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Abstract: Natural fractures are generally well developed in most hydrocarbon and geothermal reservoirs, which can produce complex fracture 

networks due to the activation of fractures during hydraulic stimulation. The present paper is devoted to developing a method to investigate the 

activation characteristics of fracture under injection-shearing coupled condition at laboratory scale. The fluid is injected into the single-fractured granite 

until the fracture is activated based on the triaxial direct shear tests. The results show that injection process can significantly modify the shear stress 

distribution field, resulting in release of shear stress and relative slip between the opposite sides of the fractured surface. The injection-induced 

activation of fracture is strongly dependent on the stress states. When the normal stress increases, the injection-induced activation pressure increases, 

and the comparatively high normal stress can restrain the fracture activation. The fracture deformation mechanisms during injection are also discussed 

preliminarily with the experimental data. The sensitivity of shear stress to fluid injection increases with increase of shear stress level, while it decreases 

under high normal stress. The results can facilitate our understanding of the natural fracture activation behavior during fluid pressure stimulations. 
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1. Introduction     

Hydraulic fracturing is critically important in improving productivity 

of deep oil/gas reservoirs, and has recently been widely used in 

geothermal reservoirs (Nemoto et al., 2008; Chuprakov et al., 2013; 

Kumari and Ranjith, 2019). Injection activities are frequently encountered 

in various industries, e.g. hydrocarbon exploitation, enhanced geothermal 

system developments, geological carbon storage, reservoir impoundment, 

and mining engineering (Deichmann and Giardini, 2009; McGarr et al., 

2015; Cheng et al., 2019; Zhang et al., 2019b). Nevertheless, wastewater 

disposal associated with stimulation and production by injection into the 

subsurface could yield a higher risk of induced seismicity (Ellsworth, 

2013), because this practice can activate pre-existing fractures and even 

large-scale faults. Rutqvist et al. (2015, 2016) conducted extensive 

researches on fault activation and induced seismicity in geological carbon 

storage. Doglioni (2018) classified the induced seismicity into four types, 

namely (I) graviquake, (II) reinjection quake, (III) hydrofracturing quake, 

and (IV) load quake; whilst fluid injection (type II) is possibly the most 

common mechanism of induced seismicity. Furthermore, some 

suggestions are proposed to reduce the probability of triggered seismicity 

(Zoback, 2012; Cornet, 2015; McGarr et al., 2015). In addition to 

large-scale faults, there are natural fractures in numerous formations that 

are the host medium for oil/gas accumulation (Montgomery et al., 2005), 

and complex hydraulic fracture networks may be created during treatment 

(Gale et al., 2007; Gu et al., 2012; Wang, 2019). Moreover, many studies 

(e.g. Huang et al., 2014; Selvadurai et al., 2018; Wang, 2019) have shown 

that the presence of natural fractures has significant impacts on the 

propagation of hydraulic fractures and associated flow characteristics. 
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Therefore, the interaction between hydraulic fracture and natural fracture 

has become a challenging issue over the recent years (Chuprakov et al., 

2013; Wang et al., 2018; Cordero et al., 2019), which is basically 

characterized by arresting, crossing and slippage due to the influences of 

difference in horizontal principal stresses, approaching angle, and friction 

coefficient of fracture surface. 

During hydraulic fracturing, the natural fractures are likely to be 

activated under shear stress, and more complex fracture networks will be 

created subsequently. This can maximize the stimulated reservoir volume 

and effectively improve the productivity of reservoirs (Warpinski and 

Teufel, 1987; Montgomery et al., 2005; Wang et al., 2018; Frash et al., 

2019a). Guglielmi et al. (2015a, b) experimentally demonstrated that 

small-scale (micrometer-to-millimeter) fault activation may lead to a 

dramatic increase in permeability, and further revealed that fluid injection 

can generally trigger aseismic slip, followed by induced seismicity. 

Nemoto et al. (2008) conducted laboratory injection-induced slip 

experiments on pre-fractured granite, and the results show that stepwise 

slip and temporal increase in permeability occur in fractures during 

induced slip, and fracture roughness plays a significant role. Frash et al. 

