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a b s t r a c t 

Grouting is a commonly used technique in rock engineering to enhance the joint strength and improve the stability 

of surrounding rock. Grout penetration characteristic is controlled by grouting parameters and has a significant 

role on practice. In the study, a numerical manifold method (NMM) for grout penetration process simulation in 

fractured rock mass is firstly proposed. The fluid flow behaviour of the grout is assumed to be a Bingham fluid 

and control equations are established using discrete fracture network model. The global discretization equation, 

element sub-matrixes and NMM simulation algorithm for grouting are presented. Then, numerical tests for grout- 

ing process in a single fracture and a regular fracture network are conducted firstly to verify the proposed NMM 

grouting model by comparing with analytical solutions and experimental results. Furthermore, the effects of mesh 

size, fracture and slurry parameters on the grouting performance are systematically investigated using a random 

fracture network example. The numerical results indicate that the grouted zone and propagation depth decrease 

as the mesh size of numerical model and yield strength increases, while it increases as initial fracture aperture 

and grouting pressure increases. 
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. Introduction 

The existence of fractures can decrease rock mass strength and form

owing channels, which may cause an instability and groundwater

ush in the surrounding rock [1 , 2] . A grouting method, as an effec-

ive technique to improve the mechanical properties of rocks and pre-

ent groundwater leakage, is widely used in deep mining, civil and

etroleum reservoir engineering [3] . Many grouting parameters, such

s initial pressure, and slurry gel time can control the grouting projects

ffectively. Therefore, grouting process and influence factors should be

nvestigated. 

Many methods, such as laboratory tests, analytical analysis, and nu-

erical simulation, have been proposed to investigate the grouting pro-

ess. It is known that both experimental and analytical methods have

ome limitations to obtain required precision [4] . Considering the eco-

omics and practicality, numerical methods are a preferred way to study

lurry migration process in fractured rock mass. For example, Baca et al.

5] modelled fluid flow in fractured porous rock masses by finite ele-

ent method (FEM) and Prevost and Sukumar [6] used extended FEM

o study the grouting process in three-dimensional reservoir. However,

hese two techniques are continuum-based methods and the definition

f equivalent permeability was used to describe the fluid flowing in frac-
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ured rock mass. Furthermore, many discontinuum-based methods were

roposed on basis of discrete fractures networks (DFN) model. Saeidi et

l. [7] propose a numerical model to predict grout flow and penetra-

ion length into the jointed rock mass using discrete element method

DEM) and the effect of rock mass properties on grout flow rate and

enetration length were fully investigated. Eriksson et al. [8] predicted

rout spread in a two-dimensional lattice network using DEM. Xiao et al.

9] developed a grouting module based on the discontinuous deforma-

ion analysis (DDA) and studied the transient flow of grout. However,

he above studies only investigated the grout penetration in regular frac-

ure networks, which is fracture network with two sets of symmetrical

r perpendicular fractures. 

Grouting is a process of slurry migration into random fracture net-

ork. Mohajerani et al. [10] proposed an efficient algorithm for simu-

ating grouting process and developed a code to track the paths of grout

ropagation in discrete fracture networks. Liu et al. [11 , 12] and Sun et

l. [13] developed a combined finite-discrete element method grouting

odel to study the effect of in-situ stress conditions on grout penetra-

ion in fracture network. However, in DEM and finite-discrete element

ethod (FEDM) model, meshes can only along the cracks’ boundaries. 

Numerical manifold method (NMM), as a method combining the

EM and discontinuous deformation analysis (DDA), has two indepen-
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Fig. 1. Illustration of grouting process model in fractured rock mass. 
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ent cover systems and can generate meshes without considering the

racks. The NMM has been applied in rock dynamics [14–16] , rock fail-

re processes [17] , thermal shock cracking [18 , 19] , and rock creep [20] .

ver the past decades, the NMM has also been explored in many other

elds [21–32] . Hu and Rutqvist [33] simulated the dynamic contact

volution at the microscale for realistic geomaterials having arbitrary

hapes of grains and interfaces by NMM. Wu et al. [34] proposed a micro-

echanical NMM modeling and then investigated macro-mechanical re-

ponse and fracture behavior of rock. Hu and Rutqvist [35] developed

n approach for coupled processes in fractured geological media based

MM at multiple scales. 

Application of NMM for fluid flow in porous or fractured media

as also been developed in recent years. Zheng et al. [36] investi-

ated unconfined seepage flow in porous media using NMM. Yang et

l. [21] adopted NMM to model fluid flow through fractures and hy-

raulic fracturing process under coupled hydro-mechanical. Hu et al.

37 , 38] proposed a new model for simulation of fluid flow and coupled

ydro-mechanical process in fractured rock mass. Ma et al. [39 , 40] de-

eloped an NMM model for analysis of two-phase fluid flow in fracture

etworks. However, application of NMM to the penetration process of

rout in fractured rock mass is less studied. 

In this paper, the grout fluid flowing behaviour is supposed as a Bing-

am fluid and discrete fracture networks model is used to develop the

MM grouting model. The NMM is extended to simulate the grout pen-

tration in fractured rock mass. The discretization equations and NMM

lgorithm for grouting are firstly presented. Then the proposed NMM

routing model is verified by comparing with analytical solutions or ex-

erimental results. Finally, influence factors on grout propagation depth

re investigated by the proposed model. 

