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Abstract
The mechanical behaviour of gassy sand is rather complex owing to the inherent complex nature of sand and the occluded/

dissolved gas. For better understanding of the behaviour of gassy sand under monotonic loading, a numerical model is

presented in this paper. By considering the gas–water mixture in gassy sand as a homogenous pore fluid, the theory of two-

phase saturated porous media is employed. Based on this theory, the impact of the occluded/dissolved gas is characterized

by the relationship between the compressibility of pore fluid and the degree of saturation as well as the pore fluid pressure,

derived from Boyle’s and Henry’s Laws. Then an advanced constitutive model for sand is combined with the porous media

theory to capture the complex stress–strain behaviour of sand, using a single set of model parameters. Through the spatial

and temporal discretization of the governing equations by the finite element method and the well-known h-method, the

porous model is numerically implemented as a user-defined element subroutine provided by ABAQUS, in which the

implicit constitutive integration algorithm is used. Finally, the influences of gas type, degree of saturation, pore fluid

pressure level, and physical state (void ratio and stress level) on the behaviour of gassy sand are studied by the numerical

model. The model is validated by comparing the simulated results with laboratory test data from literature.

Keywords Bounding surface plasticity � Gassy sand � Implicit constitutive integration � State parameter � Two-phase

saturated media � UEL

1 Introduction

As defined by Wroth and Houlsby [29], gassy soil is a class

of soil with high degree of saturation (always higher than

85%), in which the liquid phase is continuous while the gas

phase is discontinuous in the form of bubbles. Gassy soils

are widely distributed in marine, lacustrine, or interactive

marine and terrestrial sedimentary environments [6]. The

gas, predominately methane, in gas-charged sediments is

produced from organic matter in the sediments. Gas may

exist in solution in the pore fluid or may be present in its

free form. Moreover, the modes of free gas occurrence are

different for fine-grained soil and coarse-grained soil

mainly due to the relative dimensions of the soil particles

and gas bubbles [14, 26]. In this work, the coarse-grained

soil is concerned, in which gas bubbles occluded in pore

fluid are smaller than the size of soil grain without playing

any effect on soil matrix. Compared to water fully satu-

rated sand, the compressibility of gassy sand is higher on

account of the high compressibility of the occluded gas. In

addition, the variation of pore fluid pressure can make the

gas dissolution or exsolution, which would alter the degree

of saturation, the compressibility of pore fluid, and con-

sequently influence the mechanical behaviour of soil

skeleton [21]. These characteristics, in combination with

the dilatancy behaviour of sand, make the mechanical

behaviour of gassy sand more complex.
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In past decades, a few researchers have investigated the

mechanical behaviour of gassy sand by using laboratory

testing. Rad et al. [20] conducted a series of undrained

triaxial compression tests on gassy dense sand to study the

effects of gas type, initial pore fluid pressure, and gas

amount. The results indicated that the higher the solubility

coefficient of the gas is, or the more gas is occluded, the

weaker the specimens may behave under undrained

shearing. Furthermore, the lower the initial pore pressure

is, the greater the potential for lower strength under

undrained shearing. Vega-Posada et al. [22] investigated

the effect of gas on the mechanical behaviour of medium-

dense sand by performing undrained triaxial compression

tests. It was found that the addition of gas, even by small

amounts, would lead to a significant reduction of the

undrained shear strength of the specimens. Grozic et al. [8]

studied the behaviour of gassy loose sand under static

undrained triaxial compression conditions and concluded

that a reduction in the degree of saturation could induce a

decrease in the static liquefaction potential. For a specific

void ratio, flow liquefaction will not occur if the degree of

saturation is lower than the ‘cut-off’ value. Similar con-

clusions are also obtained by He and Chu [11]. In addition,

by comparing the results of undrained tests on gassy

specimens with the ones of drained effective stress path

tests on fully saturated specimens, Finno et al. [5] validated

the applicability of the original form of Terzaghi’s effec-

tive stress principle for gassy sand.

Unlike the plenty of experimental studies on gassy sand,

less numerical model is proposed for describing the

mechanical responses of gassy sand. Grozic et al. [9]

proposed a gassy sand model by combining the sand model

developed by Imam et al. [15] with the Hilf’s equation [12]

that was used to take account of the gas induced properties.

In this model, an iterative process was performed to bal-

ance the pore fluid pressure change and volumetric strain

increment under globally undrained condition. Except the

incapability to predict the slight increase in mean effective

stress in the initial loading stages, the combined numerical

model can well predict the responses of gassy loose sand

under undrained triaxial compression conditions. Likewise,

the similar method was applied for gassy clay through the

replacement of sand model by cam clay model [10]. Nixon

and Grozic [19] proposed a simple numerical model to

investigate the effect of gas hydrate dissociation on the

stability of submarine slope. The result showed that dis-

sociation of even small amount hydrate can cause a sig-

nificant destabilizing effect. Based on the constitutive

model [18] which was obtained by extending the

hypoplastic model for sand [25] with the intergranular

strain concept, Zapata-Medina et al. [31] suggested a

numerical model for gassy sand using the finite element

program PLAXIS 2D, in which the pore fluid

compressibility are calculated by the relationship devel-

oped by Fredlund [7]. Good consistency was obtained

between the undrained triaxial compression test results of

gassy medium-dense sand and the corresponding simula-

tions. The undrained mechanical behaviour of gassy sand

was also studied by Hong and Xu [13, 30] through using

the discrete element method (DEM), where the micro-re-

sponses were extensively discussed. The simulations are

found to be comparable with the experimental results and/

or the theoretical prediction results. Besides, two cases

involving gas exsolution were numerically simulated by

Mabrouk and Rowe [17] and Dittrich et al. [4], in which the

variations of pore fluid compressibility were all considered.

