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Abstract
Matching the velocity model to the actual engineering and geological conditions and improving the accuracy and stability of the
microseismic (MS) source location remain challenges for scientists. An MS source location method based on a velocity model
database and statistical analysis, named LM-VMD-SA, is proposed in this study. The method firstly divides the monitoring area
into different subareas based on four influencing factors and creates an initial velocity model database by assigning an initial
velocity to each sensor combination. Secondly, blasting tests are carried out in each subarea, where the velocity model database is
inverted using a location error optimization method based on the pattern search algorithm (LEOM-PSA). The initial velocity
model database for each subarea is updated by the velocity model database of the blasting events in the same subarea, and a
velocity model database is constructed. Then, the velocity models for all sensor combinations of anMS event are called from the
velocity model database for the corresponding subarea by matching the sensor combination of the MS event, and all correspond-
ing solutions of the MS event are solved by the ND-N method. Finally, the three-dimensional coordinates of MS source are
identified by utilizing the log-logistic (3P) distribution probability density function. According to blasting tests in the Beiminghe
Iron Mine, the location accuracy of the proposed method is 20.88% and 18.24% higher than that of the traditional method and
subarea method, respectively. The application of the proposed method to the Beiminghe Iron Mine revealed the illegal mining
activities at −125 m and −155 m level, providing effective technical support for mineral resources protection and mining safety.

Keywords Rockmechanics . Microseismic source location . Velocity model database . Statistical analysis . Illegal mining

Introduction

Since the 1960s, microseismic (MS) monitoring techniques
gradually applied to many deep mines and tunnels subjected
to high in-situ stress (e.g., Tezuka and Niitsuma 2000; Milev
et al. 2001; Hirata et al. 2007; Yang et al. 2007; Xu et al. 2015;
Lu et al. 2015; Ma et al. 2015; Li et al. 2019; Xiao et al. 2019;
Long et al. 2020). The MS event location accuracy directly

affects the calculation of radiant energy, the analysis of MS
activity, and the warning of rockbursts. Accordingly, velocity
models and MS source location methods, two key factors that
affect the MS event location accuracy, have been extensively
studied by scholars worldwide.

The uniform velocity model, a simplified velocity model
that ignores the differences in the characteristics of rock
masses, is widely used by most scholars (e.g., Li et al. 2007;
Dong et al. 2019; Zhu et al. 2019; Wu et al. 2020) and MS
equipment manufacturers, such as the Institute of Mine
Seismology (IMS) in Australia (Shang et al. 2017) and
Engineering Seismology Group (ESG) in Canada (Tang
et al. 2015). However, a large amount of monitoring data
shows that the rock mass velocity in the stratum is not uni-
form, especially in complex geological bodies such as jointed
or faulted rock masses. On this basis, many scholars have
conducted intensive researches on various velocity models
(Falls and Young 1998; Wang and Ge 2008). In the 1970s,
Lee and Lahr (1975) proposed a layered velocity model,
which was then employed in earthquake location tasks to
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reflect the effect of geological structures. Crosson and Peters
(1974) compared the location results from four-layer velocity
model, double-layer velocity model, and single-layer velocity
model and found that the location results varied slightly out-
side the sensor array. Besides, greater location accuracy was
achieved in the double-layer velocity model within the sensor
array, followed by the four-layer velocity model and the
single-layer velocity model. Adam and Peter (2009)
established a spatially variable seismic velocity model with
passive tomography for relocating seismic events. Gesret
et al. (2015) integrated the velocity model into a probabi-
listic earthquake location formulation, which was solved
by a new Bayesian formulation. It can be seen that those
method mainly adopted a layered velocity model for im-
proving the MS source location accuracy. These layered
velocity models have mainly been utilized in natural seis-
mology and in oil and gas fracturing, where significant
geological stratification is observed. However, it is inap-
propriate to apply such models to mining and tunneling
projects, which has insignificant geological stratification,
espec ia l ly in moni tor ing areas wi th goafs and
faults (Mu et al. 2021).

Some scholars modified the velocity model and proposed
anisotropic velocity models for location tasks in which the
propagation velocity of the vibration signal from the MS
source to each MS sensor might be different (Aki et al.
1977; Mooney et al. 1998). However, MS sources may ran-
domly appear in different directions, and thus, it is difficult to
obtain accurate velocities in all directions through field tests
which require a lot of works and material resources. To further
simplify the calculation, study on anisotropic velocity model
mainly focused on the choice of appropriate parametrization
of the stiffness tensor, like the Thomsen parameter, which was
usually designed to capture the influence of elastic anisotropy
on a seismic signature (Grechka and Duchkov 2011; Li et al.
2013; Ma et al. 2020). However, these studies are mainly
focused on the fields of oil and gas production. Feng et al.
(2017) proposed a highly accurate method for locating MS
events. This method used an anisotropic velocity model,
rockburst event monitor, and particle swarm optimization to
make the calculation more feasible and location more
accurate. It was reasonable that the anisotropic velocity
model proposed based on the rockburst event was applied to
locate the MS events in the rockburst development process
because of the same ray paths of the seismic waves from the
MS events and rockburst event to MS sensor. However,
whether the anisotropic velocity model could be applied to
MS events in different regions needed further verification.
After that, Feng et al. (2015) studied sectional velocity models
in deeply buried tunnels and provided different velocities for
the sensors in the cross sections of two rows of tunnels. These
approaches achieved a good location result, but the effect of
the complex geological conditions does not be taken into