. Basic theory of NMM 

In NMM, there are two independent cover systems, including mathe-

atical cover (MC) and physical cover (PC). The manifold element (ME)

an generate from these two cover systems. The MCs are a set of over-

apped patches and they do not need to be consistent with but should

e larger than the problem domain. The PC patches are the intersec-

ion of MCs and the problem domain and union of all the PC patches

s PC system. Then, the ME is generated by the intersection of different

verlapped PC patches. 

To describe the local field characteristic, local approximation func-

ions (or cover functions), which can be constant basis, linear basis, or

igher-order polynomial functions, are defined on each PCs. The poly-

omial function can be expressed as: 

 𝐶 = 𝑟 ( 𝑥, 𝑦 ) = 

{
1 , 𝑥, 𝑦, ⋯ 𝑥 𝑛 , 𝑥 𝑛 −1 𝑦 ⋯ 𝑥 𝑦 𝑛 −1 , 𝑦 𝑛 

}
 𝑛 = 0 , 1 , 2 ⋯ ) 

(1) 

Therefore, the local field characteristic that is defined on each PC

atch can be expressed as: 

 𝑖 ( 𝑥 ) = 𝑅 

𝑇 ( 𝑥 ) ⋅𝐷 (2)

here D is the degrees of freedom and R 

T is polynomial basis, which

an be given as follows for two-dimensional problems: 

 

𝑇 ( 𝑥 ) = 

[ 

1 0 𝑥 0 𝑦 0 ⋯ 

0 1 0 𝑥 0 𝑦 ⋯ 

] 

(3)

Further, weight functions, which are defined by the MC, are used to

onnect the local approximation displacement function (listed in Eq. (2) )

ogether and form global displacement function over any ME. The rela-

ionship between local approximation displacement function and global

isplacement function can be expressed as follows by weight functions:

( 𝑥 ) = 

∑
𝑖 

𝑤 𝑖 ( 𝑥 ) ⋅ 𝑔 𝑖 ( 𝑥 ) (4)
94 
here w i ( x ) is the weight function for each MC patch, which should

atisfy the following conditions: 
 

𝑤 𝑖 ( 𝑥 ) ≥ 0∀( 𝑥 ) ∈ 𝑀 𝑖 

𝑤 𝑖 ( 𝑥 ) = 0∀( 𝑥 ) ∉ 𝑀 𝑖 

(5) 

ith ∑
 𝑥 )∈𝑀 𝑖 

𝑤 𝑖 ( 𝑥 ) = 1 (6)

Generally, the MC parches can be arbitrary shape. In this work, trian-

ular meshes are adopted to generate MCs. Therefore, the weight func-

ion of NMM is same as that of 3-node finite element. Besides, the poly-

omial basis in Eq. (3) is set as constant to avoid the linear dependence

roblem. On basis of them, the global governing equations can be ex-

ressed as follows [26] : 

𝐷 = 𝐹 (7)

. Grout penetration simulation using NMM 

Rock fracture grouting process model is shown in Fig. 1 . From Fig. 1 ,

he slurry travels from grouting pipe to injection hole and then injects

nto the joints under the initial grouting pressure. Fractured rock mass

onsists of both fracture and rock matrix. Therefore, in this work, some

ssumptions are introduced as follows: 1) The slurry flow is only oc-

urred in the fracture networks and slurry entered the rock matrix can

e ignored during the grouting process; 2) The slurry is incompressible

nd homogeneous fluid; 3) The slurry pattern and density remains un-

hanged during grouting. 

.1. Bingham flow equations 

The slurry used in geotechnical engineering is a mixture of cement

nd water, when ratio of water to cement varies from 0.6 to 1.0, the

lurry has plastic yield strength and viscosity [42] . Since the viscosity

f the grout is usually high, the slurry flow behavior can be supposed as

 Bingham fluid [43 , 44] , with the following rheological equations [41] :

= 𝜏0 + 𝜇( − 𝑑𝑣 ∕ 𝑑𝑦 ) (8) 

here 𝜏 is shear strength, 𝜏0 is yield strength, 𝜇 is grout dynamic vis-

osity, v is the slurry flow velocity, and y is distance in perpendicular to

rout flow direction. 

Fig. 2 shows a Bingham grout fluid model in a plate fracture. Due

o the yield strength of the grout, a plug region (the yellow area) with

ame velocity exists in the middle of slurry and flows together. Outside

he plug region is the grout fluid with velocity gradient. Therefore, the
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Fig. 2. Bingham grout fluid model in a plate fracture. 

Fig. 3. Relation between fracture networks and manifold element. (a) Fracture 

networks. (b) Manifold elements on a crack. 
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hear strength in the plug area keeps as 𝜏0 from Eq. (8) and the height

f plug can be obtained by equilibrium equation: 

 = 

2 𝜏0 
− ( 𝑑𝑝 ∕ 𝑑𝑥 ) 

(9)

here a is plug height and p is grout pressure. Considering that the plug

eight must be smaller than fracture aperture, which can be expressed

s follows: 

2 𝜏0 
𝑏 

≤ − 

𝑑𝑝 

𝑑𝑥 
(10)

here b is fracture aperture. Eq. (10) indicates that there is a critical

ressure gradient for Bingham grout fluid, which can be defined as: 

0 = 

2 𝜏0 
𝑏 

(11) 

here 𝜆0 is critical pressure gradient. When pressure gradient is no less

han 𝜆0 , the fluid can flow, otherwise it will stop flowing. 

