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Abstract
Thermal shock on tensile behaviour of granite is highly important for understanding of fracturing mechanism in hot dry 
rock. The effects of heating and water-cooling treatment (HWCT) on tensile behaviour of granite were investigated in this 
work. The granite samples were first heated to different predetermined temperatures and then rapidly cooled by water. The 
Brazilian split tests were carried out on the HWCT samples, and the strain gauges were used to measure the evolution of 
tensile deformation. With the increasing of heating temperature, the tensile stress–strain curves change from linear to non-
linear, the axial tensile strain corresponding to failure point increases, and the tensile strength and tensile elastic modulus 
undergo a slight increase to decrease as the temperature increases. Finally, the mechanical properties under tensile condition 
were compared with those under compressive condition. Below 300 °C, the temperature has slight effect on both tensile 
and compressive strengths. Above 300 °C, the tensile properties decrease significantly after heating temperature threshold 
of 300 °C, while the heating temperature threshold for compressive properties is 500 °C. The thermal shock has a greater 
effect on tensile strength than on compressive strength.
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List of symbols
ε3  Radial tensile strain
ε1  Axial compressive strain
σt  Tensile strength of the sample
P  Peak force
D  Diameter of the sample
B  Thickness of the sample
Et  Tensile elastic modulus
Es  Splitting elastic modulus
L   Half length of the strain gauge
v   Poisson’s ratio

ET  Secant elastic modulus of the samples subjected to 
HWCT 

σT  Peak strength of the samples subjected to HWCT 
E25°C  Secant elastic modulus of the initial samples
σ25°C  Peak strength of the initial samples

Introduction

Conventional energy resources such as oil and natural gas 
are gradually being depleted, and it is significant to seek 
for new clean energy sources to replace them. Hot dry rock 
(HDR) energy is a well-recognized clean and renewable 
green energy. HDR is widely distributed in granite with a 
depth of 2 to 6 km, and the temperature at that depth is 
generally 150 to 650 °C (Breede et al. 2013). The Enhanced 
Geothermal System (EGS) is considered to be an advanced 
and sustainable technology for heat extraction from HDR 
such as Fenton Hill in America (Jung 2013; Duchane and 
Brown 2002), Soultz-sous-Forêts in France (Genter et al. 
2010; Tischner et al. 2007; Sausse and Genter 2005), and 
Ogachi in Japan (Ziagos et al. 2013). In the EGS, the well are 
drilled in high-temperature reservoirs, and cold water is then 
injected into the rock formation to fracture the formation 
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(Tran and Rahman 2007; Ueda et al. 2009; Bai et al. 2012; 
Zeng et al. 2013). Then, the cold water is absorbed by the 
rock formation and fractures; the heat energy is converted 
into hot fluid. Finally, the energy is converted by using the 
discharged water vapour or hot water to liquefy into liquid 
water to release thermal energy. Different from injection-
induced tensile fractures in classical hydraulic fracturing, 
the thermal shock due to the large temperature difference  
between the cold water and hot rock formation could  
also result in fractures (Tang et al. 2020) and changes in 
mechanical properties (Siegesmund et al. 2000; Ruedrich 
et al. 2002; Brotons et al. 2014; Hashemi et al. 2015; Feng 
et al. 2018; Zhang et al. 2020a). Therefore, it is highly 
important to investigate the effect of thermal shock on the 
tensile behaviour of granites in EGS.

The effect of high temperature on the physical properties 
and mechanical behaviour of granites have been extensively 
investigated, and the results showed that heating treatment 
caused thermal fracture and consequently resulted in the 
variations of physical properties, i.e. porosity, wave veloc-
ity and permeability (Géraud et al. 1992; Chaki et al. 2008; 
Nasseri et al. 2009; Inserra et al. 2013; Guo et al. 2020; 
Zhao et al. 2020; Li et al. 2020c; Zhang et al. 2021). With 
the increase of heating temperature, the uniaxial compres-
sion strength (UCS) and elastic modulus usually undergo 
an increase–decrease transition for different granites, and 
the temperature threshold of the transition is different and 
related to the grain size and structure of granites (Chen et al. 
2012; Zhang et al. 2014; Chen et al. 2017; Yang et al. 2017; 
Hu et al. 2018; Zhu et al. 2020a; Li et al. 2020a). The dete-
rioration mechanisms of physical and mechanical behaviour 
of granite are mainly attributed to the generation and propa-
gation of microcracks (Wang et al. 2020; Zhu et al. 2020b; 
Shen et al. 2020).