account in their method. Due to the complex geological con-
ditions inmines, the existing simplified velocitymodels are no
longer able to meet the requirements of the high-precision
location, and the inversion of the anisotropic velocity model
required a lot of manpower and material resources. Moreover,
the use of an anisotropic velocitymodel may induce instability
of the solution and may even make the solution unachievable.
Therefore, it is urgent to propose a velocity model, which can
be apply to the actual geological conditions and is simple for
inversion.

Iterative methods and swarm intelligence algorithms are
widely used for many MS source location tasks, and the es-
sence of these techniques is to solve the minimum value of the
objective function constructed by the difference between the
observed and theoretical arrival times. At the beginning of the
twentieth century, the Geiger methodwas first proposed based
on the Gauss-Newton formula (Geiger 1912). As this method
needed to solve partial derivatives and inverse matrices, the
solution was unstable and easily diverged. In the 1970s,
Crosson (1976) proposed a joint inversion for the location of
the source and velocity structure (known as the SHH algo-
rithm), where the velocity was an unknown parameter.
However, the solving process for the source parameters was
easy to become unstable. Subsequently, Poliannikov et al.
(2014) proposed a new method for simultaneously locating
multiple seismic events in the presence of an uncertain veloc-
ity model. This method included absolute as well as relative
event locations, without requiring known reference or master
events. Dong et al. (2017) proposed a set of analytical solu-
tions for AE/MS source location, which used the log-logistic
(3P) distribution probability density function for statistical
analysis. The method highlighted four advantages, including
no iterative solution, no pre-measured velocity, no initially
evaluated source coordinates, and no square root
calculations. Peng and Wang (2019) presented a novel con-
struction method for an arbitrary 3D velocity model and a
targeted hypocenter determination method based on that ve-
locity model, which significantly improved the location accu-
racy in underground mining compared with the widely used
simplex and particle swarm optimization methods. These MS
source location methods were studied mainly based on a cer-
tain number of P-wave or S-wave arrival times and commonly
provided solutions with excellent accuracy and stability.
However, due to the dependence of the algorithm, the influ-
ence of large arrival time errors, unstable sensor arrays, and so
on, the MS source location solution is sometimes unstable,
nonunique, or even poor using the above location methods.
Therefore, it is necessary to combine the trigger sensors to
deeply dig out the location information for improving the
location accuracy of MS sources.

To address the above problems, an MS source location
method based on a velocity model database and statistical
analysis (the LM-VMD-SA method) is proposed. First, the
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velocity model database is created and updated, thereby pro-
viding a velocity model for each sensor combinations of the
MS event. Then, the log-logistic (3P) distribution probability
density function is introduced to fit the location results of all
sensor combinations, aiming to obtain an accurate and stable
solution for the MS source. Compared with the traditional
method and the subarea method, the LM-VMD-SA method
divides the velocity model of mining engineering in more
detail by inverting and updating the velocity of each sensor
combination. For the same MS event, the LM-VMD-SA
method combines the triggering sensors to obtain multiple
location results, and uses statistical analysis to eliminate the
instability of the first location results from the traditional
method and the subarea method. Moreover, the blasting test
data shows that the location accuracy of the LM-VMD-SA
method is greater than that of the traditional method and the
subarea method. Finally, the proposed method is applied to
the Beiminghe Iron Mine in Hebei Province and excellent
application results are exhibited.

Location error optimization method based
on the pattern search algorithm

Akey step to create the velocity model database is to invert the
optimal uniform velocity model (Wang et al. 2010). For this
purpose, a location error optimization method based on the
pattern search algorithm (LEOM-PSA) is proposed. The
LEOM-PSA method combines the Newton downhill with
Newton-Raphson (ND-N) method for determining the MS
source location (Li and Chen 2013).

ND-N method

The ND-Nmethod is an excellentMS source locationmethod.
The Newton downhill method can provide an initial source
location result, which is close to the true value. Then, the
result from the Newton downhill method is set as the initial
iteration value in the Newton-Raphson method for solving a
more accurate location.