From Fig. 2 , it is clearly that the Bingham grout fluid velocity is vary-

ng in fracture height direction. According to the grout flow governing

ifferential equations and boundary conditions [11] , the average grout

ow velocity can be expressed as follows: 

̄
 = 

𝑏 2 

12 𝜇

( 

− 

𝑑𝑝 

𝑑𝑥 

) 

[ 

1 − 

3 𝜏0 
𝑏 ( − 𝑑𝑝 ∕ 𝑑𝑥 ) 

+ 

4 𝜏0 3 

𝑏 3 ( − 𝑑𝑝 ∕ 𝑑𝑥 ) 3 

] 

(12)

Then, the grout flow rate per unit time can be obtained by: 

 = 𝑉 ⋅ 𝑏 = 

𝑏 3 

12 𝜇

[ 

− 

𝑑𝑝 

𝑑𝑥 
− 

3 𝜏0 
𝑏 

+ 

4 𝜏0 3 

𝑏 3 ( − 𝑑𝑝 ∕ 𝑑𝑥 ) 2 

] 

(13)

.2. Fluid pressure 

In this study, grout fluid flow is calculated through discrete fracture

etwork model (DFN), as shown in Fig. 1 . The key to solve DFN model

s to obtain the intersection and fracture line of fracture network. The

ntersection is obtained from geometrical relationship of fracture net-

ork and can be defined as hydraulic node during calculation, while

racture line is formed by two adjacent hydraulic nodes and can be de-

ned as hydraulic line element in NMM. As shown in Fig. 3 (a), there

re 3 cracks in a square domain and then generate 6 hydraulic nodes

red circles) and 5 hydraulic line element (such as L ik et al. ). 

Because the fracture networks connect each other, the mathematical

overs will be split by cracks and then forms different manifold elements

𝑘

95 
n either side of the crack. As shown in Fig. 3 (b), two MEs, namely

E1 and ME2 on the hydraulic line element L ij , were generated and

wo hydraulic nodes (i and j) are connected by L ij . Based on Eq. (13) ,

he grout flow rate from node i to j through L ij can be calculated as: 

 𝑖𝑗 = 

𝑏 𝑖𝑗 
3 

12 𝜇

⎡ ⎢ ⎢ ⎣ − 

Δ𝑝 𝑖𝑗 
𝑙 𝑖𝑗 

− 

3 𝜏0 
𝑏 𝑖𝑗 

+ 

4 𝜏0 3 

𝑏 𝑖𝑗 
3 (− Δ𝑝 𝑖𝑗 ∕ 𝑙 𝑖𝑗 

)2 ⎤ ⎥ ⎥ ⎦ (14) 

here b ij , l ij and Δp ij are fracture aperture, length and pressure loss of

ydraulic line element L ij , respectively. The pressure loss between node

 and j can be defined as: 

𝑝 𝑖𝑗 = 𝑝 𝑖 − 𝑝 𝑗 + 𝜌𝑔 
(
𝑧 𝑖 − 𝑧 𝑗 

)
(15)

here p i and p j are fluid pressure at hydraulic nodes i and j , respectively.

arameters z i and z j are vertical coordinates of hydraulic nodes i and j.

is fluid density. 

Once the fluid pressures at each node were obtained, the load ap-

lied on manifold element edges is simplified as linear load along the

ydraulic line element and the load components applied on arbitrary

lace (x,y) can be expressed by: 
 

𝑝 𝑥 ( 𝑟 ) = ( 𝑝 𝑗𝑥 − 𝑝 𝑖𝑥 ) 𝑟 + 𝑝 𝑖𝑥 

𝑝 𝑦 ( 𝑟 ) = ( 𝑝 𝑗𝑦 − 𝑝 𝑖𝑦 ) 𝑟 + 𝑝 𝑖𝑦 

(16) 

here p ix and p iy stand for x-direction and y-direction load components

t hydraulic node i , respectively. p jx and p jy stand for x-direction and y-

irection load components at hydraulic node j, respectively. Parameter

 is a no unit and satisfies 0 ≤ r ≤ 1. 

Therefore, the potential energy due to the fluid pressure can be ex-

ressed by: 

𝑚𝑒 1 = − ∫ 1 
0 
(

𝑢 𝑥 ( 𝑟 ) 𝑢 𝑦 ( 𝑟 ) 
){ 

𝑝 𝑥 ( 𝑟 ) 

𝑝 𝑦 ( 𝑟 ) 

} 

⋅ 𝐿 𝑖𝑗 𝑑𝑟 

 − 

{
𝐷 𝑚𝑒 1 

}𝑇 ∫ 1 
0 
[
𝑁 𝑚𝑒 1 

(
𝑥 ( 𝑟 ) 𝑦 ( 𝑟 ) 

)]𝑇 
⋅

{ 

𝑝 𝑥 ( 𝑟 ) 

𝑝 𝑦 ( 𝑟 ) 

} 

⋅ 𝐿 𝑖𝑗 𝑑𝑟 

(17) 

here D me 1 and N me 1 are DOFs and weight function of manifold element

E1, respectively. x(r) and y(r) are x-direction and y-direction coordi-

ates of arbitrary point on edge 1–2 and can be obtained by: 
 

