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To reduce the difficulties associated with dynamic constitutive models, a model was established for soil in this study based on
hypoelasticity.+e stress-strain relationship in soil under a cyclic load was divided into three stages: initial loading, unloading, and
reloading. +e stress-strain relationship in each stage was ascertained using a hyperbolic equation. On this basis, the physical
significance of the parameters in themodel and their method of determination were described.+e effects of the parameters on the
stress-strain relationship were investigated and the integration algorithm of the model was established. Finally, the rationality of
the proposed model was verified by conducting triaxial tests under conventional and cyclic loads. +e results show that the model
is able to adequately demonstrate all the stress-strain relations in the soil under both static and dynamic loads.

1. Introduction

Dynamic constitutive models are important tools to describe
the dynamic characteristics of soil under cyclic loads [1–3].
+e main difference between a conventional static consti-
tutive model and a dynamic one is that the latter can ac-
curately delineate the hysteretic behaviour of the soil under
dynamic loads [4, 5]. At present, the existing constitutive
models used in the geotechnical field to reveal the dynamics
of soil under cyclic loads can be divided into three main
types [6, 7]: elastoplastic and viscoplastic dynamic consti-
tutive models and transient modulus field models (based on
transient-limit equilibrium theory).

+ere is an abundant variety of dynamic constitutive
models based on elastoplastic theory currently in use in
research. +e models were first developed from the multi-
yield-surface model established byMroz et al. [8, 9]. In them,
a series of yield surfaces are applied to simulate the nonlinear
and hysteretic nature of the dynamic stress-strain behaviour
of the soil. Moreover, these yield surfaces constantly move
within the stress space as the stress state of the soil changes.
By setting a rule to demonstrate the movement of the yield

surfaces, the stress history of the soil can be recorded to
exhibit the nonlinearity of the dynamic stress-strain rela-
tionship within the soil. +ere are a variety of improved
multiyield-surface models and numerous scholars [10–12]
have established their own multiyield-surface models. Sev-
eral authors in China [13–17] have also proposed specific
models.

Multiyield-surface models are based on complicated
theory and tedious rules. Although this means they facilitate
a flexible description of the dynamic stress-strain variation
in the soil, it creates drawbacks as well. For example, a
lengthy calculation process is required during the devel-
opment and application of such models due to the exces-
sively complex theory and tedious rules required. In
particular, the models are rather poor in practical applica-
tions where large-scale numerical calculations are required.
Dafalias et al. [18–22] built a boundary surface model with a
single face to overcome this drawback. In this model, all the
small yield surfaces within the maximum yield surface are
removed and replaced by mapping rules. As a result, the
difficulties encountered in the development and application
of multiyield-surface models could be reduced, so they could

Hindawi
Advances in Civil Engineering
Volume 2021, Article ID 8873054, 10 pages
https://doi.org/10.1155/2021/8873054

mailto:guojianhua17@mails.ucas.edu.cn
https://orcid.org/0000-0002-7218-5548
https://orcid.org/0000-0003-4960-8941
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8873054


be further developed in subsequent research. +e proposed
plasticity constitutive model of anisotropic clay is more
concise and does not change the structure of the original
equation.

+e transient modulus field model was first proposed by
Xie et al. [23–25]. It was used to analyse the constitutive
relationship in saturated sand and is based on transient-limit
equilibrium theory. In the model, the stress-strain behaviour
is divided into three stages. A transient modulus field is
established in each stage to reflect the nonlinearity and
hysteretic nature of the stress-strain relationship. Such
models have a short development time and are mainly used
to study saturated sand. +erefore, their applicability to
other soils, for example, clay, warrants further verification.