Alternatively, the effect of thermal shock (Zhang et al. 
2018a, b; Fan et al. 2020), which is generally achieved by 
preheating to high temperatures, followed by rapid cooling in 
water, on the physical properties and mechanical behaviour 
of granites has been also investigated. Due to the relatively 
small thermal conductivity of granite, thermal shock could 
generate large temperature gradient and thermal damage 
inside materials and result in significant changes in porosity,  
permeability, wave velocity, bulk modulus and strength and 
even rock fragmentation under high heating temperature 
(Wong et al. 2017; Aversa and Evangelista 1998; Chaki et al. 
2008; Liu and Xu 2014; Yin et al. 2015; Yu et al. 2015; 
Ozguven and Ozcelik 2014; Popov et al. 2016; Dobson 
et al. 2002; Vazquez et al. 2015; Yu et al. 2016; Zhang et al. 
2018a, b; Fan et al. 2020; Zhang et al. 2020a, b). Further, the 
cooling rate during rapid cooling was also investigated by 
laboratory tests, and the results showed that thermal shock 
induced by rapid cooling can cause more damage to granite 
than that induced by slow cooling, which leads to a larger 

size and number of internal pores (Fan et al. 2020; Li et al. 
2020b; Zhu et al. 2021).

The previous investigations mentioned above mainly 
focused on the effects of heating treatment or thermal shock 
on the mechanical properties of rocks obtained from uniaxial  
and triaxial compressive tests. However, the tensile and 
compressive mechanical properties of rocks are certainly 
different (Fellner and Supancic 2002; Dwivedi et al. 2008; 
Shao et  al. 2014; Yin et  al. 2015; Wu et  al. 2019); the  
knowledge related to compressive properties cannot thus 
directly be applied to tensile properties. For this, the effects 
of thermal shock on the tensile mechanical behaviour of 
granite were investigated in this paper. A series of Brazilian  
split tests were conducted on the samples after the HWCT. 
The strain gauges were also used to measure the tensile 
deformation process. The variations in failure patterns  
tensile stress–strain curves, tensile strength and tensile 
elastic modulus due to thermal stock were discussed and 
compared with those under compressive condition. The test 
results could improve the knowledge of tensile mechanical 
behaviour of granite after thermal shock.

Test preparations

Preparations of granite samples

The granite samples used in the tests were collected from 
Chuanshanping Town, Hunan Province. The mineral compo-
sitions were analysed by the X-ray diffraction, and the results 
show that the main mineral components are feldspar, mica 
and quartz. The initial density, porosity and P-wave veloc-
ity are 2.66 g/cm3, 0.98% and 5357 m/s respectively. The 
average tensile strength and uniaxial compressive strength 
of the initial granite samples are 10.2 and 138 MPa, respec-
tively. The initial granite samples are grey-white, fresh and 
coarse-grained, with uniform texture, and no visible defects 
were observed on the rock surface. The diameter and length 
of the samples are 50 and 100 mm, respectively. The sur-
face flatness of the samples is controlled within ± 0.2 mm, 
which satisfied the standards of the International Society of 
Rock Mechanics and Rock Engineering (ISRM) (Franklin 
et al. 1979). For each test condition, three same tests were 
performed, and their average value was used.