𝑥 ( 𝑟 ) = ( 𝑥 𝑗 − 𝑥 𝑖 ) 𝑟 + 𝑥 𝑖 

𝑦 ( 𝑟 ) = ( 𝑦 𝑗 − 𝑦 𝑖 ) 𝑟 + 𝑦 𝑖 

(18) 

From Eq. (17) , the load vector formed by fluid pressure can be ob-

ained by: 

 𝑚𝑒 1 = 𝐿 𝑖𝑗 ∫
1 

0 

[
𝑁 𝑚𝑒 1 

(
𝑥 ( 𝑟 ) 𝑦 ( 𝑟 ) 

)]𝑇 
⋅

{ 

𝑝 𝑥 ( 𝑟 ) 

𝑝 𝑦 ( 𝑟 ) 

} 

𝑑𝑟 (19) 

.3. NMM simulation algorithm 

It is known that the total volume of grout flow into and out a hy-

raulic node is equal to the volume change of grout fluid, which can be

xpressed as [41] : 
 

𝑚 ∑
𝑘 =1 

𝑞 𝑘 

) 

𝑖 

+ 𝑄 𝑖 = − 

1 
2 
𝛼𝑖 

𝑚 ∑
𝑘 =1 

𝑏 𝑘 𝑙 𝑘 
𝑑 𝑝 𝑖 

𝑑𝑡 
( 𝑖 = 1 ⋯ 𝑁 ) (20)

here q k , b k , and l k are the grout fluid rate, fracture aperture, and length

f the k th hydraulic line element connected with hydraulic node i , re-

pectively. The parameter n is the total number of hydraulic line ele-

ents that connected with hydraulic node i and N is the total number

f hydraulic nodes. Parameters Q i , 𝛼i , and p i are grout fluid source sink

erm, elastic storage coefficient, and fluid pressure, respectively. 

For the hydraulic node 1, as shown in Fig. 4 , there are 3 hydraulic

ine elements L 12 , L 13 , and L 14 . Therefore, Eq. (20) can be rewritten as:

4 

 =2 
𝑞 1 𝑘 + 𝑄 1 = 

1 
2 
𝛼1 

4 ∑
𝑘 =2 

𝑏 𝑘 𝑙 𝑘 
𝑑 𝑝 1 
𝑑𝑡 

(21)
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Fig. 4. A simplified fracture network. 
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Fig. 5. Calculation model and numerical meshes of example 2. 
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Fig. 6. Numerical results. (a) Relationship between numerical penetration 

length and time. (b) Grout fluid pressure distribution at different time. 

⎧⎪⎪⎪⎨⎪⎪⎪⎩⎧⎪⎨⎪⎩
𝑇  

𝑄  
From Eq. (14) , the Bingham grout fluid rate can be obtained as: 

 1 𝑘 = 

𝑏 1 𝑘 
3 

12 𝜇

[ 

− 

Δ𝑝 1 𝑘 
𝑙 1 𝑘 

− 

3 𝜏0 
𝑏 1 𝑘 

+ 

4 𝜏0 3 

𝑏 1 𝑘 
3 (− Δ𝑝 1 𝑘 ∕ 𝑙 1 𝑘 

)2 
] 

(22)

Generally, the higher-order small term in Eq. (22) can be ignored

nd this equation can be simplified as: 

 1 𝑘 = 

𝑏 1 𝑘 
3 

12 𝜇

[ 
− 

𝑝 1 
𝑙 1 𝑘 

+ 

𝑝 𝑘 

𝑙 1 𝑘 
− 

3 𝜏0 
𝑏 1 𝑘 

] 
(23)

Substituting Eq. (23) to Eq. (21) and it becomes: 

4 

 =2 

( 

𝑏 1 𝑘 
3 

12 𝜇

[ 
− 

𝑝 1 
𝑙 1 𝑘 

+ 

𝑝 𝑘 

𝑙 1 𝑘 
− 

3 𝜏0 
𝑏 1 𝑘 

] ) 

+ 𝑄 1 = 

1 
2 
𝛼1 

4 ∑
𝑘 =2 

𝑏 𝑘 𝑙 𝑘 
𝑑 𝑝 1 
𝑑𝑡 

(24)

Decomposing Eq. (24) , the discretization equation for grout fluid can

e expressed as: 

 1 ⋅ 𝑝 − 𝑇 1 + 𝑄 1 = 𝑆 1 
𝑑 𝑝 0 
𝑑𝑡 

(25)

here 

 1 = 

[ 
− 

4 ∑
𝑘 =2 

(
𝑏 1 𝑘 

3 

12 𝜇⋅𝑙 1 𝑘 

)
𝑏 12 

3 

12 𝜇⋅𝑙 12 
𝑏 13 

3 

12 𝜇⋅𝑙 13 
𝑏 14 

3 

12 𝜇⋅𝑙 14 

] 
(26) 

 1 = 

4 ∑
𝑘 =2 

( 

𝜏0 ⋅ 𝑏 1 𝑘 
2 

4 𝜇 ⋅ 𝑙 1 𝑘 

) 

(27)

