𝑖 

(
𝑧 𝐼 , 𝑧 𝐽 

)
𝑥 𝐽 + 𝑂𝐼𝐹 𝑇 

(
𝑧 𝐼 , 𝑧 𝐼 

)
𝑥 𝐼 (39)

Different from the traditional hybrid boundary node method, only

oundary nodes are needed in the present method, and the zero traction

n crack surfaces can be automatically satisfied, and no crack surface

lements are needed. 
136 
. Implementation for SBNM 

For linear fracture problems, the main problem is calculating stress

ntensity factor. Different from some other methods, it can be seen in

q. (4) that the fundamental solution of stress intensity factor can be

btained from the Erdogan fundamental solutions. Based on Eqs. (19) -

21) , one can get 

 𝐼 

(
𝑧 𝐼 
)
= 

𝑁 ∑
𝐽=1 

𝐾 

𝐸 
𝐼 

(
𝑧 𝐼 , 𝑧 𝐽 

)
𝑥 𝐽 (40)

 𝐼𝐼 

(
𝑧 𝐼 
)
= 

𝑁 ∑
𝐽=1 

𝐾 

𝐸 
𝐼𝐼 

(
𝑧 𝐼 , 𝑧 𝐽 

)
𝑥 𝐽 (41)

n which 𝐾 

𝐸 
𝐼 
( 𝑧 𝐼 , 𝑧 𝐽 ) , 𝐾 

𝐸 
𝐼𝐼 
( 𝑧 𝐼 , 𝑧 𝐽 ) are the Erdogan fundamental solutions

f stress intensity factor, x J is the interpolating coefficient. Because the

alculating points are located in the internal of calculating domain, then

o singular is occurred all over the interpolating process, then no OSIF

or stress intensity factor is needed. 

In the Erdogan fundamental solutions, the analytical functions can

ot be easily obtained from Eqs. (1) - (12) . In other words, the analytical

unction is not needed for calculating. Only the values on different points

re needed for the whole calculating, then, one can only substitute the

oordinate of the source points and the field points into Eqs. (1) - (12) ,

nd using the theory of complex function, each different values of the

rdogan fundamental solutions can be separated by Eqs. (1) - (20) . 

For simplification, a dimensionless stress intensity factor is defined,

hich is 

̂
 𝐼 ,𝐼 𝐼 = 

𝐾 𝐼 ,𝐼 𝐼 

𝜎
√
𝜋𝑎 0 

(42)

n which 𝜎 is the far field stress, and a 0 is the total length of crack. 

. Numerical examples 

In this section, several numerical examples are given to illustrate the

ccuracy and effectiveness of the present method. 

.1. Mode I central cracked plane 

A pure mode I central cracked plane is considered in this example,

hich can be seen in Fig. 2 , and 2 a , 2 W , 2 H are crack length, width

nd height of the crack plane, and 𝜎 = 1 is considered in this section.

esides, different crack lengths are considered for comparison purpose.

Fig. 3 plots the relative errors for different crack lengths and different

oundary node numbers, it can be seen in this figure that convergence of

he present method is quick, and the accuracy of the present method is

igh, and when the boundary node number is more than 90, the relative

rror decreases much slower. 

Fig. 4 shows the dimensionless stress intensity factor for different

rack lengths, and it can be seen that the present method is very close

o the analytical solution and results by Spline fictitious boundary ele-

ent method (SFBEM) [37] , which illustrates that the present method
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Fig. 3. Relative errors for different boundary node numbers and different crack 

lengths. 

0.00 0.25 0.50 0.75 1.00
0.50

0.75

1.00

1.25

1.50

1.75

2.00

F I
S s seln oisne

mi
D

a / W

 Analytical
 The present method
 SFBEM[37]
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5

 

t  

c  

 

c  
s accurate and effective, compared to the traditional hybrid boundary

ode method, only boundary nodes are arranged for calculating, and no

rack surface nodes are needed, and the zero traction boundary condi-

ion for crack surfaces is automatically satisfied. 

.2. Single-sided inclined crack rectangular plate 

A rectangular plate with a single-sided inclined crack is considered

n this example, which can be seen in Fig. 5 . a is crack length, W is width

f the plate, the plate height is 2.5 H , 𝜎 = 1, and the inclined angle to

ertical direction is 0° < 𝛽 ≤ 90°, representing a mixed mode fracture

roblem. 

In the present method, a total of 144 boundary nodes are used in

his example, crack inclined angles 𝛽 = 45°, 𝛽 = 67.5° and 𝛽 = 90° are

onsidered, which are the same as the above example. Results by SFBEM

37] are employed for comparison. 