+e endochronic model first proposed by Valanis was
used to describe the nonlinearity of materials based on
viscoplastic behaviour. Bazant et al. [26–28] and Zienkiewicz
et al. [29] later utilized the model to describe various aspects
of soil under cyclic loads (including dynamic stress-strain
relationship, plastic deformation, and increase in pore
pressure). Endochronic models depict the internal changes
in materials via the endochronic parameter Z. +is pa-
rameter is used to reflect material properties and employs a
monotonically increasing function of time. +e conversion
variables of the endochronic parameter are used to delineate
various irrecoverable linear properties of rock and soil
materials during stress processes including cumulative
plastic strain and pore pressure. As endochronic theory does
not consider the complex concept of yield function (which
does feature in elastoplastic mechanics theory), it has a
simpler theoretical form than elastoplastic theory. However,
endochronic theory involves semiempirical test functions
whose parameters do not have obvious physical significance.
+is makes the parameters difficult to determine so that the
theory has limited practical applicability.

To sum up, the following problems associated with
dynamic constitutive models need to be solved in subse-
quent research: (i) the models need to accurately reflect the
real stress-strain behaviour of the soil, especially its hys-
teretic nature. (ii) +ey should have a simple theoretical
form and thus avoid development difficulties because of
complex and tedious rules. (iii)+emodels’ parameters need
to be as simple as possible and have specific physical sig-
nificance. +ey should also be convenient to acquire (via
tests if needed), so the model is easy to apply to practical
applications.

From the introduction above, it can be found that,
among the various types of dynamic constitutive model, the
bounding surface model was the most popular on account of
its relatively simple form, but it should be noted that the
bounding surface model also lies within the framework of
elastoplastic theory, and, in its application, many partial
differential equations must be solved.+erefore, it still seems
to be a too complicated model to use. In this study, a new
simple dynamic constitutive model based on the theory of
hypoelasticity and hyperbolic equations has been estab-
lished. +e original purpose of its proposal is to simplify the
application of the dynamic constitutive model. In the model,
the stress-strain relationship of the soil under cyclic loads is

divided into three stages. A hyperbolic equation is adopted
to reveal the stress-strain behaviour of the soil in each stage.
In addition, the strain in the soil corresponding to the
current stress state is calculated using an incremental in-
tegration method, thus avoiding complex elastoplastic cal-
culations. As a result, the model has a simple form and can
be conveniently applied in large-scale numerical
calculations.

2. Construction of the Model

In 1963, Kondner pointed out that the curves obtained from
triaxial tests conducted on soil can be accurately fitted to
equations of hyperbolic form.+is observation was based on
a large number of stress-strain curves obtained through
conventional triaxial tests. +at is, the stress (σ) and strain
(εa) appear to obey a relationship of the form

σ1 − σ3 �
εa

a + bεa

, (1)

where a and b are constants.
On this basis, Duncan and Chang [30] established an

incremental hypoelasticity model based on stress-strain
curves which is widely used at present (the “Duncan–
Chang” model). +e stress-strain behaviour of soil under
monotonic loading can be well described using the Dun-
can–Chang model. In light of the success of the Duncan–
Chang model, the stress-strain behaviour of soil under cyclic
loading is investigated here using that model for inspiration.

Figure 1 illustrates the typical dynamic stress-strain
behaviour exhibited by the soil under a cyclic load. +e
stress-strain curve exhibits obvious signs of hysteresis under
the cyclic load. If unloading and reloading are considered as
the cyclic loading period, then the stress-strain variation in
each cyclic period essentially has the same characteristics.
+us, the cyclic loading and unloading procedure can be
divided into several stages and the stress-strain relationship
within each loading stage is described using hyperbolic
curves.+e stress-strain relationship of the soil is fitted using
a treatment based on incremental hypoelasticity theory.
+us, the application of hypoelasticity theory can be ex-
tended to the fitting of the stress-strain behaviour of the soil
under cyclic loads.

Figure 1 illustrates a typical stress-strain curve for the
soil under a cyclic load. It can be seen that the stress-strain
variation can be divided into two stages: unloading and
reloading. Moreover, combining this with the initial loading
stage, the stress-strain relationship of the soil during the
complete process can be partitioned into three stages: initial
loading, unloading, and reloading. Of course, under cyclic
loads, the unloading and reloading stages occur cyclically. In
addition, the unloading and reloading curves in each load
period can be fitted to a hyperbolic expression.