(2016a, b; 2017; 2019b) performed a series of triaxial direct-shear tests 

with X-ray imaging on shale (or schist) and investigated the shear fracture 

propagation and flow behavior. Kohli and Zoback (2013) studied the 

effects of clay and organic contents on the frictional properties of shale 

reservoir rocks using laboratory friction experiments, indicating that the 

frictional strength can be reduced with increasing clay and organic 

contents. Creep experiments were also conducted on fault gouges in the 

double direct shear configuration to analyze fault slip evolution and 

hydrological properties under fluid injection (Scuderi et al., 2017; Scuderi 

and Collettini, 2018). Other observations have also been reported on 

evolution of fracture permeability during shearing and hydrostatic 



 

compression (e.g. Carey et al., 2015; Fang et al., 2017; Selvadurai et al., 

2018). 

Nevertheless, the above-mentioned studies mainly focused on the 

fracture permeability evolution, frictional behavior, and fault 

activation-induced seismicity. Parts of the experimental achievements are 

completed under low stress conditions, which is only suitable for practical 

projects in shallow depth. In addition, studies on fracture or fault 

activation are mainly based on numerical methods (e.g. Shen et al., 2014; 

Rutqvist et al., 2016; Lisjak et al., 2017; Cordero et al., 2019; Zhang et 

al., 2019a, c) and in situ micro-seismic (MS) monitoring (e.g. Huang et 

al., 2014; Cheng et al., 2019), and few experimental observations has 

been reported. In this context, we proposed a new method to investigate 

the injection-induced activation characteristics of fracture, which can 

better facilitate our understanding of this issue. Taking the type II of 

induced seismicity (Doglioni, 2018) as an example, the stress conditions 

adopted in this method are almost consistent with the practical cases, as 

shown in Fig. 1. 

 

Fig. 1. (a) Schematic diagram of the injection well geometry used during hydraulic 

fracturing of fractured reservoir (modified after from Davies et al., 2013; Scuderi 

and Collettini, 2018). (b) Fluids infiltrating the natural fractures (blue arrows) due to 

hydraulic fracturing connection. The stress state around the fracture is presented. (c) 

Coulomb–Mohr diagram for the fracture before fluid infiltration (gray semicircle). 

As the fluid pressure increases (ΔP), the fracture may become instable, approaching 

the failure envelope (blue semicircle) and causing fracture activation. 

2. Experimental set-up 

2.1. Material 

The studied granite was sampled from Suizhou, Hubei Province, 

China. The mineral composition of the sample was obtained using X-ray 

diffraction (XRD). The XRD results indicate that the granite is mainly 

composed of albite (55.31%), microcline (28.85%), quartz (14.35%), and 

biotite (1.49%). Fig. 2 shows an optical microscope image at 25 times 

magnification, with which the mineral texture can be clearly observed. 

According to the standard supported by the International Society of Rock 

Mechanics and Rock Engineering (Brown, 1981), cylindrical samples 

were prepared with a dimension of 100 mm × 50 mm (length × diameter), 

as shown in Fig. 3a. The intact rock sample has a uniaxial compressive 

strength (UCS) of 96.7 MPa and a Young’s modulus (E) of 28.2 GPa. The 

indirect tensile strength is 3.5 MPa measured by Brazilian tests (ISRM, 

1978). The gas permeability of the studied rock material was measured to 

be 2.35 × 10−17 m2 under confining pressure of 2 MPa. 

The Brazilian test was adopted to create a single fracture along the 

length of the granite sample (see Fig. 3b), in order to ensure the fracture 

with equal/similar roughness (Kunal et al., 2016; Tang et al., 2019). 

 

Fig. 2. Optical microscope image (×25). 

2.2. Test procedures 

The injection-induced fracture activation was investigated by triaxial 

direct shear test. The shear test device was placed in the 

hydro-mechanical coupling test system (Zhang et al., 2018), as illustrated 

in Fig. 4a. The shearing disc consists of two different materials (parts A 

and B) with different stiffnesses. Part A is rigid steel (i.e. forcing block) 

and part B is silicone with better elasticity and higher deformability. The 

two shearing discs are placed opposite on the upper and lower surfaces of 

the sample to convert the axial force into shear stress along the fracture 

surface, as shown in Fig. 3c. It is worth noting that the silicone filled 

between the forcing block and the end surfaces of sample provides 

negligible additional resistance to axial sample deformation (Samuelson 

and Spiers, 2012; Liu et al., 2020). 
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Fig. 3. (a) Granite samples, (b) the single fracture prefabricated using the Brazilian test, and (c) sample installation and sealing method. 