 1 = 

[ 
1 
2 𝛼1 

4 ∑
𝑘 =2 

𝑏 𝑘 𝑙 𝑘 0 0 0 
] 

(28)

 0 = 

[
𝑝 1 𝑝 2 𝑝 3 𝑝 4 

]𝑇 
(29)

The fluid pressure derivative to time in Eq. (25) can be expressed as:

𝑑𝑝 

𝑑𝑡 
= 

𝑝 0 
𝑛 +1 − 𝑝 0 

𝑛 

Δ𝑡 
(30) 

here p 0 
n + 1 , p 0 

n are the pressure at time step n + 1 and time step n ,

espectively. Δt is time step. Substituting Eq. (30) to Eq. (25) , element

iscretization equation can be expressed as: 

 

𝑀 1 − 

𝑆 1 
Δ𝑡 

) 

⋅ 𝑝 0 
𝑛 +1 = 𝑇 1 − 𝑄 1 − 

𝑆 1 
Δ𝑡 

⋅ 𝑝 0 
𝑛 (31)

Combining all the element discretization equations together, the cor-

esponding global discretization equation can be obtained as: 

 ⋅ 𝑝 𝑛 +1 = 𝐹 (32)

here 

 = 𝑀 − 

𝑆 

Δ𝑡 
(33)

 = 𝑇 − 𝑄 − 

𝑆 

Δ𝑡 
⋅ 𝑝 𝑛 (34)

And the sub-matrixes for Eq. (33) and Eq. (34) can be calculated by:
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𝑀 ( 𝑖, 𝑖 ) = − 

𝑚 ∑
𝑘 =1 

(
𝑏 𝑖𝑘 

3 

12 𝜇⋅𝑙 𝑖𝑘 

)
𝑀 ( 𝑖, 𝑗 ) = 0 𝑛𝑜𝑑 𝑒𝑠𝑖𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒𝑛𝑜𝑡𝑐 𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑 

𝑀 ( 𝑖, 𝑗 ) = 

𝑏 𝑖𝑗 
3 

12 𝜇⋅𝑙 𝑖𝑗 
𝑛𝑜𝑑 𝑒𝑠𝑖𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒𝑐 𝑜𝑛𝑛𝑒𝑐 𝑡𝑒𝑑 

(35) 

 

 

 

 

 

𝑆 ( 𝑖, 𝑖 ) = 

1 
2 𝛼𝑖 

𝑚 ∑
𝑘 =1 

𝑏 𝑘 𝑙 𝑘 

𝑆 ( 𝑖, 𝑗 ) = 0 𝑖 ≠ 𝑗 

(36) 

 ( 𝑖, 1 ) = 

𝑚 ∑
𝑘 =1 

( 

𝜏0 ⋅ 𝑏 𝑖𝑘 
2 

4 𝜇 ⋅ 𝑙 𝑖𝑘 

) 

(37)

 ( 𝑖, 1 ) = 𝑄 𝑖 (38)
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Fig. 7. Computational model. (a) Numerical meshes. (b) Hydraulic nodes and line elements. 
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𝑛 = 

[
𝑝 1 

𝑛 𝑝 2 
𝑛 ⋯ 𝑝 𝑁−1 

𝑛 𝑝 𝑁 

𝑛 
]𝑇 

(39) 

here i, j = 1, 2, …N . 

Before the numerical calculation, information of hydraulic nodes and

ine element should be first obtained. During the generation process of

Cs and MEs, information of hydraulic line elements, including serial

umber of this line and end nodes, can be easily searched out by com-

aring the positions of edges of MEs and discontinuous boundaries. In-

ormation of a specific node includes the serial numbers of connected

ydraulic line elements and adjacent hydraulic nodes, which also can

e found by meshing process. 

After that, grout fluid pressure can be calculated by Eq. (32) –

q. (39) . The numerical manifold method simulation algorithm includes

ollowing steps: 

(1) Mesh generation and NMM data and boundary conditions should

be first conducted. 

(2) Assign initial grouting pressures p 0 for calculation. The grout-

ing pressures are zero on all the hydraulic nodes except injection

points. 

(3) Inherit grout fluid pressure p n from last time step n . 

(3.1) Solve the Eq. (32) – Eq. (39) to obtain grout fluid pressure p n + 1 

on each hydraulic nodes. 

(3.2) Calculate the sub-matrixes including stiffness, body force etc.

by NMM. 

(3.3) Calculate the sub-matrixes induced by grout fluid pressure

p n + 1 by Eq. (19) . 

(3.4) Take the sub-matrixes into global matrix and solve the global

equations. 

(4) Compare the calculated and critical pressure gradient in (11). 

(4.1) If the calculated pressure gradient is no less than 𝜆0 , the fluid

can flow and go to next time step 
(4.2) otherwise it will stop flowing. c  

97 
(5) Update the sub-matrixes in Eq. (32) – Eq. (39) and enter into next

time step until simulation completed. 

. Validation of proposed method 

Two numerical tests, including grouting in a single fracture and a

egular fracture network, are conducted in the section to verify the pro-

osed NMM grouting method by comparing with numerical results and

hat of analytical or experimental results. 