2.1. Initial Loading Stage. Clearly, the stress-strain curve of
the soil in the initial loading stage can be well described
using a hyperbolic curve; that is,
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σ �
ε1

ai + biε1
,

σ � σ1 − σ3,

(2)

where ai and bi are the model parameters for the initial
loading stage (Figure 2).

2.2. Unloading Stage. +e stress-strain relationship of the
soil in the unloading stage during each load period is
regarded as a separate curve.+e stress-strain curve during a
particular unloading stage is considered as the curve ob-
tained by translating a hyperbolic curve identical to the
original along the coordinate axis. +e relationship is thus
expressed as follows:

σ − σ0 �
ε1 − ε0( 􏼁

au − bu ε1 − ε0( 􏼁
,

σ � σ1 − σ3, σ0 > 0, ε0 > 0( 􏼁,

(3)

where au and bu represent the model parameters in the
unloading stage. +e quantities σ0 and ε0 refer to the stress
translation and strain translation, respectively (Figure 3).

2.3. Reloading Stage. In a similar manner, the stress-strain
curve of the soil in the reloading stage in each load period is
considered to be a separate curve.+erefore, the stress-strain
curve in the reloading stage can also be regarded as a
translated hyperbolic curve. +us,

σ − σ0 �
ε1 − ε0( 􏼁

ar + br ε1 − ε0( 􏼁
,

σ � σ1 − σ3, σ0 < 0, ε0 > 0( 􏼁,

(4)

where ar and br denote the model parameters in the
reloading stage. Again, the parameters σ0 and ε0 represent

the stress translation and strain translation, respectively
(Figure 4).

3. Significance andMethod of Determination of
the Model Parameters

For the model constructed in this study, two crucial pa-
rameters, that is, a and b, which control the basic pattern of
the hyperbolic curves, are determined. As mentioned above,
in order to describe the hysteresis in the stress-strain curve
under a cyclic load, the stress deformation of the soil is
divided into three stages. In each stage, the stress is fitted
using a hyperbolic equation. +is means that there are six
test parameters in the model (ai and bi in the initial loading
stage, au and bu in the unloading stage, and ar and br in the
reloading stage).
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Figure 2: A typical stress-strain curve for the initial loading stage.
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Figure 3: Stress-strain and translated stress-strain curves in the
unloading stage.
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Figure 1: Typical stress-strain behaviour under a cyclic load.
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3.1. Parameter a

3.1.1. Initial Loading Stage. It can be shown using equation
(2) that, during the initial loading stage, the tangent modulus
of the stress-strain curve is expressed using the differential of
the stress to strain as follows:

dσ
dε1

�
ai

ai + biε1( 􏼁
2. (5)

As ε1⟶ 0, the initial tangent modulus of the stress-
strain curve is, therefore, Eti � 1/ai. +at is to say, the pa-
rameter ai in the initial loading stage is equal to the initial
tangent modulus of the curve, that is, ai � 1/Eti (Figure 5).

3.1.2. Unloading Stage. In a similar way, the parameter au of
the stress-strain curve in the unloading stage is calculated
through the appropriate gradient. +at is, au � 1/Etu (Fig-
ure 6). However, it is worth noting that stresses and strains
decline under unloading conditions, so the initial tangent
modulus Etu of the curve is negative.

3.1.3. Reloading Stage. Once again, the parameter ar in the
reloading stage can be determined to be reciprocal of the
initial tangent modulus of the reloading curve; that is, ar �

1/Etr (Figure 7, where Eru is seen to have a positive value).

3.2. Parameter b. Unlike the Duncan–Chang model, the
parameter b in the model constructed here does not have a
definite physical significance. However, its value can be
readily calculated from the test data by taking derivatives.