Newton downhill method

The objective function of the Newton downhill method can be
expressed as by the following:

F Xð Þ ¼ F x0; y0; z0; t0ð Þ ¼ ∑
n

i¼1
r2i ð1Þ

ri ¼ ti−t0−Ti ð2Þ

Ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−x0ð Þ2þ yi−y0ð Þ2þ zi−z0ð Þ2

p
=vp ð3Þ

where t0 is the seismogenic time, vp is the P-wave velocity,
and n is the number of sensors; (x0, y0, z0)are the coordinates
of the MS source, and (xi, yi, zi) are the coordinates of the i-th
sensor; ti is the observed arrival time of the i-th sensor, Ti is the
propagation time from the i-th sensor to the MS source, and ri
is the difference between the theoretical P-wave arrival time
and observed P-wave arrival time at the i-th sensor.

The Newton downhill method uses −ω(∇F(Xn))−1F(Xn) as
the search direction, and the iterative formula is given by the
following:

X nþ1 ¼ X n−ω ∇F X nð Þð Þ−1F X nð Þ ð4Þ

where Xn is the n-th iteration value and F(Xn) is the objec-
tive function of the n-th iteration.

The range of ω is εω < ω ≤ 1, and ω should satisfy the
following formula:

‖F Xnþ1
� �

‖ < ‖F X nð Þ‖ ð5Þ

The initial value of ω is set as 1, and ω is halved until the
above formula is satisfied.

Newton-Raphson method

During the Taylor expansion, the Newton-Raphson method
takes the second-order term into account and uses
−[∇2F(Xn)]−1 ∇ F(Xn) as the search direction. Therefore, the
iterative formula is given by the following:

X nþ1 ¼ X n− ∇2F X nð Þ� �−1∇F X nð Þ ð6Þ

The above formula can be expressed as follows:

∑
n

i¼1

∂ri
∂X j

∂ri
∂X k

þ ri
∂2ri

∂X j∂X k

� �
δX j ¼ − ∑

n

i¼1
ri

∂ri
∂X k

� �
ð7Þ

where δX is the correction of the source parameter.
The nonlinear least-square solution is expressed as follows:

ATA− ∇XAT� �
r

� �
δX ¼ ATr ð8Þ

whereA ¼

∂T 1

∂x0
∂T1

∂y0
∂T1

∂z0
1

⋮ ⋮ ⋮ ⋮
∂Tn

∂x0
∂Tn

∂y0
∂Tn

∂z0
1

0
BBB@

1
CCCA; r ¼

r1
⋮
rn

0
@

1
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The iteration will continue until the objective function sat-
isfies the allowable convergence error.

Location error optimization method based on the
pattern search algorithm

In the rock engineering, the arrival time of the P-wave is easy
to pick because it is the first to arrive. The P-wave and S-wave
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may overlap, making it difficult to accurately pick the S-wave
arrival time. Therefore, the arrival time of the P-wave is often
used to solve for the location of the MS source.

Given a velocity vp, the ND-Nmethod can be used to solve
for the source coordinates. The spatial error w can be
expressed as the distance between the calculated source coor-
dinates (x, y, z) and actual source coordinates (x0, y0, z0):

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 þ y−y0ð Þ2 þ z−z0ð Þ2

q
ð9Þ

In the above formula, each velocity vp corresponds to a
spatial error w. Due to the complex functional relationship
between the velocity vp and spatial error w, the derivative of
the spatial error w cannot easily be solved. The pattern search
algorithm is an algorithm that does not need to solve the de-
rivative (Yosef and Bruce 1994). The algorithm searches the
descent direction of the function along the coordinate axis or
the given direction, and its essence is an iterative process of
searching, detection, and advancing. Therefore, combined
with the Equation (9), the minimum spatial error and the cor-
responding optimal uniform velocity model can be obtained
by the pattern search algorithm. The method for solving the
optimal uniform velocity model is named the location error
optimization method based on the pattern search algorithm
(LEOM-PSA), and the flowchart of this method is illustrated

in Fig. 1. In the searching portion, two velocities, vp − Δ and
vp + Δ, are selected on both sides of the initial velocity vp,
then the spatial errorswf, wi, and wr corresponding to the three
velocities vp + Δ, vp, and vp − Δ are calculated. In the
detection portion, the velocity corresponding to the minimum
spatial error is obtained by comparing the spatial errors wf, wi,
and wr. In the advancing portion, the descent direction of the
objective function is determined, and the initial velocity is
updated until the convergence condition is reached.