Heating and water‑cooling treatment

The granite samples were first heated in a Muffle furnace 
TNX1200-30 at different pre-designed temperatures. The 
volume of the furnace is 12 L, with the maximum tem-
perature measurement capacity of 1200 °C. The samples 
were evenly placed in the furnace chamber. A certain dis-
tance should be ensured between the samples to avoid the 
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influence of uneven heat caused by the contact between the 
samples and the chamber. The samples were heated in the 
furnace at atmospheric pressure with a rate of 5 °C/min, 
and this slow heating rate was used to avoid the generation 
of thermal gradient and to ensure that the cracking process 
was induced merely by the temperature effect (Zhang et al. 
2018b, 2020a). After the pre-designed temperature was 
reached (e.g. 200, 300, 400, 500 and 600 °C), the heating 
temperature was held for 2 h to achieve the temperature sta-
bilization throughout the samples (Zhang et al. 2018a). This 
temperature stabilization period is chosen according to the 
size and the thermal conductivity of the samples. A water-
cooling treatment for 1 h was then performed by immersion 
of the samples into a container with a large volume of 25 L 
at 25 °C. Finally, the granite samples were kept in a desicca-
tor at 105 °C during 24 h for the subsequent tests.

Scheme of Brazilian split test

In order to study the effect of HWCT on the tensile proper-
ties of granite, the Brazilian split tests were performed on the 
samples after HWCT. A schematic diagram of the Brazilian 
split test system is shown in Fig. 1a. The system has an axial 
force capacity of 1500 KN. A high-precision closed-loop 
servo-controlled system is used to control axial and hoop 
stress. In order to avoid stress concentration at the loading 
point, the arc fixture is selected (Fig. 1b). Two strain gauges 
were pasted to the centre positions of the two end faces of 
the sample along the radial and axial direction, respectively, 
and the radial tensile strain ( �

3
 ), and axial compressive strain 

( �
1
 ) of the sample during the Brazilian split test was meas-

ured (see Fig. 1c). The sample was placed in the middle of 
the fixture, and the vertical compressive stress was applied 
under a strain-rate controlled mode at a rate of 0.01 mm/
min. The mechanical parameters of the samples during the 
Brazilian split test were obtained. The tensile strength is 

calculated by the following formula (ISRM 1978) and the 
tensile stress–strain curve can be plotted:

where �
t
 , P , D and B denote the tensile strength (MPa), peak 

force (N), diameter (mm) and thickness (mm) of the sample, 
respectively.

(1)�
t
=

2P

�DB

Fig. 1  Schematic diagram of 
Brazilian split test system: a 
Brazilian split test system, b arc 
fixture, c strain gauges

Fig. 2  Granite samples subjected to the thermal shock at different 
temperatures
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Test results

Variations in physical behaviour after HWCT 

After the HWCT, the colour of the granite surface changes 
significantly (as shown in Fig.  2). It shows that as the  
temperature increases, the colour of the granite surface changes 
from grey-white to grey-red, which is caused by chemical 
changes within the rock (Li et al. 2017). When the heating  
temperature was higher than 500 °C, some yellow patches 
(as red circle shown in Fig. 2) appeared on the surface of the 
sample. When the temperature reached 600 °C, the surface of 
sample became loose and porous, but no obvious macro-cracks 
were observed. The similar phenomenon was also observed on 
other granites (Kumari et al. 2018; Fan et al. 2020).

Figure 3 presents the microcrack morphology of the ini-
tial sample and the samples after HWTC was obtained by 
scanning electron microscope (SEM), and the red dotted 
line indicates the microcracks. Few microcracks could be 
observed in the initial samples (Fig. 3a). After heating up to 
200 °C and cooling to room temperature, a small number of 
microcracks could be found on weak interfaces of the crys-
tals with the combining effect of heating and cooling treat-
ment (Fig. 3b). With increasing temperature, the temperature 
differences between heating and cooling treatment increase, 
the number of microcracks increase gradually, the length and 
aperture of microcracks increase accordingly, some microc-
racks begin to connect together (Fig. 3c–e). When the heat-
ing temperature exceeds 500 °C (Fig. 3f), a large number of 
trans-granular cracks and cellular structures are observed 

Fig. 3  Microcrack morphol-
ogy due to HWCT at different 
heating temperatures: a 25 °C, 
b 200 °C, c 300 °C, d 400 °C, e 
500 °C, f 600 °C
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due to the large temperature differences between heating and 
cooling treatment (Zhang et al. 2018a, b).