Figs. 6 and 7 plot the results of dimensionless stress intensity factor

y the present method, SFBEM and analytical solution, in which a great

greement can be achieved, which illustrates that the present method is

ccurate and effective. Compared to the traditional method, no meshing

s needed on crack surfaces in the present method. 
137 
.3. A central inclined cracked plate 

Fig. 8 shows an angle-cracked plate with the length 2 b = 20 m and

he width 2 h = 30 m . The crack length is 2 a = 3 m , and the angle between

rack direction and vertical direction is 𝛼. The far field tensile is 𝜎 = 1P a .

Fig. 9 shows the stress intensity factor K I and K II for different in-

lined angles 𝛼, it can be seen that results by the present method are very
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Table 1 

Dimensionless stress intensity factors for a central inclined plate. 

Angle 𝛼

𝐾̃ 𝐼 = 𝐾 𝐼 ∕ 𝐾 𝐴 𝐼 𝐾̃ 𝐼𝐼 = 𝐾 𝐼𝐼 ∕ 𝐾 𝐴 𝐼𝐼 

Present method HBNM[23] XFEM[39] Present method HBNM[23] XFEM[39] 

15 0.983 1.021 1.034 0.988 1.013 0.979 

30 1.010 1.009 1.011 1.007 1.005 1.006 

45 1.005 1.007 0.991 1.012 1.028 0.922 

60 1.009 1.011 1.017 1.008 1.007 1.013 

75 0.985 1.014 1.019 0.983 1.020 1.033 

b

h
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y

σ

σ

b

h

α

Fig. 8. Central inclined cracked plate under tensile. 
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Fig. 9. Stress intensity factor for a central inclined plate on different inclined 
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Table 2 

Stress intensity factors for the doubly cracked hole. 

Method 𝐾 𝐼 ∕ 𝜎
√
𝜋( 𝑟 + 𝑎 ) 

The present method 1.5633 

DHBNM with Quadratic basis [23] 1.6029 

DHBNM with enriched basis [23] 1.5632 

BEM by Chang and Mear[40] 1.5627 

BEM by Pan [41] 1.5636 
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f  
lose to analytical solutions, results by extended finite element method

XFEM) [39] and the traditional hybrid boundary node method [23] ,

hich reveals that the present method can achieve a great accurate and

ffective, because only 88 boundary nodes are needed for the whole

alculating, but 120 boundary nodes are needed on boundary and crack

urfaces by the traditional hybrid boundary node method. Table 1 shows

he dimensionless stress intensity factors, in which results by the tradi-

ional hybrid boundary node method and XFEM are also given for com-

arison, and one can see that the present method can get much more

ccurate results compared to the other two methods. 

.4. Panel with doubly cracked hole 

In this section, a panel which contains a doubly-cracked hole is con-

idered, which is shown in Fig. 10 , and a uniaxial tensile 𝜎 is imposed

n the upper and bottom sides of the plate. The geometry of the calcu-
138 
ating domain is given as: 2 h / W = a / r = 1, and r + a = W /4. Results

y Chang and Mear [40] , Pan [41] are given for comparison, and the

ontinuous-discontinuous hybrid boundary node method results by Yan

t al. [23] are also presented in this section. 

The stress intensity factor for the doubly-cracked hole is shown in

able 2 , in which results by some other methods are given for compar-

son. It can be seen that the results obtained by the present method are

ell agreed between those four different methods. For simplification, a

alf model of Fig. 10 is considered in the present work, and a total of

01 boundary nodes are used for calculating, and in the present method

o crack surface nodes are needed. For the traditional hybrid boundary

ode method, a total of 150 boundary nodes were used [23] , and crack

urface elements are inevitable for zero traction boundary conditions. 

. Conclusions 

In the present work, the Erdogan fundamental solutions for infinite

racked plates are introduced to the hybrid boundary node method, and

 new hybrid boundary node method for linear fracture problems is

roposed. Firstly, the concept of the origin singular intensity factor is

mployed into the present method, in which the OSIF for the Erdogan

undamental solutions is developed to overcome the singular when the

eld points coincide with the source points, and no virtual source points

re needed, and a new scheme for calculating the values of OSIF for the

rdogan fundamental solutions is proposed. Because the zero traction

oundary condition on crack surfaces is naturally and strictly satisfied,

o nodes are arranged on the crack surfaces in the entire calculating

rocess, and no special deal is needed for stress boundary condition on

rack surfaces. Based on the Erdogan fundamental solution of stress in-

ensity factor for the mixed mode crack, the stress intensity factor of the

resent method can be easily and directly interpolated by the Erdogan

undamental solutions, and no complex scheme for calculating stress
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ntensity factor is needed. Based on the aforementioned theories and

ethods, the proposed method is applied to analyze some linear crack

roblems, and numerical examples are given to illustrate that the com-

utational accuracy, convergence rate and the versatility of the present

ethod are very high, and it can be further used for practical engineer-

ng operations. 
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