Despite the existing studies, the mechanical responses of

gassy sand under different conditions, such as gas type, gas

amount, and existing form of gas, pore pressure level as

well as physical state (void ratio and stress level) of sand,

are less comprehensively investigated.

The aim of this paper is to present a numerical model to

investigate the mechanical behaviour of gassy sand under

monotonic loading. To this end, by considering the pore

gas–water mixture in gassy sand as a homogenous pore

fluid, the theory of two-phase saturated porous media is

employed, in which the compressibility of pore fluid is

determined using Boyle’s and Henry’s Laws. An advanced

bounding surface plastic model named SANISAND-Z [3]

is added to the porous model to capture the complex

mechanical behaviours of sand with the same set of model

parameters. Then, the governing equations are spatial and

temporal discretized by the finite element method (FEM)

and the well-known h-method. The discretized governing

equations are further implemented as a user-defined ele-

ment (UEL) subroutine in ABAQUS, where the implicit

constitutive integration algorithm is used. Finally, the

capability of the numerical model is validated by com-

paring the simulation results with the laboratory data

involving different experimental conditions.

2 Methodology

2.1 Governing equations for two-phase
saturated porous media under quasi-static
condition

In quasi-static condition, slow motion phenomena such as

the consolidation behaviour of soils, all acceleration terms

in the motion equations become negligible and can be

omitted. The overall equilibrium equation of soil-fluid

mixture can then be expressed as

rij;i þ bi ¼ 0 ð1Þ

The mass conservation of the fluid flow can be written as
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a _eii þ 1=Q _pf ¼ kijpf ;j
� �

;i
ð2Þ

Taking account of the elastoplastic deformation prop-

erties of soils, the constitutive law can be expressed in an

incremental form:

drij ¼ dr0ij � adijdpf ; dr0ij ¼ Dijkldekl ð3Þ

In above equations, rij is the total Cauchy stress tensor

(where rij [ 0 for tension) and bi denotes the body force

distribution vector; r0ij is the effective stress tensor; a ¼
1 � Cs=C/ is the Biot constant; Cs and C/ are the com-

pressibility of soil grain and soil skeleton, respectively; eij
is the strain tensor; pf is the porous fluid pressure (where

pf [ 0 for compression); 1=Q ¼ a� nð ÞCs þ nbf describes

the bulk stiffness of soil-fluid mixture, where bf is the

compressibility of fluid phase and n represents porosity;

kij ¼ Kij=cw where Kij is the Darcy permeability coefficient

and cw is the weight of porous fluid; Dijkl is a fourth-order

tensor describing the constitutive relation of soil skeleton;

dij represents the Kronecker delta (dij = 0 if i 6¼ j and dij-
= 1 if i ¼ j).

2.2 Spatial and temporal discretization
of the governing equations

Equations (1)–(3), accompanied by initial and boundary

conditions, define the strong form of porous model under

quasi-static conditions. By applying spatial discretization,

the weak form of governing equations can be obtained. In

this study, the Finite Element Method (FEM) [32] is

adopted for spatial approximations (as described by

u x; tð Þ ¼ NuU tð Þ, pf x; tð Þ ¼ Nppf tð Þ, where Nu and Np

represent the spatial interpolation matrices for solid dis-

placement and pore pressure, respectively; U and pf are the

nodal solid displacement vector and nodal pore pressure

vector, respectively; x is the nodal coordinate vector). After

spatial discretization, the well-known h-method [2, 24] is

applied for temporal discretization. Then, the following

system of equations can be obtained:

0 �G
GT Sþ hDtH

� �
Uiþ1

piþ1
f

� �
þ

R

X
BTr0dX

0

" #

¼ 0 0

GT S� 1 � hð ÞDtH

� �
Ui

pif

� �
þ Fiþh

u

DtFiþh
p

� �
ð4Þ

where h is the integration parameter in the interval 0 B

h B 1; B stands for the strain matrix; r0 is the vector form

of effective stress tensor r0ij; Fiþh
u ¼ 1 � hð ÞFi

u þ hFiþ1
u ,

Fiþh
p ¼ 1 � hð ÞFi

p þ hFiþ1
p ; the superscripts i and i ? 1

denote, respectively, quantities evaluated at the start and

end of the step; The permeability (H), coupling (G),

compressibility (S) matrices are defined as:

H ¼
Z

X

rNT
pkrNpdX ð5aÞ

G ¼
Z

X

BTamNpdX ð5bÞ

S ¼
Z

X

NT
p 1=Qð ÞrNpdX ð5cÞ

and m is the vector form of Kronecker delta dij and k is the

matrix form of kij.

The vectors Fu and Fp account for prescribed traction (s)

and flux (q) boundary conditions, as well as body forces (b)

and sources (a), respectively. Fu and Fp are derived as

Fu ¼
Z

Cs

NT
u s tð ÞdCþ

Z

X

NT
ub tð ÞdX ð6aÞ

Fp ¼
Z

Cq

NT
p q tð ÞdCþ

Z

X

NT
p a tð ÞdX ð6bÞ

where X and U (U = Us [ Uu = Up [ Uq; where Um indicates

the part of the boundary in which the variable m is pre-

scribed) stand for the domain and the boundary of porous

model, respectively.

The h-method is unconditionally stable if h C 0.5 [2].