 

 
Fig. 4. Experimental set-up. (a) Hydro-mechanical coupling test system, and (b) details of conceptual view and principle of triaxial direct shear test. LVDT is Linear Variable 

Differential Transformers. Pc and σn respectively represent the confining pressure and the normal stress of fracture, which are equivalent. F is the axial force applied directly 

on the shearing discs. τ is the shear stress along the fracture converted from F. Pin is the fluid injection pressure. 

 

This experiment was performed at room-temperature (25 °C) under 

different normal stresses (e.g. σn = 2, 5, 10, 20, 30, 40 MPa) in this work, 

using the following steps. Note that the proposed method is applicable to the 

most common mechanism of induced activation, i.e. fluid injection 

(Doglioni, 2018). The aim of this study is to verify the reliability of the 

proposed method and preliminarily discuss the characteristics of 

injection-induced fracture activation at laboratory scale. Taking σn = 20 MPa 

as an example, the loading stress path is shown in Fig. 5a. 

 

(1) Step 1: Silicone is applied along the fracture on the sample outer 

surface for preliminary sealing in order to make the outer surface flat, 

and then the sample and shearing discs are sealed with a plastic 

jacket (see Fig. 3c) to separate the sample from the hydraulic oil, and 

placed in the confining chamber (see Fig. 4a). The shear and normal 

displacements are measured via LVDTs and lateral strain gauge, 

respectively. The pressures are monitored by transducers with 

accuracy of ±0.1 MPa. The above experimental data can be recorded 

in a data acquisition center. 

(2) Step 2: Apply confining stress (Pc) as isotropic stress by injecting 

silicon oil into the confining chamber at a rate of 0.5 MPa/min, 

which is equivalent to σn applied on the pre-existing fracture. 

(3) Step 3: Apply axial force (Fi) to the desired level by running the 



 

axial servo pump at a rate of 1 mL/min under constant normal stress, 

which results in a path that can be approximated as strain-controlling 

fashion (Carey et al., 2015; Frash et al., 2016a; Ding et al., 2020). 

The applied axial force can be converted into the shear stress (τi) on 

the fracture according to the following relation with reference to the 

method suggested by ISRM (Muralha et al., 2014): 

i
i

F
τ

DL
=                                                   (1) 

where D and L are the diameter and length of the sample, respectively. 

Although Frash et al. (2019b, c) calibrated the shear stress obtained 

under the triaxial direct-shear condition using the direct shear tests of two 

Teflon semicylinder samples, the focus of this study is on the effects of 

fluid injection on fracture activation behavior. Hence, the additional 

resistance induced by the deformed silicone can be ignored, i.e. the 

applied axial force is considered to completely convert into shear stress in 

this context (Liu et al., 2020). 

(4) Step 4: Water is injected at a rate of 0.5 mL/min into the fracture 

simultaneously through the permeable holes arranged along the 

diameter inside the shearing discs which are placed on the upper and 

lower ends of the sample (see Fig. 4b). As injection pressure 

increases, the pre-existing fracture will slip (i.e. activated) due to the 

continuous decrease of the effective normal stress. Low injection rate 

is employed in order to prevent a rapid increase of injection pressure 

(Nemoto et al., 2008). 

(5) Step 5: The decrease in τi during injecting process can be regarded as 

an indicator that the fracture has been activated. Furthermore, the 

injection should be stopped and the fluid pressure must be unloaded 

to prevent excessive slip that will affect the subsequent tests. 

(6) Step 6: Continue increasing τi and repeat steps 3–5, i.e. multi-stage 

shear procedure (Muralha et al., 2014). It is noteworthy that three or 

four shear stress levels (τi/τmax) are selected under each normal stress 

to investigate the injection-induced activation of fracture under 

varied stress states, where τmax refers to as the maximum shear 

strength. 