After the HWCT, the density, porosity and P-wave  
velocity of the granite samples were measured according 
to the recommended methods by the ISRM (Franklin et al. 
1979). The variations of the density and the porosity after 
the HWCT with different heating temperatures are shown  

in Fig. 4. With increasing heating temperature, there is a  
continuous decrease in dry density and saturated density, 
while the porosity shows the inverse trend. From 25 to 
500 °C, a slight increase in porosity is observed, and these 
minor structural modifications are attributed to the opening  
of initial microcracks and the nucleation of some new 
microcracks. Beyond 500 °C, the porosity showed a marked 

Fig. 4  Porosity and density 
variations after HWCT 
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Fig. 5  P-wave velocity varia-
tions after HWCT 
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increase with heating temperature (from 1.731 to 2.984%), 
because quartz undergoes structural changes in crystals at 
573 °C from α-type to β-type (Nasseri et al. 2009). Moreover,  
Fig. 5 presents a continuous decrease in P-wave velocity 
with increasing heating temperature, and the average value 
of P-wave velocity decreases significantly from 5357 m/s 
(25 °C) to 1000 m/s (600 °C). The decreased P-wave velocity  
is basically attributed to generation of microcracks due the 
combining effect of heating and cooling treatment.

Variations in tensile mechanical behaviour 
after HWCT 

The typical stress–strain curves obtained from the Brazilian 
split tests are shown in Fig. 6. The tensile strain and com-
pressive strain are measured by the strain gauges (Fig. 1c). 
Due to the strain gauges are split into two halves at the fail-
ure, the post-peak phase of the curves cannot be obtained for 
each heating temperature. When the heating temperature is 
between 25 and 400 °C, the tensile stress–strain curves are 
almost a straight line, few visible nonlinear phases could be 
observed, while a marked nonlinear phase occurs beyond 
500 °C.

The failure patterns of the granite samples are shown in 
Fig. 7. It is found that the failure of all the samples occurred 
along the vertical loading direction, and the strain gauges 
pasted to the centre of the samples were split into two halves 
due to the generation of macrocrack. The difference of the 

failure patterns of the samples was not obvious with the 
increasing of heating temperature.

Discussions

Tensile elastic modulus and strength

The elastic modulus is a critical parameter related to rock 
deformation, and the tensile stress in practical engineering 
is often the key factor accounting for rock cracking. In this 
context, the tensile strain was measured by the strain gauges 
pasted to the centre of the sample. The calculation method 
of tensile elastic modulus proposed by Ye et al. (2009) is 
adopted:

where E
t
 is the tensile elastic modulus (GPa), L is the half 

length of the strain gauge (mm), v is the Poisson’s ratio; E
s
 

is the splitting elastic modulus (GPa), which is the slope 
of the straight part of the tensile stress–strain curve in the 
Brazilian split test (40–60% of the peak strength; Yin et al. 
2016). The variations in tensile elastic modulus of the sam-
ples after HWCT are shown in Fig. 8. The tensile elastic 
modulus undergoes a slight increase to decrease with the 
increases of heating temperature. More precisely, the tensile 

(2)E
t
= E

s

[

(

1 −
D

L
arctan

2L

D

)

(1 − v) +
2D2(1 + v)

4L2D2

]

Fig. 6  The tensile stress–strain 
curves
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elastic modulus increases in the range of heating tempera-
ture between 25 and 200 °C, then decrease between 200 
and 600 °C. Beyond 400 °C, the tensile elastic modulus 
decreases abruptly. The variations in tensile elastic modu-
lus may be related to two types of competitive mechanism: 

thermal hardening and thermal shock induced cracking 
(Heap et al. 2017; Meredith and Atkinson 1985). When the 
granite samples were heated to a relatively low tempera-
ture, a thermal expansion was generated inside the samples 
and could cause a compaction effect on different crystal 