For the case of h = 0.5, that is Crank-Nicolson method, the

h-method is second-order accurate. However, it may gen-

erate unwanted oscillations [27]. In this study, h = 1, cor-

responding to backward Euler scheme, is adopted, which is

first-order accurate, unconditionally stable and can damp

out spurious oscillations [28].

2.3 Evolution of compressibility of pore fluid
in gassy sand

Due to the microstructure of sand, the gas bubbles are

small and confined in the pore fluid, which have no impact

on solid matrix. Accordingly, the gas–water mixture can be

treated as a homogenous fluid, and it is reasonable to

assume that the surface tension force of gas bubbles is

negligible [7]. Consequently, the pore gas pressure is equal

to the pore water pressure, and also equal to the gas–water

mixture pressure. Based on the above hypothesis, Fredlund

[7] combined the Boyle’s law for dissolved gas and Hen-

ry’s law for free gas, and then proposed the following

equation for calculating the compressibility of miscible

gas/fluid mixtures:

bf ¼ Ba 1 � Sr þ hSrð Þ= pf þ Patm

� �
þ BwSrbw ð7Þ

where Ba and Bw are the pressure parameters for pore gas

and fluid, respectively; Sr stands for degree of saturation; h

denotes the Henry’s volumetric coefficient of solubility;
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Patm = 101.3 kPa is atmospheric pressure;bw is the com-

pressibility of pore water. In this study, pressure parameters

Ba and Bw are both taken equal to 1.0. bw can be taken as

4.7 9 10-7 kPa-1. For the value of h, it varies for different

gas–fluid mixtures. For example, h = 0.034 for methane

(CH4)-water mixtures; h = 0.86 for carbon dioxide (CO2)–

water mixtures; h = 0.015 for nitrogen (N2)–water

mixtures.

As shown in Eq. (7), the compressibility of pore fluid bf
is associated with degree of saturation Sr and pore fluid

pressure pf . The latter is one of the dependent variables of

the porous model. For degree of saturation, its variation is

very complex due to the drainage conditions and the dis-

tribution of bubble in the pore fluid. In this study, two

cases, i.e. drained case and undrained case, are distin-

guished for determining Sr. For drained case, Sr is assumed

constant during the consolidation process. For undrained

case, through the differentiation of Sr, it can be obtained

that

dSr=Sr þ dn=nþ deii ¼ 0 ð8Þ

By integrating Eq. (8), the evolution of Sr can be

obtained as

Sr ¼
Sr0n0

n
e�Deii ð9Þ

where Sr0 and n0 are the initial degree of saturation and

porosity. Obviously, the porosity n must be derived firstly

for the calculation of Sr, which is also needed for the

determination of 1=Q in Eq. (2). Based on the mass con-

servation of soil skeleton, the evolution of n can be

obtained as [16]

_nþ a� nð Þ _eii þ CS _pf
� �

¼ 0 ð10Þ

If the compressibility of soil grain is not taken into

account, i.e. Cs = 0 and a = 1.0, which is reasonable for

the most soil mechanics problem and adopted in this paper,

porosity n can be derived by time integration as

n ¼ 1 � 1 � n0ð Þe�Deii ð11Þ

Above all, the pore fluid compressibility bf is very

sensitive to the presence of gas, and a small volume of

bubbles can significantly affect the pore pressure response

to external loading. For undrained case, due to the high

compressibility of pore fluid, the application of external

load on gassy soil brings about the change in its volume,

which is accompanied with the gas dissolution or exsolu-

tion, as well as the variation of bf . This volumetric

deformation then leads to the variation of pore fluid pres-

sure, and influences the effective stress–strain relationship.

2.4 Constitutive model

Since the gassy sand is considered as a saturated two-phase

media with the liquid phase compressible, the effective

stress concept for water fully saturated soil still applies to

gassy sand. Accordingly, the constitutive model for water

saturated sand can be used to analyse the stress–strain

relationship of gassy sand.

It is widely known that the constitutive model plays the

key role in numerical simulation of the soil response. In

this paper, a sand model within the bounding surface

plasticity theory and the critical state theory, named

SANISAND-Z model [3], is adopted. The most attractive

characteristic of the model is the omission of yield surface.

That is the yield surface becomes identical to the stress

point itself, so the direction of the plastic strain increment

depends on the direction of the stress increment. These

properties not only render the model incrementally non-

linear, but also make the structure of the model simple.

Furthermore, as results of the bounding surface plasticity

and the introduction of state parameter, the model can

simulate the mechanical behaviour of sand under mono-

tonic and cyclic loading for a wide range of densities (loose

and dense sands) and stress level with a single set of model

parameters. For the sake of clearness, the constitutive

ingredients of the model are summarized briefly.

As pointed out by Dafalias and Taiebat [3], zero elastic

range does not negate the elastic deformations. The total

strain is still decomposed into elastic and plastic strain. A

hypoelastic model associated with shear moduli G

and bulk moduli K is employed to describe the elastic

behaviour:

G ¼ G0

2:97 � eð Þ2

1 þ e

p0

Patm

� �0:5

; K ¼ 2 1 þ lð Þ
3 1 � 2lð ÞG ð12Þ

where p0 ¼ rii=3 stands for the mean effective stress, e

represents void ratio; G0 is a model parameter; l denotes a

constant Poisson ratio.