+e stress-strain relationship in the soil is partitioned
into three stages in the model. In each loading stage, the
origin (σ0, ε0) and end (σ1, ε1) of the stress-strain curve are
defined, as shown in Figures 5–7. Moreover, the secant
moduli in each loading stage (initial loading, unloading, and
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Figure 5: Significance of the parameter ai in the initial loading
stage.
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Figure 6: Significance of the parameter au in the unloading stage.
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Figure 7: Significance of the parameter ar in the reloading stage.
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Figure 4: Stress-strain and translated stress-strain curves in the
reloading stage.
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reloading) are Esi, Esu, and Esr, respectively, and can be
derived using the following formula:

Esi � Esu � Esr �
σ1 − σ0
ε1 − ε0

. (6)

3.2.1. Initial Loading Stage. In the initial loading stage, after
loading from (σ0 � 0, ε0 � 0) to (σ1, ε1), equation (2) is
converted as follows:

σ1
ε1

�
1

ai + biε1
. (7)

As

σ1
ε1

�
σ1 − σ0
ε1 − ε0

� Esi,

ai �
1

Eti

,

(8)

we have

1
Esi

�
1

Eti

+ biε1. (9)

Using equation (9), we obtain

1
Esi

−
1

Eti

􏼠 􏼡
1
ε1

� bi

⇒
1

Esi

−
1

Eti

􏼠 􏼡
σ1
ε1

1
σ1

� bi

⇒
1

Esi

−
1

Eti

􏼠 􏼡Esi

1
σ1

� bi

⇒ 1 −
Esi

Eti

􏼠 􏼡
1
σ1

� bi.

(10)

It can be seen from Figure 5 and equation (10) that
Esi<Eti, so 1 − (Esi/Eti)> 0. As a result, bi> 0.

3.2.2. Unloading Stage. In the unloading stage, equation (3)
can be used as the soil undergoes unloading from (σ0, ε0) to
(σ1, ε1) (Figure 6); that is,

σ1 − σ0
ε1 − ε0

� Esu �
1

au − bu ε1 − ε0( 􏼁
. (11)

Following the derivation method used for bi in the initial
loading stage, we find

bu �
1

ε0 − ε1

1
Esu

−
1

Etu

􏼠 􏼡 �
1

σ0 − σ1
1 −

Esu

Etu

􏼠 􏼡. (12)

Figure 1 illustrates that, during the cyclic loading test, the
dynamic stress has a symmetrical amplitude σamp

d , namely,
|σ1| � σ0. +us,

bu �
1
2σ0

1 −
Esu

Etu

􏼠 􏼡. (13)

As Esu> 0, Etu< 0, and σ0> 0, it follows that bu> 0.

3.2.3. Reloading Stage. Similarly, in the reloading stage, after
the soil is subjected to reloading from (σ0, ε0) to (σ1, ε1)
(shown in Figure 7), the formula for br is obtained:

br �
1

ε1 − ε0

1
Esr

−
1

Etr

􏼠 􏼡 �
1

σ1 − σ0
1 −

Esr

Etr

􏼠 􏼡. (14)

As σ1 � |σ0|, this can be written as

br �
1

2 σ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1 −

Esr

Etr

􏼠 􏼡. (15)

3.3. Determination of the Model Parameters. From the de-
scription of the model parameters a and b, it is noted that the
model parameters can be obtained from the original test
datum. Parameter a is the initial tangent modulus of each
loading or unloading stage, which means that it can be
attained by using the ratio between σ and ε in the first very
small increment of each stage; that is, aα � (Δσ/Δε) (α� i, u,
or r).

As for parameter b, it can be calculated by using the
initial tangent modulus Etα, the secant modulus Esα, and
|σ1 − σ0|, as in equations (10), (12), and (14) corresponding
to different stages.

4. Integration Algorithm for the Model

4.1. Tangent Modulus and Integration Algorithm. +e inte-
gration algorithm is the key to developing the constitutive
model. +e integration process can be summarized as
subdividing the loading or unloading process (using some
finite element or difference) into several substeps and
assigning a strain increment to each load step. Next, the
strain increments are calculated using the constitutive
model. In contrast to elastoplastic theory, it is not necessary
when using the hypoelasticity theory to judge whether the
plastic modification is essential or not nor to ascertain
numerous internal variables of the model via iteration. As
long as the strain increments are small enough, the curve can
be approximated based on the hypoelasticity theory through
linear integration.