Fig. 7  Failure patterns of the 
granite samples in Brazilian 
split test: a 25 °C, b 200 °C, c 
300 °C, d 400 °C, e 500 °C, f 
600 °C

Fig. 8  Variations of tensile elas-
tic modulus of granite samples 
after different HWCT 
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particles, which is considered as the origin of thermal hard-
ening (Zhang et al. 2018b), leading to a slight increase in 
tensile elastic modulus. However, when the heating tempera-
ture is relatively high, the thermal shock during the rapid 
cooling process causes a strong temperature gradient, which 
is responsible for the generation of microcracks and conse-
quently causes a decrease in tensile elastic modulus (Zhang 
et al. 2018a).

Figure 9 presents the tensile strength variations of the 
samples after HWCT. A transition of a slight increase to 
decrease with the increase of heating temperature is also 
observed on the tensile strength. The tensile strength of the 
granite samples at room temperature is 10.2 MPa. While 
the tensile strength is 2.38 MPa when the heating tempera-
ture is 600 °C, which was one-fifth of that at room tempera-
ture. Moreover, the tensile strength is observed to decrease 
slower between 200 and 300 °C rather than between 400 and 
600 °C. In other words, there is a change in the decrease rate 
of tensile strength around 400 °C, which confirms the evo-
lution of the tensile modulus. This transition in the tensile 
strength is also attributed to the thermal hardening at rela-
tively low temperature and thermal shock–induced cracking 
at high temperature (Zhang et al. 2018b, 2020a).

Comparisons of tensile and compressive mechanical 
behaviour

The effect of HWCT treatment on tensile elastic modulus may 
be related to two types of competitive mechanism: thermal 

hardening and thermal shock during the heating and cooling 
process, and the latter one can cause thermal cracks inside the 
granite samples when the temperature difference is relatively 
large. Those microcracks will affect the tensile and  
compressive mechanical behaviour of granite (Zhang et al. 
2018b, 2020b). In order to compare the effects of HWCT on 
compressive and tensile mechanical behaviour, uniaxial 
compression tests were also performed on the same granite 
subjected to HWCT. For the sake of clear comparison, the 
normalized elastic modulus ( ET

E25◦C

)and peak strength ( �T
�25◦C

 ) are 
used. E

T
 and �

T
 , respectively, denote the secant elastic modulus 

(GPa) and peak strength (MPa) of the samples subjected to 
HWCT (T = 25, 200, 300, 400 and 600 ◦C ). E

25◦C
 and, �

25◦C
 

respectively, denote the secant elastic modulus (GPa) and peak 
strength (MPa) of the initial samples. The normalized variation 
curves with the heating temperature of elastic modulus and 
peak strength in the compressive and tensile tests are plotted 
in Figs. 10 and 11. The variation trends in strength and elastic 
modulus are basically consistent for both uniaxial compression 
tests and Brazilian split tests. The transition of slight increase 
to decrease with the increase of the heating temperature is 
observed in both elastic modulus and strength in the two cases. 
When the heating temperature is 200 °C, the slight increases 
in the elastic modulus and strength are not obvious. This 
phenomenon indicates that the effects of thermal hardening on 
the tensile and compressive properties are slight at low heating 
temperature in a global sense. Moreover, the decreasing rate in 
the tensile properties is observed to be significantly larger 

Fig. 9  Variations of tensile 
strength of granite samples after 
different HWCT 
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rather than in the compressive properties, and the tensile 
strength is significantly reduced when the heating temperature 
is between 300 and 400 °C, while it is between 500 and 600 °C 
for the compressive strength. Thermal shock–induced cracking 
at high temperature reduces the cohesion of granite and 

weakened the tensile strength of the granite, while it has a 
relatively small impact on the compressive strength of the 
granite. Between 500 and 600 °C, the compressive and tensile 
properties decrease sharply, indicating that the internal 
structure of granite is significantly damaged at 600 °C.