For the critical state of soils, it can be described in tri-

axial p0 � q space and in e� p space, i.e.

g ¼ q

p0
¼ M; e ¼ ec ¼ eref � k

p0

Patm

� �n

ð13Þ

where g represents the deviator stress ratio in triaxial space;

q ¼ 3=2s : sð Þ1=2
is the deviator stress with the deviator

stress tensor s ¼ sij ¼ rij � dijp0; M is a function of the

Lode angle, called critical state stress ratio; ec is the critical

state void ratio; eref , k, n are the model parameters.

In order to model the dilatancy of sand, the state

parameter w ¼ e� ec [1] is introduced in bounding surface

(BS) Fb ¼ 0 and dilatancy surface (DS) Fd ¼ 0, which are

given by
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Fb ¼ rb : rb
� �1=2�

ffiffiffi
2

3

r

Mb ¼ 0; Mb ¼ Me�nbw ð14Þ

Fd ¼ rd : rd
� �1=2�

ffiffiffi
2

3

r

Md ¼ 0; Md ¼ Mendw ð15Þ

where r ¼ rij ¼ sij=p
0 is the deviator stress ratio tensor; the

superscripts b and d of r indicate the stress ratio on BS and

DS, respectively; nb and nd are the model parameters. For

simplicity, the value of M is taken as the average between

its triaxial compression and extension values, Mc and Me,

respectively, to compensate for the exclusion of Lode angle

dependence. So, the BS and DS in stress ratio p-plane are

circles, as shown in Fig. 1.

The image stress point on BS can be determined in

terms of the direction of the rate of stress ratio r. To do this,

two cases are distinguished, i.e. the current stress ratio r is

inside or outside the BS. For the former case, as shown in

Fig. 1, the image stress ratio point rb can be analytically

derived as

rb ¼ �rt : vþ rt : vð Þ2þ2=3 Mb
� �2�rt : rt

h i
ð16Þ

where v ¼ dr= dr : drð Þ1=2
stands for the direction of stress

ratio rate; dr ¼ rtþ1 � rt is the incremental tensor of stress

ratio; rt and rtþ1 denote the previous and the current stress

ratio tensor, respectively. For the latter case, that is rtþ1 lies

outside the BS, rb is defined as the intersection with the BS

of the radius connecting the origin to rtþ1, also as shown in

Fig. 1, which can be expressed by

rb ¼
ffiffiffiffiffiffiffiffi
2=3

p
Mbnr ð16Þ

where nr ¼ rtþ1= rtþ1 : rtþ1ð Þ1=2
represents the direction of

rtþ1.The loading direction n is defined normal to BS at rb,

hence after the derivation of Eq. (14) one has

n ¼ oFb=orb ¼ rb= rb : rb
� �1=2 ð17Þ

and now, the stress point on DS rd can be calculated as

rd ¼
ffiffiffiffiffiffiffiffi
2=3

p
Mdn ð18Þ

As for the direction of plastic strain, it can be decom-

posed into deviatoric part R0 and volumetric part D in the

model. The former is obtained by non-associative flow rule

and is given by

R0 ¼ Bn� C n2 � I=3
� �

; B ¼ 1 þ 3

2

1 � c

c
g hð Þcos3h0;

C ¼ 3

ffiffiffi
3

2

r
1 � c

c
g h0ð Þ; g Xð Þ ¼ 2c

1 þ cð Þ � 1 � cð Þcos3X
;

c ¼ Me=Mc

ð19Þ

where X is the Lode angle; Me and Mc are the critical stress

ratios in triaxial extension and compression. The volu-

metric part D is given by

D ¼ Ad rd � r
� �

: n ð20Þ

where Ad is a model parameter. For the simplest case, Ad is

constant. However, in order to take into account of the

effect of fabric change on dilatancy, which is confirmed

benefit for the simulation of liquefaction, Ad is related to a

fabric-dilatancy tensor z, i.e. Ad ¼ A0 1 þ
ffiffiffiffiffiffiffiffi
3=2

p
z : nh i

	 


where the MacCauley bracket h i operates xh i ¼ x for

x[ 0 and xh i ¼ 0 for x� 0; A0 is a model constant; z

evolves according to _z ¼ �cz � _epv
ffiffiffiffiffiffiffiffi
2=3

p
zmaxnþ z

	 

.

The last constitutive ingredient of the model is the

plastic modulus Kp, which is expressed as

Kp ¼
2

3
p0h

rb � r
� �

: n

r� rinð Þ : n ; h0 ¼ G0h
0
0 1 � cheð Þ p0

Patm

� �1=2

ð21Þ

where h00 and ch are the model parameters; rin is the value

of r at the initiation of a plastic loading.

Above all are the essential elements of the SANISAND-

Z model. The model involves 14 material constants, as

presented in Table 1. The calibration process for the model

have been presented in detail by Dafalias and Taiebat [3],

and is not elaborated here.

2.5 Numerical implementation

Numerical implementation of the above two-phase porous

model is performed by using the user-defined element

(UEL) interface provided by the FEM software Abaqus. In

Fig. 1 Illustration of the SANISAND-Z model in deviator stress ratio

space in conjunction with the bounding (Fb ¼ 0), dilatancy (Fb ¼ 0)

and critical state (Fc ¼ 0) surfaces (after [2])
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fact, two-phase porous model under quasi-static condition

has been incorporated in Abaqus. However, the com-

pressibility of liquid phase in the model is an input con-

stant, which makes it unable to simulate the gassy soils

behaviour, as described above. Due to the adoption of

Newton–Raphson iterative method, two basic arrays, i.e.

AMATRX and RHS, are required to be evaluated in the

UEL subroutine, which represent the elemental stiffness

matrix and the overall elemental residual, respectively.