MS source location method based
on a velocity model database and statistical
analysis

Velocity model database

To mimic the geological conditions in actual engineering and
improve the MS source location accuracy, a velocity model
database is proposed in this study. The database consists of
many subarea velocity models, which are built adaptively by
assigning different optimal uniform velocities to different sen-
sor combinations. Different optimal velocity models are used
for different MS source locations and triggered sensor combi-
nations. A schematic diagram of the velocity model database

vp=vp-Δ

Define step length Δ ,reduction rateθ ,allowable error eps

Velocity vpVelocity vp+Δ

ND-N method

Velocity vp-Δ

Spatial error wiSpatial error wf Spatial error wr

wf < wi

wr < wi

Δ > eps

vp=vp+Δ
Δ =θ *Δ

Yes

Yes

Yes

No

No

Output vp

Searching

Detection

Advancing

Input P-wave arrival time, sensor coordinates, min max( , )pv v vFig. 1 Flowchart of the LEOM-
PSA method
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is presented in Fig. 2. Note that MS sources, S1 and S2, trigger
different sensor combinations in the same subareas, which
have different propagation directions and require different ve-
locity models. Moreover, MS sources, S1 and S3, trigger the
same sensor combination in different subareas, which also
have different propagation directions and require different ve-
locity models. Although the velocity model database is not a
complete anisotropic velocity model, it considers the rock
mass difference in the monitoring area formed by different
sensor combinations. Furthermore, the velocity model data-
base is easier to invert than the anisotropic velocity model due
to the reduction of velocity parameters.

Method for creating the initial velocity model
database

When creating a velocity model database, the whole monitor-
ing area needs to be divided into several subareas according to
its geological characteristics. Four factors need to be consid-
ered in the subarea division: (1) the priority areas that need to
be focused on in an engineering project, such as areas with
high geostress where intensive rockburst events are frequently
detected; (2) areas with significant differences in the rock
mass characteristics; (3) areas with many goafs and developed
faults; and (4) the location relationship between the engineer-
ing monitoring area and the sensor array.

When n(n ≥ 4) sensors are installed over the monitoring
area, the number of combinations of k sensors among all n
sensors is determined byCk

n. Because at least 4 sensors need to
be triggered to locate the MS source, kmust satisfy 4 ≤ k ≤ n.
Assuming that n sensors can be triggered by the MS source in
each subarea, the number of sensor combinations in each sub-

area isC4
n þ C5

n þ…þ Ck
n þ…þ Cn

n. In this way, the initial
velocity model database for each subarea can be created by

assigning a uniform velocity model (an empirical velocity
model) and a large spatial error to each sensor combination.
When the velocity model database in each subarea is initiated,
an initial velocity model database for the whole monitoring
area is created.

Method for updating the velocity model database

After the MS monitoring system is commissioned successful-
ly, it needs to be tested by blasting events. For wave velocity
inversion, several locations of blasting test need to be selected
in each subarea, and their MS information is recorded. Then,
assuming that m sensors are triggered in each blasting event,
the number of sensor combinations of the blasting event is

determined by C4
m þ C5

m þ…þ Cm
m. Afterward, the LEOM-

PSA method is used to invert the optimal uniform velocity
model vp of each sensor combination, aiming to create the
velocity model database of the blasting events.

The velocity model database of each subarea is updated by
the velocity model database of blasting events in the corre-
sponding subarea. The flowchart for updating the velocity
model database of the subarea is shown in Fig. 3. The spatial
error reflects the quality of velocity inversion of the sensor
combination. The velocity obtained by inversion is more con-
sistent with the actual velocity in the monitoring area formed
by the sensor combination when a smaller spatial error is
obtained. Therefore, after the sensor combination of the

Area Q1

Area Q2 Area Q3

V1

V3
V2

Sensor

MS source

S1

S2 S3

V1 V2 V3

Fig. 2 Schematic diagram of the velocity model database

Input blasting velocity model database Db and sub-area
velocity model database Ds

Match sensor combination of Db and sensor
combination of Ds

Spatial error of Ds > Spatial error of Db

Velocity and spatial error of Ds are replaced by
velocity and spatial error of Db

Yes

All sensor combinations of Db are matched

Get updated sub-area velocity model database Ds

Yes

No

No

Velocity and spatial error of Ds are retained

Fig. 3 Flowchart for updating the velocity model database of the subarea
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blasting velocity model database and the sensor combination
of the subarea velocity model database is matched, their cor-
responding spatial errors are compared. When the spatial error
of the blasting velocity model database is less than that of the
subarea velocity model database, the velocity and spatial error
of the subarea velocity model database can be replaced by that
of the blasting velocity model database. On the contrary, the
spatial error and velocity of the subarea velocity model data-
base are retained. After all sensor combinations of the blasting
velocity model database are matched, the updating process of
the velocity model database of the subarea is finished.

Microseismic source location method based on a
velocity model database and statistical analysis

After the velocity model database is created and updated, the
coordinates of the MS sources can be solved by the ND-N
method based on the proposed velocity model database.