.1. Grouting in a single fracture 

A rock sample with a single through crack is then simulated. As

hown in Fig. 5 , the rock sample is a rectangle with length of 1 m and

eight 0.2 m. Coordinates of the pre-existing crack endpoints are (0,

.1 m) and (1 m, 0.1 m), respectively. A grout slurry keeps injecting into

he crack at the injection point (0, 0.1 m) with a constant grouting pres-

ure P 0 = 0.1 MPa. The right side is fixed and impermeable. Mechanical

arameters are same as those used in section 4.1 . The Bingham grout

uid parameters are: the viscosity is 0.001 Pa s, and yield strength is

0 Pa. 

According to Eq. (11) , the analytical solution for grout penetration

ength in this test can be calculated by: 

 = 

𝑃 0 𝑏 

2 𝜏0 
= 0 . 8 𝑚 (40)

Fig. 6 (a) shows the relationship between numerical penetration

ength and time. It can be found that the penetration length increases

rom 0.3778 m to 0.8056 m as time increases from 0.2 ms to 90 ms.

rom Fig. 10 (a), it is also clear that the penetration length keeps con-

tant when time reaches 76 ms, which is in good accordance with the

nalytical result. Furthermore, as shown in Fig. 6 (b), the grout fluid

ressure distribution at different time has also been discussed. With in-

rease of calculation time, the grout flows from injection point to the
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(a)                              (b)

(c)               (d)

Fig. 8. Numerical calculation results of grouting process at different time step. (a) 2.5 s. (b) 6 s. (c) 22 s. (d) 65 s. 

c  

s  

l  

i  

t  

fi  

p

4

 

e  

u  

v  

fl  
rack gradually and fluid pressure increases, too. Besides, the fluid pres-

ure distribution along the crack is nonlinear first and finally it will be

inear. As a result, the final pressure gradient at everywhere in the crack

s equal to the critical value at the steady-state, which agrees well with

he results of Sun et al. [12] . The results observed in this example veri-

ed the effectively of grout fluid flow simulation in a single fracture by

roposed NMM grouting method. 
98 
.2. Grouting in a regular fracture network 

In this section, a regular fracture network example, which was an

xperimental test conducted by Hakansson [45] and has been widely

sed as a comparison of numerical results [10 , 12] , is implemented to

alidate the correctness of proposed NMM grouting method on grout

uid flow simulation in a complicated fracture network. As introduced
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Fig. 9. Comparison of propagation depth between numerical and experimental 

results. 
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a  
y Hakansson [45] , the laboratory test used two plates of plexiglass

ith 1.2 m in length, 1.0 m in width and 0.015 m in height to form

 lattice network with channels dimensions of 1 × 5 mm between the

wo plexiglasses. NMM computational model is shown in Fig. 7 (a), and

he red lines is fracture networks while black line is MCs. A grout slurry

eeps injecting into the crack from the injection point (0.5 m, 0.6 m)

ith a constant grouting pressure P 0 = 0.48 m (about 4700 Pa). The

ingham fluid parameters are 3.0 Pa in yield strength and 0.035 Pa s in

iscosity. Mechanical parameters of rock mass are same as those used
n section 4.1 . t  

Fig. 10. The generated 2D fractured grouting model (a) Init

99 
Numerical model includes 324 MEs and 504 PCs. Besides, there are

43 hydraulic nodes and 262 hydraulic line elements before the mesh

eneration. However, these two numbers increase to 331 and 450 with

elp of numerical manifold meshes, respectively. Fig. 7 (b) shows hy-

raulic nodes (red circle) and hydraulic line elements (blue line) after

he mesh generation. 

Fig. 8 shows the numerical calculation results at different time step.

n Fig. 8 , the red lines are the hydraulic line elements where the grout

uid has reached, while the remaining blue lines are grout fluid free

egion. Fig. 8 indicates that the grouted area increases gradually as

ime increases and the fluid pressure distribution at different grouting

ime is an approximately circle, which are consistent with the exper-

mental results conducted by Zhang et al. [46] . Besides, a parameter,

amely propagation depth, is defined as the total length of line elements

here grout fluid arrived to evaluate the correctness of the numerical

ethod. Fig. 9 show the comparison of propagation depth between nu-

erical and experimental results, which shows that numerical propa-

ation depths at different time are very close to that of experimental.

he average percentage error between numerical and analytical results

s 5.39% and the maximum percentage error is 6.81%. Both the com-

arison of grouting shape and grouting propagation depth verifies cor-

ectness of proposed NMM grouting model on grout flow simulation in

racture network. 

. Investigation the influence factors on grout propagation depth 

In this section, a series of numerical tests are conducted to investi-

ated the influence factors on grout propagation depth by a same frac-

ure network grouting model. As shown in Fig. 10 , the modeled grouting

xample is a rectangle with size of 3 m × 4 m. A grout injection hole

blue line) with length of 1.5 m from point (0, 2 m) to point (1.5 m,

 m) existed in this model. Two sets of cracks are generated randomly

nd the angle of these two sets of cracks are set as 30°and 150°, respec-

ively. For each set of cracks, there are 10 cracks and the crack lengths
ial fracture networks (b) Simplified fracture networks. 
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Fig. 11. Computational mesh. (a) N e = 216. (b) N e = 544. (c) N e = 807. (b) N e = 1110. 

f  

1  

s  

c  

t  

a

5

 

p  

a  

r  
ollow a normal distribution with mean value of 4 m and variance of

.5 m. The generated fracture networks are shown in Fig. 10 (a). The

implified fracture networks are shown in Fig. 10 (b) after deleted un-

onnected cracks, which will not take part in grout fluid flow. Besides,

he mechanical parameters of rock mass used in all the cases are same

s those in section 4.1 . 
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.1. Mesh size 

In this section, the effect of numerical model mesh size on the grout

ropagation depth is firstly investigated. The yield strength, viscosity,

nd initial fracture aperture are fixed as 3.0 Pa, 0.035 Pa s, and 3 mm,

espectively. The initial grouting pressure is 0.5 MPa. The mesh size can
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Fig. 12. Grouted zone distribution of different mesh sizes. (a) N e = 216. (b) N e = 544. (c) N e = 807. (b) N e = 1110. 
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e expressed by N e (Number of MEs) and six different levels of N e , i.e.