Utilizing Eq. (4) with h = 1, the AMATRX and RHS can

be expressed as

AMATRX ¼ K �G
GT=Dt S=Dt þH

� �
;

RHS ¼
Gpiþ1

f �
R

X
BTr0dX

�GT _U� S _pf � Hpiþ1
f

2

4

3

5
ð22Þ

where K ¼
R

X
BTDBdX; _U ¼ Uiþ1 � Ui

� �
=Dt and

_pf ¼ ðpiþ1
f � pif Þ=Dt. In this study, the 3-D user-defined

element is developed.

For the constitutive integration of the SANISAND-Z

model, an implicit integration method is used. Based on the

ingredients of the model, the Newton–Raphson iterative

method is employed to solve the following system of

nonlinear equations.

/1 ¼ stþ1 � st � 2Gtþ1deþ 2Gtþ1Ltþ1R0tþ1 ¼ 0

/2 ¼ p0tþ1 � p0t � Ktþ1dev þ Ktþ1Ltþ1Dtþ1 ¼ 0

/3 ¼ 2Gtþ1ntþ1 : de� Ktþ1 ntþ1 : rtþ1ð Þdev
�Ltþ1 Ktþ1

p þ 2Gtþ1 � Ktþ1Dtþ1ntþ1 : rtþ1
	 


¼ 0

8
>>><

>>>:

ð23Þ

where the superscripts t and t ? 1 represent the values of

variables at the previous and current steps. After solving 8

unknown dependent variables of Eq. (23), i.e. six deviator

stress components stþ1(considering the symmetry of

stress), p0tþ1 and Ltþ1, the corresponding tangent operator

D consistent with the above stress update algorithm is

derived as follows.

By deriving Eq. (23) with respect to the strain tensor e,

one has

d/1

de
d/2

de
d/3

de

2

6666664

3

7777775

¼

o/1

oe
o/2

oe
o/3

oe

2

6666664

3

7777775

þ J

os

oe

op0

oe
oL

oe

2

6666664

3

7777775

¼ 0;

J ¼

o/1

os

o/1

op0
o/1

oL

o/2

os

o/2

op0
o/2

oL

o/3

os

o/3

op0
o/3

oL

2

66666664

3

77777775

ð24Þ

The operator J has been determined in advance when

iteratively solving Eq. (23). Then, after some tensor algebra

and inversion, one can obtain os=oe and op0=oe. Finally, the

consistent tangent operator can be given by

D ¼ or

oe
¼ os

oe
þ I � op0

oe
ð25Þ

where I is the second-order unit tensor; � denotes tensor

product.

3 Evaluation of the numerical model

In order to validate the proposed numerical porous model,

the numerical element tests are conducted and their results

are then compared with the experimental data. In this

process, the water fully saturated condition and the gas-

bearing condition are both investigated. The former is

mainly for demonstrating the accuracy of the numerical

implementation of the porous model, and the latter is pri-

marily for confirming the capabilities of the model against

gassy sand.

Table 1 Material constants of the model

Parameters

description

Symbol Toyoura

sand [23]

Baskarp

sand [20]

Oakridge

sand [22]

Ottawa

sand

[11]

Elasticity G0 125 150 100 50

l 0.05 0.1 0.15 0.25

Critical

state

Mc 1.25 1.4 1.23 1.22

c 0.712 0.712 0.712 0.713

eref 0.934 0.886 1.417 0.8

n 0.7 0.6 0.1 0.075

k 0.019 0.03 0.55 0.04

Dilatancy A0 0.704 0.457 0.420 1.487

nd 2.1 3.5 3.5 3.5

Plastic

modulus

h00 15.0 8.1 2.1 6.9

ch 0.987 0.87 0.87 0.57

nb 1.25 1.1 2.1 1.1

Fabric-

dilatancy

tensor

zmax 2 – – –

cz 600 – – –
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3.1 Simulations of water fully saturated sand

The experimental data of Toyoura sand published by

Verdugo and Ishihara [23] are employed for validation,

including the drained and undrained triaxial compression

testing results. This sand is a uniform fine sand consisting

of subrounded to subangular particles. The mean diameter

and the uniformity coefficient are 0.17 mm and 1.7,

respectively. The maximum and minimum void ratio are

0.977 and 0.597, respectively. The material parameters of

the SANISAND-Z model is presented in Table 1, which is

from Dafalias and Taiebat [3]. In the simulations of triaxial

compression tests on the water fully saturated sand and the

following gassy sands, the critical stress ratio M is set equal

to the compression value Mc. It should be noted that due to

the discontinuity of Eq. (7) at Sr = 1, i.e. the fully saturated

condition, the compressibility of the pore fluid should be

directly taken as 4.7 9 10-7 kPa-1.

Figure 2 illustrates the isotropically consolidated

drained (CID) triaxial compression testing data (Fig. 2a, b)

and the simulations of the model (Fig. 2c, d). The experi-

ments cover two confining pressure levels (100 kPa and

500 kPa) and a wide range of initial void ratio e0 (0.810–

0.996). It can be calculated from the second formula of

Eq. (13) that, the critical void ratio ecis equal to 0.915 and

0.875 for p0 = 100 kPa and p0 = 500 kPa, respectively. It

then can be observed that the stress–strain relations are

softening types with volumetric dilation for dense sand

(state parameter w0 ¼ e0 � ec\ 0), while the stress–strain

relations are hardening types with volumetric contraction

for loose sand (w0[0). For a given confining pressure, the

critical states corresponding to different e0 are approxi-

mately identical. The simulations of the model match the

observed behaviour very well.