Firstly, m triggering sensors are combined to obtain C4
m þ C5

m
þ…þ Cm

m sensor combinations. Secondly, the match be-
tween the sensor combination of MS events and the sensor
combination of the subarea velocity model database is per-
formed. The velocity of the subarea velocity model database

is provided to the ND-N method for event location, and C4
m

þC5
m þ…þ Cm

m location results are obtained. Then, all loca-
tion results are divided into sets of x-coordinates, y-coordinates,
and z-coordinates, and the 3σ criterion proposed by Dai and
Wang (1992) are used to eliminate abnormal values of the
three-dimensional coordinates. Finally, the filtered x-coordi-
nate, y-coordinate, and z-coordinate sets are statistically ana-
lyzed. Dong et al. (2017) compared and analyzed more than
60 commonly used probability density functions and found that
the log-logistic (3P) distribution probability density function is
best for determining MS source locations. Therefore, the log-
logistic (3P) distribution probability density function is intro-
duced to fit the three-dimensional coordinates of the MS
source. The coordinates corresponding to the maximum value
of probability density considered as are the x-coordinate, y-
coordinate, and z-coordinate of the MS source. This location
method is referred to as the MS source location method based
on a velocity model database and statistical analysis (LM-
VMD-SA). The flowchart of the LM-VMD-SA method is
shown in Fig. 4.

Verification

Test setting up

The Beiminghe Iron Mine in Hebei Province covering
an area of 209,500 m2 began production in 2002, hav-
ing a designed annual production of 1.8 billion kg of

iron ore. The height of the level is 60 m and the height
of each sublevel is 15 m. The deposit is formed in the
contact zone between Yanshanian dior i te and
Ordovician limestone. The ore mainly consists of mag-
netite, and the roof and floor of the ore body are lime-
stone and diorite, respectively. The ore body has a
length of 1620m, width ranging 92m from 376m, and
depth ranging 134m from 679m. The geological struc-
ture in mines mainly consists of folds and faults. The
density of ore is 3910 kg/m3 and the density of rock
mass is 2710 kg/m3. The factor of loose is 1.6, and the
hardness coefficient of ore ranges 8 from 12. A large F3
fault locates between the MB4 exploration line and the
MB5+25 exploration line in the east of the ore body (Fig.
5), which has a compression-torsional fault with attitudes of
NW307°∠65°, a vertical slip of 8.9m, and a horizontal slip
of 17m. A fault zone with a thickness of about 8m locates
near the fault, in which the rocks are broken. The sound of
abnormal blasting is frequently heard by the workers at the
substation on the −122 m level and the excavation roadway
at the −185 m level since 2017. It indicates that cross-
border illegal mining is taking place. The regional
hydrogeological conditions of the Beiminghe Iron Mine
are complex, and cross-border illegal mining may potential-
ly lead to catastrophic consequences such as water inrush
events, roof collapse, or floor collapse.

To solve the above problems and mitigate potential safety
hazards, a 16-channel SinoSeism (SSS) MS monitoring sys-
tem jointly developed by the Institute of Rock and Soil
Mechanics, Chinese Academy of Sciences, and Hubei
Seaquake Technology Co., Ltd., is deployed. The MS moni-
toring system consists of a 32-bit A/D acquisition apparatus,

MS event

Accurate MS coordinates

Log-Logistc(3P)

3σ

N-DN method

criterion

Acquire sensor and P-wave arrival time combinations4 5 ... m
m m mC C C+ + +

Call the subarea velocity model database

Match sensor combination of MS event and the subarea velocity
model database

Provides velocity for each sensor combinations of MS eventspv

Obtain location coordinates4 5 ... m
m m mC C C+ + +

Filtered x-coordinate y-coordinate z-coordinate set

Fig. 4 Flowchart of the LM-VMD-SA method
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moving coil sensors with a sensitivity of 100 V/ms−1, and a
PTP high-precision time synchronization server, as shown in
Fig. 6.

Since main mining roadway locates above the −230 m level
of the mine, normal construction can be affected by the sensor
installation. Because the existence of deep silt and extensive
water, the roadway at the −245 m level has difficulty in drilling
holes and installing sensors. Therefore, a total of 10 mono-
component sensors and 2 three-component sensors are arranged
at the −230 m level. Because illegal mining activities generally
take place in the north and southeast of the mining area, the
sensors are arranged primarily along the upper haulage road-
ways, roadways No. 6 and No. 8 of the mining area, as shown
in Fig. 5. The coordinates of the sensors are listed in Table 1.

The monitoring area is divided into three subareas, shown
in Fig. 6, according to the location of the sensor array and the
location of the faults. Areas Q1 and Q3 are outside the sensor

array and separated by the F3 fault, while areaQ2 is inside the
sensor array. Ten blasting test points are deployed in 3 sub-
areas to create and invert a velocity model database for each
subarea, and the locations and blasting numbers of these
points are shown in Fig. 6 and Table 2, respectively. The
blasting tests are single-hole blasting tests with a small charge
at each blasting test point. To verify the LM-VMD-SA meth-
od, 10 blasting events are carried out from September 27 to
October 15, 2018 (Fig. 6 and Table 2), and the blasting loca-
tion, time, waveform, and other data are recorded.