+us, in the different loading stages, the most crucial step
is to find the tangent modulus Et of each loading step. +e
tangent modulus of the stress-strain curve is obtained by
differentiation of the hyperbolic curve. Equations (2)–(4)
show that, in the different loading stages (initial, unloading,
and reloading), the tangent moduli are given by the
following:

(i) Initial loading stage:

Eti �
dσ
dε

�
ai

ai + biε( 􏼁
2. (16)
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(ii) Unloading stage:

Etu �
dσ
dε

�
au

au − bu ε − ε0( 􏼁􏼂 􏼃
2. (17)

(iii) Reloading stage:

Etr �
dσ
dε

�
ar

ar − br ε − ε0( 􏼁􏼂 􏼃
2. (18)

After the tangent modulus has been found, the stress is
deduced according to the following integration
computation:

σnew � σold + dσ � σold + Etαdε, (α � i, u, or r). (19)

It is worth noting that in the different loading stages
(initial, unloading, and reloading), the tangent moduli of the
model are all positive. However, the strain increment, dε, is
positive in the initial loading and reloading stages, while it is
negative in the unloading stage (so, the stress increases in the
loading stages and declines in the unloading stages).

4.2. Judging Stress Reversal. In our algorithm, judging stress
reversal is the key to finding the stress because its accuracy
determines the precision of the algorithm. Evidently, stress
reversal here refers to judging if the load state of the model is
changing from one state to another, for example, from loading
to unloading, or from unloading to loading. +e purpose of
judging stress reversal is to find the key state, so that the stress
in the next step can be calculated using the different tangent
moduli. +e judgment process and corresponding algorithm
for stress reversal are displayed in Figure 8.

4.3. Whole Integration Procedure. According to the inte-
gration algorithm and stress reversal judging method, the
complete integration procedure for the proposed hypoelastic
dynamic constitutive model, including those steps described
above, can be summarized as follows.

What should be noted is that, like theDuncan–Chang static
constitutive model, the dynamic stress in Table 1 is σ1 − σ3, so
the proposed model is a 3D model in the principal stress space
that can be translated into other general stress spaces. It should
also be noted that itmainly aims at cases involving 1D vibration
(the most common condition); if 2D or 3D vibrations are
analysed, the algorithm must be adjusted accordingly.

5. Effects of Parameters a and b on the Stress-
Strain Curve

Whether or not the model can properly describe the stress-
strain behaviour of the soil under cyclic loads depends on the
model parameters used. Six model parameters are employed
in this study (ai and bi in the initial loading stage, au and bu in
the unloading stage, and ar and br in the reloading stage). To
appreciate the influences of parameters a and b of the hy-
perbolic equation on the stress-strain curve, the parameters
ar and br (reloading stage) are taken as examples for further
explanation.

5.1. Effect of Parameter a on the Stress-strain Curve. As
mentioned above, parameter a is related to the initial tangent
modulus Et of the hyperbolic curve in terms of physical
significance. +erefore, a determines the inclination of the
hyperbolic curve in the initial stage. Moreover, from a
hysteresis perspective (Figure 9), parameter a influences the
damping ratio of the model.+at is, the bigger the value of a,
the larger the area bounded by the loading and unloading
curve, so the larger the damping ratio. Conversely, a larger a
means a smaller damping ratio.

5.2. Effect of Parameter b on the Stress-strain Curve. It can be
seen from Figure 10 that parameter b influences the curvature
of the hyperbolic curve. +e stress-strain curve is clearly more
curved for larger values of parameter b. +at is to say, in terms
of physical significance, parameter b directly affects the value
and development rate of cumulative plastic strain. +e smaller
the value of b, the slower the development rate and the smaller
the value of cumulative plastic strain (and vice versa).