Figure 3 illustrates the isotropically consolidated

undrained (CIU) triaxial compression testing data (Fig. 3a,

b) and the simulations of the model (Fig. 3c, d). The

experiments cover a wide range of confining pressure (from

100 to 3000 kPa) and initial void ratio e0 (0.735–0.907).

Similar with the drained behaviour, variations of undrained

triaxial compression response from highly dilatant to

highly contract can also be observed depending on the

value of state parameter. For a given e0, the critical states

corresponding to different confining pressures are approx-

imately identical. Again, the predicted and observed results

are found to agree well.

Above all, the close matching of the physical testing

data with the numerical simulations represents a satisfac-

tory validation of numerical implementation of the pro-

posed porous model. In the next section, the mechanical

behaviour of gassy sands with different physical state will

be investigated by the proposed numerical model.

Fig. 2 Simulations compared with CID triaxial compression testing data: a, b experimental data (after [23]); c, d simulated results
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3.2 Simulations of gassy sand

As experimentally investigated by previous researchers, the

gassy sand behaviour is significantly influenced by many

factors, such as the gas type, gas amount, pore fluid pres-

sure as well as the physical state of sand. In this section, the

effects of these factors are studied using the proposed

porous model. The published experimental results,

including undrained triaxial compression tests on dense

gassy Baskarp sand [20], dense gassy Oakridge sand [22]

and loose gassy Ottawa sand [11], are employed to verify

the proposed numerical model. The parameters of SANI-

SAND-Z model for each sand are listed in Table 1. For

simplicity, the effect of fabric change in dilatancy is not

taken into account for each simulation of gassy sand. The

model parameter Ad is constant and equal to A0, so the

parameters zmax and cz are not provided. In addition, an

additional model parameter, i.e. Henry’s volumetric coef-

ficient of solubility h, is needed for the simulations.

The experimental data by Rad et al. [20] are utilized to

examine the effects of gas type, gas amount and pore fluid

pressure level. A series of CIU triaxial compression tests

on gassy and saturated samples of Baskarp sand, as well as

CID triaxial compression tests on saturated samples, were

performed. The relative density Dr for each sample was

about 85%. The confining pressure was set to be 50 kPa.

Baskarp sand is a fine river sand. The maximum and

minimum void ratio is 0.86 and 0.503, respectively. The

specific gravity is 2.65.

For the effect of gas type (CO2 and CH4) on the dense

gassy sand behaviour, Fig. 4a–c shows the comparisons

between the measured and predicted responses of the

deviator stress q, pore fluid pressure pf and volumetric

strain ev (negative value for expansion) with axial strain ea,
respectively. Since the corresponding effective stress path

was not directly presented in [20], only the prediction

results are provided in Fig. 4d. These figures demonstrate

that: (i) during the early stage, because the gas is dissolved

in the pore fluid, the variations of deviator stress, pore fluid

pressure and volumetric strain, as well as the effective

stress path for gassy sands induced by shear contraction are

almost the same as the ones of water fully saturated sand.

This behaviour is more clearly shown in Fig. 5; (ii) in the

later stage, the shear dilation of dense sand leads to gas

exsolution, then the responses of gassy sand become quite

distinct from the water saturated sand owing to the sig-

nificant increase in the compressibility of pore fluid. The

effective stress paths of gassy sand gradually deviate from

that of saturated undrained case. The response curves of the

gassy sand lie between the reference drained and undrained

testing results, showing partial (internal) drainage charac-

teristic even under undrained condition; (iii) the more

Fig. 3 Simulations compared with CIU triaxial compression testing data: a, b experimental data (after [23]); c, d simulated results
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soluble the gas (i.e. CO2 relative to CH4) is, the stronger

the gas exsolution and the subsequent volumetric expan-

sion will be, thus the less intense the pore pressure

reduction and the lower the undrained shear strength will

be; (iv) in triaxial p� q space, the effective stress paths for

gassy and saturated sand tend to arrive at an identical

critical state line; (v) the predictions are comparable with

the experimental results, indicating that the effects of gas-

bearing, gas type, and the dilatancy of gassy sand can be

well captured by the proposed numerical model.

To reveal the effect of gas amount on the undrained

static behaviour of gassy sand, two specimens with initial

degree of saturation Sr0 equal to 90% (gas in free form) and

100% (gas in solution) were compared. The used gas type

is CH4. Figure 6a–c compare the measured and predicted

curves of q - ea, pf – ea and ev – ea. Figure 6d shows the

simulated effective stress paths. As shown by the test data,

due to the more pore fluid pressure reduction in the gassy

sand specimen with Sr0= 100% during the early loading

stage, it exhibits a higher peak shear strength than the one

with Sr0= 90%. With the gas exsolution resulting from

shear dilation of dense sand, the residual strength and the

pore fluid pressure become somewhat similar for the two

gassy sand specimens. Evidently, the impact of gas amount

Fig. 4 Simulations compared with experimental data from undrained triaxial tests by Rad et al. [20] considering the effect of gas type: a q/2

versus ea; b pf versus ea; c ev versus ea; d effective stress path

Fig. 5 Simulations of deviator stress against axial strain under small

scale
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on the peak and residual strength, the development of

excess pore pressure and the volumetric strain can be

reasonably described by the proposed numerical model.