Creating and updating the velocity model database

The process of creating the velocity model database in areaQ1

is described as follows. First, 12 sensors are combined to
obtain 3797 sensor combinations. The initial velocity model
and spatial error of each sensor combination are assumed to be

Mono-component sensor

202
105104

N

Blasting events for VLMBlasting events for CVMD

Three-component sensor

Crossheading

12-14

10-17

11#

Drift

Area Q1

#3

#1

#0

#4

#2

#6

#8

Crossheading of
return air shaft

101

102

103

F3 fault

106
3-14

2-10 3-16

3-17

4-2

201

204

205

5#

7#
6-27

203
206

-230 m level

Area Q3

Area Q2

Roadway

Fig. 5 Distributions of the
sensors, blasting points, and
subareas in the monitoring area
(creating velocity model database
is shortened as CVMD, and
verifying the LM-VMD-SA
method is expressed as VLM)

(a) (b)                         (c)
Fig. 6 The SSS MS monitoring system. a Sensor. b Acquisition apparatus. c Time synchronization server
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5500 m/s and 100 m, respectively, and the initial velocity
model database is created in areaQ1. Similarly, initial velocity
model databases of areas Q2 and Q3 are also created.

The velocity model database of the blasting event is the key
to update the velocity model databases in the subareas, so
optimal uniform velocity models for the sensor combinations
of the blasting event should be solved first. The first blasting
event of blasting test point No. 2, which triggers 11 sensors in
area Q1, is taken as the example for inverting the optimal
uniform velocity models and introducing the LEOM-PSA
method. The parameters of the LEOM-PSA method are set
as follows. The initial velocity vp is 5500 m/s, the initial step
lengthΔ is 20 m/s, and the reduction rate θ is 0.2; the velocity

solution ranges from 4000 to 7000 m/s, and the allowable
error eps is set as 10−4 m. Fig. 7 depicts the variation in the
velocity and the spatial error of the first blasting event at
blasting test point No. 2 with the number of iterations during
the solution process of the LEOM-PSA method. With the
decrease of the location error, the velocity gradually stabilizes.
When the number of iterations reaches 6, the LEOM-PSA
method converges. The optimal uniform velocity is 5392
m/s, and the corresponding spatial error is 3.91 m. The same
optimal uniform velocity is obtained, and the number of iter-
ations is 3001 when using the enumeration method with the
step length of 1 m/s. These results confirm the effectiveness
and robustness of the LEOM-PSA method in acquiring accu-
rate velocity.

Similarly, the optimal uniform velocity models for all sen-
sor combinations of 13 blasting events in area Q1 are solved
based on the LEOM-PSA method, and the velocity model
database of each blasting event is obtained. According to the
updating procedure mentioned above, the initial velocity mod-
el database is updated by the velocity model databases of 13
blasting events in area Q1, and the velocity model database
D11 of areaQ1 is obtained. The partial velocity model database
of areaQ1 is shown in Table 3. The optimal uniform velocities
and spatial errors are different for different sensor combina-
tions in the same area. The velocity models of different sensor
combinations describe the properties of rock masses in

Table 1 Coordinates of the sensors

No. Coordinate (m) No. Coordinate (m)

x y z x y z

101 1599.54 8771.51 −245.77 201 1956.15 8646.69 −235.43
102 1688.85 8749.96 −226.38 202 1965.26 8737.80 −218.34
103 1775.20 8690.28 −230.48 203 2075.01 8675.53 −229.89
104 1818.63 8743.12 −227.06 204 2020.12 8567.80 −221.69
105 1912.76 8750.27 −244.76 205 2057.23 8526.09 −231.02
106 1892.18 8699.04 −230.23 206 2138.42 8693.26 −230.23

Table 2 Locations of the blasting
test points and blasting events No Site Area Coordinate/m Blasting

numbers
Function

x y z

1 12–14 drift Q1 1844.19 8516.79 −212 4 Creating the velocity
model database2 12–14 drift Q1 1845.16 8519.20 −212 5