16, 369, 544, 807, 942, and 1110 are used in the numerical model

espectively. As a result, the corresponding number of hydraulic nodes

 N n ) are 218, 319, 410, 525, 586, 613, respectively. The typical meshes

f numerical model are shown in Fig. 11 . 

Fig. 12 shows the final grouted zone of different level of mesh size.

s illustrated in the figure, it is obviously that area if grouted zone de-

reases gradually as the number of MEs increases. 
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Further, Fig. 13 presents the curve of the grouting propagation depth

ith different level of mesh size. When the number of MEs is small, the

routing propagation depth is relatively high. With increasing of N e ,

ropagation depth rapidly decreases. After N e reaches 800, the propa-

ation depth decreases little and nearly keeps constant. As N e increases

rom 807 to 1110, the propagation depth decreases from 29.614 m

o 29.287 m. The results indicate that the grouting propagation depth

rstly decreases quickly as the number of MEs increases and then it de-
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Fig. 13. Relationship between grouting propagation depth and 

number of MEs. 

Fig. 14. Grouted zone distribution of different initial fracture apertures. (a) b = 1 mm. (b) b = 2 mm. (c) b = 4 mm. 
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reases very slowly when N e overs a threshold. In this case, the threshold

f N e is 942, as a result, the N e used in following numerical tests is 942.

.2. Initial fracture aperture 

The initial fracture aperture is also an important parameter affecting

routing zone in fractured rock mass. To investigate the effect of initial

racture aperture on grouting performance, in this section, six differ-

nt values of initial fracture aperture b , i.e. 1.0 mm, 2.0 mm, 3.0 mm,

.0 mm, 5.0 mm, and 6.0 mm are used in the numerical model respec-

ively. The other parameters, including Bingham grout fluid and rock

echanics parameters are same as that used in section 5.1 . 

Fig. 14 shows some typical grouted zone distribution of different

nitial fracture apertures. As illustrated in the figure, the area of fi-

al grouted zone increases with the increase of fracture aperture ob-

iously. Further, Fig. 15 presents the curve of the grouting propagation

epth with initial fracture aperture. It is clearly that when b increases

rom 1 mm to 6 mm, the propagation depth increases from 8.505 m to
102 
3.706 m. The linear fitting is also used and the fitted result shows that

he propagation depth increases with increase of initial fracture aperture

early linearly. The numerical results indicate that the increased initial

racture aperture will cause an increasing grouted area and depth, which

an improve grouting effect. 

.3. Yield strength 

In this section, the effect of yield strength on grouting in fractured

ock mass is investigated. The viscosity and initial fracture aperture are

xed, and nine different values of yield strength, i.e. 3 Pa, 5 Pa, 8 Pa,

0 Pa, 15 Pa, 20 Pa, 25 Pa, 30 Pa, and 40 Pa, are adopted respectively

n the study. 

Fig. 16 shows some typical grouted zone distribution of different

ield strength. As illustrated in the figure, the area of final grouted zone

ecreases with the increase of yield strength obviously. Further, Fig. 17

resents the curve of the grouting propagation depth with yield strength.

he simulation results show that when 𝜏0 is low, the propagation depth
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Fig. 15. Relationship between grouting propagation depth and initial fracture 

aperture. 
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Fig. 17. Relationship between grouting propagation depth and yield strength. 
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s high. As 𝜏0 increases from 3 Pa to 15 Pa, the propagation depth de-

reases from 40.661 m to 22.174 m quickly. The decreasing rate is about

.54 m/Pa. After 𝜏0 over 15 Pa, the propagation depth decreases from

0.011 m to 15.729 m with a decreasing rate of 0.21 m/Pa as 𝜏0 in-

reases from 20 Pa to 40 Pa. Therefore, the numerical results indicate

hat the propagation depth nonlinearly decreases with increase of yield

trength. 

.4. Initial grouting pressure 

In this section, the effect of initial grouting pressure p 0 on grouting in

ractured rock mass is investigated. The viscosity, initial fracture aper-

ure and yield strength are fixed as 0.035 Pa s, 4 mm, and 20 Pa, respec-

ively. Eleven different values of initial grouting pressure, i.e. 5000 Pa,

.01 MPa, 0.05 MPa, 0.1 MPa, 0.3 MPa, 0.5 MPa, 0.6 MPa, 0.7 MPa,

.8 MPa, 0.9 MPa and 1.0 MPa, are adopted respectively in the study. 
Fig. 16. Grouted zone distribution of different yield stre

103 
Fig. 18 shows some typical grouted zone distribution of different

nitial grouting pressures. As illustrated in the figure, the area of final

routed zone increases with the increase of initial grouting pressure ob-

iously. Further, Fig. 19 presents the curve of the grouting propagation

epth with initial grouting pressure. It is clearly that when the prop-

gation depth increases quickly from 1.178 m to 16.595 m when p 0 
ncreases from 5000 Pa to 0.3 MPa. And then, the slope of the curve

ecreases gradually. Therefore, the numerical results indicate that the

ropagation depth increases nonlinearly as initial grouting pressure in-

reases. 