 

Fig. 5. (a) Diagram of the stress path at σn = 20 MPa (MS: mechanical shear, FI: fluid injection), (b) variation of shear stress during fluid injection, and (c) shear and normal 

displacements of fracture during fluid injection. 
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3. Results and discussion 

3.1. Stress state and activation pressure of fracture 

When the fracture is activated, the shear stress is noticeably reduced 

(see Fig. 5b), which is consistent with the observations of fractured 

hydro-shear test (Frash et al., 2019b). During injection, the shear stress 

mainly shows four phases: constant (phase I), gradually decreasing (phase 

II), sharply decreasing (phase III), and slowly increasing (phase IV). It 

shows that low initial injection pressure has a slight influence on the 

fracture stability, and the shear stress tends to be constant in phase I. As 

the injection pressure increases, the effective normal stress is 

continuously reduced and the fracture starts to slide, showing that the 

shear stress decreases gradually (phase II). Subsequently, the frictional 

instability on the fracture surface appears as a sharp decrease in shear 

stress. Although the injection pressure is gradually unloaded 

simultaneously, the fracture will further slide under the comparatively 

higher injection pressure, which presents continuous decrease in shear 

stress (phase III). In other words, there is hysteresis scenario in shear 

stress restitution. When the injection pressure is unloaded to a certain 

level, the shear stress starts to increase slowly (phase IV), due to the shear 

resistance recovering correlated to the increase of effective normal stress. 

This phenomenon is similar to the numerical results obtained by Kamali 

and Ghassemi (2018). Therefore, the injection process can significantly 

modify the shear stress distribution field of the fracture surface, causing 

release of shear stress and relative slip between the opposite sides of the 

fractured surface. 

Fluid injection can result in reduction of effective normal stress, and 

Mohr’s circle moves towards the sliding failure envelope until it triggers a 

slide (e.g. Ellsworth, 2013; Doglioni, 2018; Fan and Liu, 2019). Hence, 

injection-induced activation of fracture has a close relation with its stress 

states. When the normal stress is 2–20 MPa, the injection-induced activation 

pressure will decrease with increase of the shear stress. When the normal 

stress is comparatively high (e.g. σn = 30 and 40 MPa), the variations of 

injection-induced activation pressure are not evident upon increasing shear 

stress (see Fig. 6). The results suggest that the increase of σn can restrain the 

fracture activation to some extent. Obviously, as the normal stress increases, 

the injection-induced activation pressure increases, and approaches to the 

normal stress at σn = 30 and 40 MPa in this work. For practical reservoirs, 

the deeper the rocks, the higher the required injection pressure to activate the 

fractures, and the differential stresses also have a significant effect (Rutqvist 

et al., 2016). 

3.2. Deformation characteristics of fracture during fluid injection 

As shown in Fig. 5c, the shear displacement parallel to the direction 

of fracture increase gradually during injection process. On one hand, 

shear creep behavior occurs under constant shear stress (Scuderi et al., 

2017), resulting in an increase in shear displacement. On the other hand, 

fluid injection decreases the effective normal stress and frictional 

resistance, thus the fracture is more prone to sliding with a gradual 

increase in shear displacement. It can also be seen that fluid injection can 

accelerate the slip rate of the fracture, showing a good agreement with the 

findings reported by Guglielmi et al. (2015a), Scuderi et al. (2017), and 

Frash et al. (2019b). Furthermore, the variation of fracture normal 

displacement is similar to that of shear stress, as shown in Fig. 5b and c. 

The fracture dilation is not obvious at the initial injection stage. As the 

injection pressure increases, the fracture dilation occurs and accelerates 

gradually, indicating that the opening onset of the fracture occurs during 

sliding (Liu et al., 2020). This scenario possibly reflects the surface 

roughness and associated shear dilatation under the combined shear stress 

and continuous injection (Guglielmi et al., 2015a). After that, the dilation 

rate increases dramatically. When the fracture is activated, the shear 

displacement remains stable at the current position under the combined 

effects of reduced injection pressure and shear creep behavior. However, 

the fracture tends to close as the injection pressure is unloaded. There is 

also hysteresis scenario in recovery of normal displacement, similar to 

shear stress as mentioned previously. Therefore, injection-induced 

activation of fracture can be well characterized by the deformation 

mechanisms in this context. 

 

Fig. 6. Variations of the fracture activation pressure (solid line) and fracture 

critical-initiation pressure (dashed line) with shear stress under various normal 

stresses (σn). 

3.3. Stress sensitivity of fracture activation 

According to the above deformation analyses, the fracture slides 

continuously under constant shear stress in the multi-shearing stages, while 

the fracture opening onset occurs under a certain injection pressure. The 

inflection point of normal displacement is highly consistent with initial 

reduction of shear stress (i.e. the starting point of phase II), and the 

corresponding injection pressure can be considered as the fracture 

critical-initiation pressure (point Pcrit in Fig. 5b). Prior to this, the fracture 

may be stabilized due to the cessation of injection, i.e. the stable sliding 

(phase I), and then the fracture can enter the unstable sliding (phases II, III) 

after the fracture opening onset with the significant variations in shear and 

normal displacements, as shown in Fig. 5b and c. Therefore, the fracture 

critical-initiation pressure of fluid injection results in a significant change in 

the stress state of the fracture surface. It is important in assessing the fracture 

activation behavior during injection. 