3 12–14 drift Q1 1845.98 8521.24 −212 4

4 3–16 drift Q2 1906.93 8696.39 −198 4

5 3–17 drift Q2 1927.97 8700.44 −198 5

6 3–16 drift Q2 1907.93 8698.90 −198 3

7 3–14 drift Q2 1865.68 8690.47 −198 4

8 6–27 drift Q3 2073.15 8579.18 −198 3

9 7 crossheading Q3 2028.46 8574.56 −198 6

10 7 crossheading Q3 2032.51 8573.11 −198 5

1 12–14 drift Q1 1842.45 8512.47 −212 1 Verifying the
LM-VMD-SA meth-
od

2 10–17 drift Q1 1876.68 8582.30 −198 1

3 Crossheading of
return air shaft

Q1 1777.13 8498.07 −212 1

4 3–17 drift Q2 1928.76 8702.41 −198 1

5 3–16 drift Q2 1904.78 8691.06 −198 1

6 2–10 drift Q2 1800.64 8729.04 −198 1

7 7 crossheading Q3 2034.44 8572.42 −198 1

8 5 crossheading Q3 2018.63 8577.67 −213 1

9 4–2drift Q3 1994.13 8599.20 −213 1

10 11 crossheading Q3 1964.59 8502.65 −213 1
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different areas, which are set as average value of the velocity
field in the monitoring area formed by the sensor combina-
tion for the convenience of inversion. Similarly, the initial
velocity model database of area Q2 is updated by the veloc-
ity model databases of 16 blasting events in areaQ2, and the
velocity model database D21 of area Q2 is created.
Likewise, the initial velocity model database of area Q3 is
updated by the velocity model databases of 14 blasting
events in area Q3, and the velocity model database D31 of
area Q3 is also acquired

Fig. 8 shows the updating procedure of the velocity models
of the sensor combinations. It can be seen that the spatial
errors of the sensor combinations tend to be smaller with an
increase in the number of updates. Generally, the spatial errors
are closely related to the quality of the velocity model, and
smaller spatial errors correspond to a greater velocity model,
which can highly reflect the actual geological structure (Wang
et al. 2010). In Fig. 8a–c, the velocities of the 2937th sensor
combination in areas Q1, Q2, and Q3 are 5639 m/s, 4852 m/s,

and 5201 m/s, respectively. The velocities of the same sensor
combination vary among different subareas. It can be seen
in Fig. 8a, d that the velocities of the 2937th sensor combi-
nation in area Q1 and the 2060th sensor combination in area
Q1 are 5639 m/s and 5343 m/s, respectively. It can be con-
cluded that the velocities of different sensor combinations
in the same subarea are also different. Therefore, it is nec-
essary to create a velocity model for each sensor
combination.

Although the spatial error of a given sensor combination
tends toward a smaller value with an increase in the number of
updates, the adapted velocity model database needs to be
checked in regular intervals, especially for the varied engi-
neering and geological conditions.

Verification of the LM-VMD-SA method

Blasting event No. 7, which triggers 8 sensors in area Q3, is
taken as an example to illustrate the solution process of the
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Fig. 7 Evolution of the velocity
and spatial error of the first
blasting event at blasting test
point No. 2 with the number of
iterations based on the LEOM-
PSA method.

Table 3 Partial velocity model
database of area Q1

No. Sensor combinations Velocity (m/s) Error (m)

49 101; 103; 104; 202 5457 15.61

50 101; 103; 104; 203 5328 15.50

693 101; 103; 202; 204; 205 5173 10.47

694 101; 103; 202; 204; 206 5166 4.84

1607 101; 103; 106; 203; 205; 206 5116 1.62

1608 101; 103; 106; 204; 205; 206 5199 3.36

2550 101; 103; 105; 106; 203; 204; 205 5271 2.84

2551 101; 103; 105; 106; 203; 204; 206 5211 1.25

3292 101; 103; 106; 201; 202; 203; 204; 206 5593 7.24

3293 101; 103; 106; 201; 202; 203; 205; 206 5488 5.65

3622 101; 103; 104; 105; 106; 201; 202; 204; 205 5436 7.63

3623 101; 103; 104; 105; 106; 201; 202; 204; 206 5250 2.44

3764 101; 103; 104; 105; 106; 201; 202; 203; 204; 205 5250 1.69

3765 101; 103; 104; 105; 106; 201; 202; 203; 204; 206 5169 1.07

3795 101; 103; 104; 105; 106; 201; 202; 203; 204; 205; 206 5220 1.04

3796 102; 103; 104; 105; 106; 201; 202; 203; 204; 205; 206 5058 27.63

3797 101; 102; 103; 104; 105; 106; 201; 202; 203; 204; 205; 206 5434 28.69
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LM-VMD-SA method. Firstly, 163 sensor combinations are
produced based on the 8 triggered sensors. Secondly, the ve-
locity model of the corresponding sensor combination is

called in the velocity model database of area Q3, and 163
solutions are obtained by the ND-N method. Thirdly, large
deviations in the x-coordinate, y-coordinate, and z-coordinates
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Fig. 8 Updating of velocity
models for different sensor
combinations. a The 2937th
sensor combination in area Q1. b
The 2937th sensor combination in
area Q2. c The 2937th sensor
combination in area Q3. d The
2060th sensor combination in
area Q1 (the 2937th sensor
combination includes sensor Nos.
103, 104, 201, 202, 204, 205, and
206; the 2060th sensor
combination includes sensor Nos.
103, 104, 201, 202, 204, and 205)
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are filtered out by the 3σ criterion, and the probability densi-
ties of the x-, y-, and z-coordinates of the 163 solutions are
fitted utilizing the log-logistic (3P) distribution probability
density function, shown in Fig. 9. Finally, the coordinates
corresponding to the maximum probability density are con-
sidered as the x-coordinate, y-coordinate, and z-coordinates of
blasting event No. 7. The x-coordinate, y-coordinate, and z-
coordinates of blasting event No. 7 are 2044.51 m, 8570.25 m,
and −190.54 m, and their errors are −10.07 m, 2.17 m, and
−7.46 m, respectively.