Fig. 10  Variations of normal-
ized tensile and compressive 
elastic modulus with heating 
temperature
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Fig. 11  Variations of normal-
ized tensile and compressive 
strength with heating tempera-
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In the Brazilian split tests, the stresses along loading 
and vertical loading directions at the edge of fixture, where 
the clamp contacts the disc, are both compressive stresses. 
As the position moved toward the centre of the disc, the 
compressive stress in the loading direction gradually 
decreases and tensile stress appears. As the axial force 
increases, the axial compressive stress and the radial tensile 
stress increase gradually. If the thermal shock induced 
microcracks appear in the centre of the disc, under the action 
of radial tensile stress, the microcracks will rapidly expand 
and penetrate other microcracks, which results in extending 
of macrocracks to both ends. However, during the uniaxial 
compression process of granite, the thermal shock–induced 
microcracks would be closed under compressive stress. 
Therefore, the HWCT has a relatively smaller impact on 
compressive properties rather than on tensile properties.

Further, the different effects of HWCT on the tensile and 
compressive mechanical behaviour could also be related to 
the microcrack morphology (see Fig. 2) from the microscopic 
viewpoint. As the heating temperature increases, the 
temperature difference during thermal shock is consequently 
increased, the number of microcracks on the weak interface of 
the mineral increases after thermal shock, the length and pore 
size increase, and some coalescence of the microcracks are 
even observed (see Fig. 2e, f). The ability of granite to resist 
damage depends on the strength of the skeleton, the size of 
internal cracks and the strength and cohesion of the mineral 
composition (Zhao 2015; Liu et al. 2019; Kumari et al. 2019). 
The main factors affecting the tensile behaviour of granite 
are the cohesion and fracture state of mineral particles under 
tensile test (Gautam et al. 2018; Qi et al. 2020). On the other 
hand, the main factor affecting the compressive behaviour 
of granite is the properties of the interface between mineral 
particles (Li et al. 2013; Sun et al. 2015). The resistance to 
overcome and the main influencing factors are different, and 
the variation of tensile behaviour and compressive behaviour 
affected by temperature is also different. It indicates that 
the HWCT has different effects on tensile and compressive 
mechanical behaviour. When the heating temperature is 
between 300 and 400 °C, the increase and development of 
thermal shock–induced microcracks cause the decrease of 
tensile properties, while the compressive behaviour of granite 
does not significantly decrease, indicating that the threshold 
temperature of tensile is not enough to affect the internal 
structural framework of granite. When the temperature reaches 
600 °C, the quartz undergoes a phase transition leading to 
the increasing of volume and generation of a large number 
of microcracks (Nasseri et  al. 2009; Glover et  al. 1995; 
Zhang et al. 2016; Wang et al. 2020). It causes the internal 
pores to increase and the extension and development of 
new microcracks, which leads to the fracture of the internal 
mechanical structure of the granite and the significant 
deterioration of the compressive mechanical properties.

Conclusions

The effects of HWCT on the physical and tensile mechani-
cal properties were studied in this paper. As the temperature 
increases, the axial tensile strain of granite increases gradu-
ally, the tensile stress–strain curves change from linear to 
nonlinear, and the nonlinear characteristic increases with 
increasing temperature. The transition of slight increase 
to decrease with the increasing of heating temperature is 
observed in both tensile elastic modulus and tensile strength. 
Moreover, the uniaxial compression tests were also per-
formed on the same granite subjected to HWCT to compare 
the effects of HWCT on compressive and tensile mechanical 
behaviour. The HWCT has different effects on tensile and 
compressive mechanical behaviour, and the tensile proper-
ties of granite decrease significantly after heating temper-
ature threshold of 300 °C, while the heating temperature 
threshold for compressive properties is 500 °C. The ther-
mal shock–induced microcracks are more prone to extension 
under tensile stress rather than under compressive stress; 
consequently, the HWCT has a relatively larger impact on 
tensile properties rather than on compressive properties.
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