For the gassy specimen with Sr0= 90%, the effective stress

path in the initial loading stage is located between the

saturated undrained and drained results because of the

existence of free gas, then follows the saturated undrained

results and finally reaches a different critical state from that

of saturated undrained specimen.

As can be understood from Eq. (7) that the lower the

pore fluid pressure is, the higher the compressibility of pore

fluid will be. The variations of pore fluid pressure are

bound to affect the behaviour of gassy sand. To study this

effect, two gassy specimens with different initial pore fluid

pressures pB (of 441 kPa and 1863 kPa) were tested. The

used gas was CO2, which was fully dissolved in water with

Sr=100% for the two tests. The test results are summarized

in Fig. 7a–c, in which the corresponding simulation results

are also provided. Figure 7d shows the simulated effective

stress paths. These figures clearly show that the higher the

initial pore pressure is, the more intense the pore pressure

reduction thus the higher undrained shear strength will be.

Meanwhile, the specimen with lower pB can experience

more volumetric deformation due to the higher compress-

ibility of pore fluid. Those exhibited undrained static

responses of gassy sand under different initial pore fluid

pressures can be well predicted by the proposed numerical

porous model.

The above experimental investigations by Rad et al. [20]

are carried with respect to gassy dense sand. Besides, the

study of impact of gas amount is relatively insufficient

owing to the minor difference between the results of the

merely two tests. To this end, the results of other two sets

of undrained triaxial compression tests conducted on loose

and dense sand are employed for further understanding of

the effect of gas amount on the behaviour of gassy dense

sand, and evaluating the influence of physical state of gassy

sand on its static response.

Vega-Posada et al. [22] carried out a series of

anisotropically consolidated undrained (CAU) triaxial

compression tests on saturated and gassy dense sand. The

sand was collected from the Oakridge waste disposal site

Fig. 6 Simulations compared with experimental data from undrained triaxial tests by Rad et al. [20] considering the effect of gas amount: a q/2

versus ea; b pf versus ea; c ev versus ea; d effective stress path
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near Charleston, South Carolina. It is a uniform fine sand.

The average uniformity coefficient and curvature coeffi-

cient are 1.63 and 1.03, respectively. The minimum and

maximum void ratios are 0.62 and 1.05, respectively. The

average initial void ratio of specimens is 0.71. The used gas

for the gassy sand specimens was CO2. The degree of

saturation ranges from 75 to 98%. The initial deviator

stress and mean effective stress are 54 kPa and 100 kPa for

all specimens, respectively. The experimental results and

the simulations of the model, including deviator stress,

excess pore pressure and volumetric strain against axial

strain as well as effective stress path in p0-q space, are

illustrated in Fig. 8a–d. The reference drained and

undrained (using water fully saturated specimen) test

results are also provided in the figures. It is clear that the

existence of gas presents a remarkable detrimental effect

on the undrain shear strength of gassy dense sand. The

stress–strain relationships for gassy sand specimens are

similar to that of drained specimen, even if the initial gas

amount is small. Combined with the experimental results

by Rad et al. [20], it can be concluded that the effect of gas

amount on the undrained static response of gassy sand is

minor if the gases are in free form. Besides, owing to the

gas exsolution resulted from shear dilation of dense sand,

the development of negative pore pressure is significantly

suppressed. Correspondingly, the evolutions of volumetric

strain and effective stress path exhibit a partially drained

responses. The comparison between the measurements and

predictions indicates that the above behaviour of gassy

dense sand can be well described by the proposed numer-

ical model.

Compared with gassy dense sand, laboratory data with

respect to gassy loose sand under monotonic loading are

less reported in literature. To study the desaturation for the

mitigation of liquefaction of sand, He and Chu [11] con-

ducted a series of isotropically consolidated undrained

triaxial compression tests on loose Ottawa sand (relative

densities Dr & 10%) desaturated using nitrogen. The mean

diameter of the tested sand is 0.4 mm. The maximum and

minimum void ratio is 0.8 and 0.5, respectively. The degree

Fig. 7 Simulations compared with experimental data from undrained triaxial tests by Rad et al. [20] considering the effect of pore pressure: a q/2

versus ea; b pf versus ea; c ev versus ea; d effective stress path
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of saturation of the tested specimens ranged from 94.5% to

100%. The initial mean effective stress and the back

pressure were 100 kPa for all tests. Figure 9a–d illustrates

the measured data and the predicted results, including the

deviator stress-axial strain relationships, the pore pres-

sure—axial strain relationships and the effective stress

paths in—p0qspace, as well as the variation of degree of

saturated with deviator stress (only predicted results pre-

sented). It can be observed that the existence of gas plays

an obvious benefit effect on the undrained shear strength of

gassy loose sand, which is different from the responses of

gassy dense sand. The peak deviator stresses of gassy

specimens are higher than the one of water saturated

specimen, and increase with the decrease in the degree of

saturation. Meanwhile, the maximum pore water pressure

becomes much smaller with the decrease in the degree of

saturation. The reason behind is that gas dissolution

resulted from the shear contraction of loose sand, and

consequently partial (internal) drainage (reflected by the

gradual increase of degree of saturation during the

undrained loading, as shown in Fig. 9d), results in less

intense pore pressure increase (as shown in Fig. 9b), and

thus the higher undrained peak strength. The effective

stress paths of gassy sand are bounded by those of saturated

undrained and drained conditions. It is found that the

predictions are comparable with the experimental results,

indicating that the proposed numerical model can be well

capture the behaviour of gassy loose sand.