Figure 11 demonstrates the effect of the combined action
of parameters a and b on the stress-strain curve of the soil. It
can be seen that when the same set of a and b values is used
in the unloading and reloading stages (a� 1/80E6, b� 1/
3.0E5), the stress-strain curve forms a closed hysteresis loop
(as the beginning and ending stresses in the two stages are
superposed). However, the curves obtained from dynamic
triaxial tests under cyclic loads show that this phenomenon
does not occur in the initial loading and unloading stages. If
we increase both a and b (to a� 1/60E6, b� 1/2.5E5), then
the stress-strain curve starts to exhibit similar characteristics
to those obtained in initial test curves. +us, in the initial
stage of a cyclic loading test, the soil is constantly compacted

Given a dynamic stress amplitude σ amp
d

Calculate the next stress:
σ new = σ old + E old dεt

Compare
| σ new | and | σ amp | d

| σ new | < | σ amp | 

Calculate Δσ = | σ amp | – | σ new | d

Δε = 1/Eold Δσ, εnew = εold + Δεt

Let Eold = Enew
t t

let σ old = σ new

Figure 8: +e procedure used in the integration scheme for stress
reversal.
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under the cyclic load and so plastic strain develops cumu-
latively. +erefore, the values of a and b increase corre-
spondingly. During the later stages of the test, the
cumulative plastic strain of the soil will stop developing.
Hence, the hysteresis loops formed in the stress-strain curve
will become closed and the values of a and b will tend to
remain the same.

6. Applications

To verify the rationality of the proposed model, it is used to
simulate the stress-strain data obtained from dynamic tri-
axial tests under conventional triaxial and cyclic loads.

6.1. Conventional Triaxial Tests. If loading occurs mono-
tonically, then stress reversal will not occur.+is implies that
the model merely experiences the initial loading stage.
+erefore, the model is reduced to the commonly seen
Duncan–Chang model. However, it is worth noting that
because of the model’s algorithm, a large dynamic stress
amplitude σamp d needs to be specified before simulating the
conventional triaxial test results (as stress reversal occurs
when σ > σamp d).

Conventional triaxial tests were performed using red
clay (compactness value of 0.8) as the test soil. Experiments,
employing confining pressures of 50, 100, and 200 kPa were
conducted. Figure 12 displays the results of the conventional

Table 1: +e whole integration procedure.

Step Description
1 Given a dynamic stress amplitude σamp

d , where σamp
d � (1/2)(σmax

d − σmin
d )

2

Judge the loading or unloading stage according to the following condition:
(1) Initial loading stage: ε0 � 0, dσ � σnew − σold > 0
(2) Unloading stage: dσ � σnew − σold < 0
(3) Reloading stage: dσ � σnew − σold > 0

3
Stress reversal judging stage:
If |σnew|> |σamp

d |, then go to Step 4
Else, σold � σnew and go to Step 5

4

Calculate Δσ � |σamp
d | − |σnew|

(1) Δε � (1/Eold
tα )Δσ, where α can be i, u, or r

(2) εnew � εold + Δε, Eold
tα � Enew

tα
(3) Record ε0

Go to Step 2

5

Calculate the new strain εnew:
(i) Initial loading stage:
(1) Firstly, calculate Eti � (dσ/dε) � (ai/(ai + biεold)2)

(2) +en, Δεnew � (Δσ/Eti), Δσ is the trial increment of the strain and given automatically by the program
(ii) Unloading stage:
(1) Firstly, calculate Etu � (dσ/dε) � (au/(au + buεoldu − ε0)

2)

(2) +en, Δεnew � (Δσ/Etu)

(iii) Reloading stage:
(1) Firstly, calculate Etr � (dσ/dε) � (ar/(ar + brεoldtr − ε0)

2)

(2) +en, Δεnew � (Δσ/Etr)

Let εnew � εold + Δεnew, Eold
tα � Enew

tα , where α can be i, u, or r
Go to Step 2
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Figure 9: +e effect of parameter a on the stress-strain curve.
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Figure 10: Effect of parameter b on the stress-strain curve.
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triaxial tests and simulation results. In the simulations, the
values of the a and b parameters used in the constitutive
model are 1/16.7E6 and 1/1.26E2; 1/32.6E6 and 1/2.26E2;
and 1/60.1E6 and 1/3.61E2, respectively, for increasingly
high pressures. It can be seen that the simulated values
calculated using the model are in good agreement with the
experimental results.