In each experiment, the first injection-induced fracture activation can 

weaken the shear resistance of the fracture to some extent, including the 

damage of surface asperities, softening caused by fluid injection, and 

self-propped fracture formed after activation. As the shear stress increases 

gradually, subsequent repeated activation will significantly reduce the 

fracture critical-initiation pressure. This also well explains that the cyclic 

hydraulic fracturing can reduce the breakdown pressure and further 

enhance reservoir fracture connectivity (Zang et al., 2013; Patel et al., 

2017). Therefore, the fracture critical-initiation pressure decreases with 

increasing shear stress (i.e. cumulative activation times), as shown in Fig. 

6. This is distinguished from the variations of fracture activation pressure, 

especially under high normal stress (e.g. σn = 30 and 40 MPa), thus the 
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critical-initiation pressure can be utilized to predict the fracture activation 

behavior under injection-shearing coupled condition in this context. For 

comparison purpose, the fracture critical-activation coefficient (η) is 

proposed to evaluate the sensitivity of shear stress to injection process: 

crit

act

P
η

P
=                                                   (2) 

where Pact is the injection pressure corresponding to fracture activation, 

Pcrit represents the fracture critical-initiation pressure, which is the sign of 

shear stress decreasing and the transition from stable sliding to unstable 

sliding of fracture. 

The larger η indicates that the higher injection pressure may be 

required for the initial release of shear stress, even close to the fracture 

activation pressure (η = 1), i.e. the shear stress is not very sensitive to 

fluid injection. The smaller η suggests that the response of shear stress is 

more sensitive during injection process. As shown in Fig. 7, the fracture 

critical-activation coefficient decreases monotonously under varied 

normal stresses, indicating that the sensitivity of shear stress to fluid 

injection increases with increase of shear stress level. Furthermore, the 

linear fitting slope decreases with increase of normal stress, suggesting 

that the shear stress is more sensitive when normal stress is lower; the 

fracture activation will be restrained when the normal stress is higher, and 

the sensitivity of shear stress is reduced subsequently. 

 

Fig. 7. Variations of the fracture critical-activation coefficient with shear stress level 

(τi/τmax) under various normal stresses (σn). 

4. Conclusion 

The main conclusions based on the experimental results can be 

drawn as follows: 

 

(1) The new method proposed in this study is valid for investigation of 

injection-induced fracture activation at laboratory scale. The 

injection-induced activation of fracture is strongly dependent on the 

stress states. The fracture activation is mainly due to the fact that the 

fluid injection will decrease the effective normal stress, resulting in 

alteration of shear stress distribution field and releasing the shear 

stress accompanied by the relative slip between the opposite sides of 

the fractured surface. 

(2) The injection-induced activation pressure increases with increase of 

the normal stress. It decreases with increase of the shear stress under 

the same normal stress. However, the activation of fractures can be 

restrained under high normal stress (e.g. σn = 30 and 40 MPa), and 

the activation pressure approaches to the applied normal stress and 

remains almost constant with different shear stresses. The fracture 

critical-initiation pressure is defined based on the deformation 

characteristics and variation of shear stress, and it decreases with 

increasing shear stress under any normal stress. In addition, the 

sensitivity of shear stress to fluid injection increases with increase of 

shear stress level, but it can be reduced under comparatively higher 

normal stress, according to the proposed fracture critical-activation 

coefficient in this work. 

(3) Higher injection pressure may be required for deeper fractured 

reservoirs to activate the pre-existing natural fracture system and to 

improve productivity during hydraulic stimulation. Furthermore, the 

injection activities should also be well controlled in combination 

with site-specific conditions to prevent large-scale fault 

activation-induced seismic hazards, especially in wastewater 

reinjection. 

 

Nevertheless, in this method, the additional resistance resulting from 

the deformed silicone in the shearing discs is not considered. This may 

induce an overestimation of shear stress acting on the fracture, which 

should be addressed in future work. In addition, the settings of stress 

conditions in the following studies should focus on practical cases of 

reservoirs. 
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