4 Conclusion

In this paper, the mechanical behaviour of gassy sand under

monotonic loading conditions is numerically studied. The

model parameters for the Toyoura sand are used for all

gassy sand simulations, focusing on investigating the

influence mechanism of different factors. The following

conclusions can be drawn:

(1) By considering the gas–water mixture in gassy sand

as homogenous pore fluid, a porous model is

proposed for gassy sand based on the two-phase

Fig. 8 Simulations compared with experimental data from undrained triaxial tests on dense gassy sand by Vega-Posada et al. [22]: a q versus ea;

b pf versus ea; c ev versus ea; d effective stress path
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saturated porous media theory. An advanced consti-

tutive model, named SANISAND-Z model, is

included for capturing the complex stress–strain

behaviour of sand with only one set of model

parameters. The effect of gas-bearing is described by

the Boyle’s and Henry’s Laws, where the Henry’s

volumetric coefficient of solubility is introduced as a

new material constant.

(2) The proposed porous is numerically implemented by

the use of user-defined element (UEL) interface

provided by the FEM software Abaqus. An implicit

method is employed for the constitutive integration.

The consistent tangent operator is also derived. The

accuracy of the numerical implementation of the

porous model is validated by the close matching of

the physical testing results under fully water satu-

rated cases with the constitutive simulations.

(3) Multiple influence factors of the quasi-static

responses of gassy sand, including gas type, gas

amount, and existing form of gas, pore pressure level

as well as physical state (void ratio and stress level)

of sand, are investigated by the proposed numerical

porous model. Due to the higher compressibility of

pore fluid resulting from the presence of gas, the

undrained static responses of gassy sand are bounded

by the ones under fully saturated drained and

undrained conditions. The measured responses of

gassy sand under different factors concerned can be

well reproduced by the proposed numerical porous

model.
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sand plasticity model. Géotechnique 66(12):999–1013

4. Dittrich JP, Rowe RK, Becker DE, Lo KL (2010) Influence of

exsolved gases on slope performance at the Sarnia approach cut

to the St. Clair Tunnel. Can Geotech J 47(9):971–984

5. Finno RJ, Zhang Y, Buscarnera G (2017) Experimental validation

of Terzaghi’s effective stress principle for gassy sand. J Geotech

Geoenviron Eng 143(12):04017092

6. Fleischer P, Orsi TH, Richardson MD, Anderson AL (2001)

Distribution of free gas in marine sediments: a global overview.

Geo-Mar Lett 21(2):103–122

7. Fredlund DG (1976) Density and compressibility characteristics

of air–water mixtures. Can Geotech J 13(4):386–396

8. Grozic JLH, Robertson PK, Morgenstern NR (1999) The

behavior of loose gassy sand. Can Geotech J 36(3):482–492

9. Grozic JLH, Imam SMR, Robertson PK, Morgenstern NR (2005)

Constitutive modeling of gassy sand behaviour. Can Geotech J

42(3):812–829

10. Grozic JLH, Nadim F, Kvalstad TJ (2005) On the undrained shear

strength of gassy clays. Comput Geotech 32(7):483–490

11. He J, Chu J (2014) Undrained responses of microbially desatu-

rated sand under monotonic loading. J Geotech Geoenviron Eng

140(5):04014003

12. Hilf JW (1948) Estimating construction pore pressures in rolled

earth dams. In: Proceedings of the 2nd international conference

on soil mechanics and foundation engineering, Rotterdam,

Netherlands, vol 3, pp 234–240

13. Hong JT, Xu M (2020) DEM study on the undrained mechanical

behavior of gassy sand. Acta Geotech 15(6):2179–2193

14. Hong Y, Wang LZ, Ng CW, Yang B (2017) Effect of initial pore

pressure on undrained shear behaviour of fine-grained gassy soil.

Can Geotech J 54(11):1592–1600

15. Imam SMR, Robertson PK, Chan DH, Morgenstern NR (2005) A

critical-state constitutive model for liquefiable sand. Can Geotech

J 42(3):830–855

16. Lewis RW, Schrefler BA (1998) The finite element method in the

static and dynamic deformation and consolidation of porous

media. Wiley, London

17. Mabrouk A, Rowe RK (2011) Effect of gassy sand lenses on a

deep excavation in a clayey soil. Eng Geol 122(3–4):292–302

18. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless

soils with elastic strain range. Mech Cohesive-Frict Mater

2(4):279–299

19. Nixon MF, Grozic JL (2007) Submarine slope failure due to gas

hydrate dissociation: a preliminary quantification. Can Geotech J

44(3):314–325

20. Rad NS, Vianna AJD, Berre T (1994) Gas in soil. II: effect of gas

on undrained static and cyclic strength of sand. J Geotech Eng

120(4):716–736

21. Sobkowicz JC, Morgenstern NR (1984) The undrained equilib-

rium behaviour of gassy sediments. Can Geotech J 21(3):439–448

22. Vega-Posada CA, Finno RJ, Zapata-Medina DG (2014) Effect of

gas in the mechanical behavior of medium dense sands. J Geotech

Geoenviron Eng 140(11):04014063

23. Verdugo R, Ishihara K (1996) The steady state of sandy soils.

Soils Found 36(2):81–91

24. Vermeer PA, Verruijt A (1981) An accuracy condition for con-

solidation by finite elements. Int J Numer Anal Methods Geo-

mech 5:1–14

25. Von Wolffersdorff PA (1996) A hypoplastic relation for granular

materials with a predefined limit state surface. Mech Cohesive-

Frict Mater 1(3):251–271

26. Wheeler SJ (1988) A conceptual model for soils containing large
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