6.2. Dynamic Triaxial Tests under Cyclic Loads. To validate
the model under cyclic loading conditions, the results ob-
tained by Huang et al. [31] were simulated in this section. In
the tests reported, standard sand was used so that the dy-
namic elastic modulus and damping ratio of the samples
under cyclic loading could be investigated without draining.
+e test conditions were set as follows: the dry density of the
sand was 1.58 g/cm3, the confining pressure was 300 kPa,
and the consolidation ratio was 1.5.

Figure 13 shows the experimental curves obtained and
simulation results. It can be seen that the stress-strain curves of
the soil under the conditions used are well described by the

model constructed in the present study. In the initial stages of
the test, the stress-strain hysteresis loops are clearly not closed
owing to the occurrence of residual deformation. However, the
residual deformation gradually stabilizes and the hysteresis
loops tend to become closed after a few cycles.+is is consistent
with the conclusions of Hardin et al. [32]. (+ese authors
suggested that when the consolidation ratio is 1.0, the hysteresis
loops tend to be closed.When it is larger than 1.0, the hysteresis
loops are not closed at first due to the existence of initial shear
stress. Subsequent hysteresis loops, however, can be considered
to be closed after a certain number of cycles.)

Figure 14 illustrates typical nonclosed hysteresis loops
and also highlights certain quantities that may be used to
define the dynamic elastic modulus. Consider the “peak” and
“valley” points (A and B) of the particular loop shown.+en,
the dynamic stress σd and dynamic strain εd are determined
as follows:

σd �
σdA − σdB

2
,

εd �
εdA − εdB

2
.

(20)

+e dynamic elastic modulus (Ed) and damping ratio
(λd) are given by

Ed �
σd

εd

,

λd �
2
π

Ashadow

AT

,

(21)

where Ashadow represents half of the area in the hysteresis
loop while AT denotes the area of the triangle ABC.

Figures 15 and 16 illustrate how the dynamic elastic
modulus and damping ratio change for the test soil
according to the data. +e graphs also show the values
obtained from the simulations. +e agreement between the
simulated and experimental results is shown to be very good.
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Figure 11:+e combined effect of parameters a and b on the stress-
strain curve.
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A closer inspection of Figures 13 and 15 shows that the
hysteresis loop of the soil in the initial stage of cyclic loading
is more obviously inclined and there is a larger value of
dynamic strain compared to the loops towards the end of the
cyclic loading process. +us, the dynamic elastic modulus is
smaller. Moreover, the hysteresis loops become closed and
their inclinations gradually decrease as the number of cycles
increases. Meanwhile, the value of the dynamic strain de-
clines, and so the dynamic elastic modulus increases.

A closer inspection of Figures 13 and 16 shows that the
damping ratio is directly related to the hysteresis loop oc-
curring in the soil. In the initial stage, the soil exhibits an
obvious hysteretic behaviour and the hysteresis loops have a
larger inclination. +erefore, the damping ratio is small.
However, towards the end of the loading process, the
hysteresis loops become gradually closed while the hysteretic
behaviour and inclination decline. +us, the damping ratio
increases.

7. Conclusions

Using the hypoelasticity theory and simple hyperbolic equa-
tions, a novel dynamic constitutive model was established and
applied. +e model does not require complex elastoplastic
judgments to be made and so has a simple theoretical form
which is convenient to develop and apply. We firstly provided
the sources of inspiration used to construct the model, as a
result of which the stress in the soil was divided into three
loading stages. Hyperbolic functions were then established for
the stress-strain relationships associated with each loading
stage. +e physical significance and method for the determi-
nation of the model parameters were then discussed and the
effects of the parameters on the stress-strain behaviour of the
soil are demonstrated. An integration algorithm for the model
and a method of recognizing dynamic stress reversal were then
proposed, which make the development of the model highly
convenient. Finally, the effectiveness of the model constructed
in the study was confirmed by comparison with results from
conventional and cyclic loading triaxial tests. +e results show
that the stress-strain behaviour of the soil can be well described
by the model.
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