.5. Discussion 

According to the above numerical results, besides the simulation

eshes, both the Bingham grout fluid and pre-existed crack proper-

ies have significant effects on the grouting performance in fractured

ock masses. For the mesh size, as introduced in section 3 , the mini-

um flowing distance in every time step depends on length of hydraulic

ine element. Once the grout fluid pressure gradient satisfied the criti-
ngth. (a) 𝜏0 = 5 Pa. (b) 𝜏0 = 20 Pa. (c) 𝜏0 = 40 Pa. 
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Fig. 18. Grouted zone distribution of different yield strength. (a) p 0 = 0.05 MPa. (b) p 0 = 0.1 MPa. (c) p 0 = 1.0 MPa. 

Fig. 19. Relationship between grouting propagation depth and initial grouting 

pressure. 
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Fig. 20. Relationship between number of MEs and hydraulic line element. 
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al pressure gradient in Eq. (11) , the grout will fill up all the hydraulic

ine element. As a result, the number of line element ( N h ) plays an im-

ortant role in calculated grouting propagation depth during numerical

imulation. Moreover, as shown in Fig. 20 , the number of line element

ncreases nonlinearly as the N h increases. The fitting relationship indi-

ates that the parameter N h will finally reaches an unchanged value with

he increase of N e . At that time, the grouting propagation depth will no

onger change as N e changes. 

The initial fracture aperture is a significant parameter during grout-

ng. According to Eq. (13) , for a fix grouting pressure, the flow rate

ncreases as fracture aperture increases obviously. Besides, according to

q. (11) , the critical pressure gradient decreases as fracture aperture in-

reases when yield strength is fixed. As a result, there will have more

rout fluid flowing into more line elements and results in increasing of

routed zone area and propagation depth. Liu et al. [12] studied the in-

itu effect of stress on grout penetration length using FDEM and found

hat the in-situ stress opens fractures and causes increasing of fracture
104 
perture, and finally increases the penetration length. This result is con-

istent with the numerical tests results in this study. 

Eriksson et al. [47] investigated the properties of cement grout and

ndicated that the yield strength decreases as W/C (water and cement)

atio increases. As we know, the smaller of W/C ratio, the more cement

n the grout the poorer flowing ability of grout. As a result, a higher

ield strength means a lower fluidity of grout slurry. Besides, similar

o fracture aperture, according to Eq. (11) , the critical pressure gradi-

nt increases as yield strength increases when fracture aperture is fixed.

herefore, When the yield strength of the slurry is high, the slurry be-

omes difficult to start flow and easy to stop flow. 

. Conclusions 

In the study, an NMM grouting model, which is based on dis-

rete fracture network model, is proposed to study grouting process in

ractured rock mass. The global discretization equation, element sub-

atrixes and NMM simulation algorithm are also presented. The pro-



X. Liu, C. Hu, Q. Liu et al. Engineering Analysis with Boundary Elements 123 (2021) 93–106 

p  

g  

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

p  

f  

t  

N  

m  

g

D

A

 

o  

S  

C  

w  

v  

r

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

[  

 

[  

 

[  

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

[  

 

[  

 

[  

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

osed NMM grouting method is verified and influence factors on the

routing performance are also investigated. The following conclusions

an be drawn: 

(1) In NMM grouting model, the grout fluid flowing behaviour is sup-

posed as a Bingham fluid and only flows in the fractures and

fluid governing equation is established by flow conservation. In

DFN model, the hydraulic node and line element are the basic

numerical calculation elements. For NMM, the line element in-

formation can be easily obtained and the number of line element

are also enlarged during the generation of PCs and MEs, which

is convenient and can improve the calculation accuracy. On ba-

sis of above, NMM simulation algorithm for grouting is finally

proposed. 

(2) The grouting in a single fracture and a regular fracture network

numerical examples verified the effectiveness of the proposed

NMM grouting model on simple and complex grouting process

simulation by comparing with analytical solutions or experimen-

tal results. 

(3) A parameter, namely propagation depth, is defined as the total

length of hydraulic line elements where grout fluid arrived to

evaluate grouting performance. Numerical tests indicated that

the grouting propagation depth firstly decreases as number of

MEs and yield strength increases, while the propagation depth

increases as initial fracture aperture and grouting pressure in-

creases. 

Note that all the engineering problems under geostress and grouting

rocess in fractured rock mass is a complex hydro-mechanical coupled

rocess. Besides, the pressure on the fracture surfaces may cause the

racture propagation and connection. Only grout slurry flowing in frac-

ure networks are considered in this study, the function of proposed

MM grouting model is limited. In future work, the NMM grouting

odel will be further improved, and be applied to solve fracture propa-

ation under coupled hydro-mechanical and its influences on grouting 
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