As shown in Fig. 9, the spatial errors mainly range from
−20 m to 20 m in three directions of the same blasting event.
The spatial errors come from the arrangement of sensor array,
arrival time error, and algorithm dependence. The accuracy
and stability of the solution are greatly affected when only
one sensor combination is adopted. This is the main reason
why the statistical analysis is introduced.

In the same way, 10 blasting events are located by the LM-
VMD-SA method. All solutions converge during the solution
process, and the results are shown in Figs. 10 and 11. The aver-
age location errors of the blasting events in areasQ1,Q2, andQ3

are 21.19m, 13.69m, and 19.12m, respectively. AreaQ2 has the
smallest average location error and closest distance to the center
of the sensor array, followed by areasQ3 and Q1. Previous stud-
ies also reveal that a smaller location error is acquired when the
MS source is closer to the center of the sensor array (Li et al.
2014). Therefore, the relative distance between the sensor array
and monitoring area should be taken into account when the MS
monitoring scheme is designed.

To verify the superiority of the LM-VMD-SA method, 10
blasting events are located by a traditional method (Li and
Chen 2013) with a uniform velocity model and a subarea
method (Feng et al. 2015). The velocity is set to 5222 m/s in
uniform velocity model, and three different velocities, i.e.,
5384 m/s, 5124 m/s, and 5247 m/s are set for areas Q1, Q2,
andQ3 in subarea method. Comparisons of the location results
among the traditional method, the subarea method, and the
LM-VMD-SA method are shown in Fig. 11. The average
location errors of the traditional method, the subarea method,
and the LM-VMD-SA method are 22.89 m, 22.15 m, and
18.11 m, respectively, in the three subareas. The location ac-
curacy of the LM-VMD-SA method is 20.88% higher than
that of the traditional method and 18.24% higher than that of
the subarea method. Therefore, the LM-VMD-SA method
therefore achieves higher accuracy and better stability than
both the traditional method and the subarea method.

Field applications

Illegal mining activities in the north and southeast of the min-
ing area of the Beiminghe Iron Mine are mainly focused.
From October 17, 2018, to April 30, 2019, a total of 5396

blasting events were monitored by theMSmonitoring system,
and 478 abnormal blasting events were extracted based on the
blasting records. Based on the velocity model databases of
areas Q1, Q2, and Q3, abnormal blasting events are located
by the LM-VMD-SA method, and their locations are shown
in Fig. 12. It reveals that abnormal blasting events are mainly
concentrated in the suspicious areas No. 1 and No. 2.
Suspicious area No. 1 is located in area Q3, while suspicious
area No. 2 is located the north of the mining area and about
100 m away the boundary of the Beiminghe Iron Mine.

According to the MS monitoring results, several boreholes
are drilled in the suspicious area No. 1. In situ borehole infor-
mation reveals that illegal mining roadways are found to be
located at −125 m level and −155 m level, shown in Fig 12b.
Besides, some equipments are found on the −125-m level
illegal mining roadway. It indicates that the determined loca-
tion of the illegal mining roadways by the MS monitoring is
constant with the actual illegal mining activity in mines.
Although the monitored suspicious area No. 2 is about
100 m away from the boundary of the Beiminghe Iron
Mine, it indicates the illegal mining activity may occur in
the future. Thus, it is necessary to increase the number of
sensors and strengthen the monitoring in the upper part of
the mining area. These findings confirm that the LM-VMD-
SA method is feasible for engineering applications. This
method can provide support for mineral resources protec-
tion and mining safety.

Discussion

The LM-VMD-SA method can obtain more stable MS source
coordinates by combining the triggering sensors and fitting
the location results of all sensor combination. The LM-
VMD-SA method can degenerate to the ND-N method when
4 sensors are triggered for a MS event. Therefore, the superi-
ority of the LM-VMD-SA method stands out when more than
4 sensors are triggered.Moreover, the velocitymodel database
can also degenerate to a single uniform velocity model and
layered velocity model for a homogeneous geological condi-
tion and layered geological conditions, respectively.

Since the number of sensor combinations is determined

by C4
m þ C5

m þ…þ Cm
m, more sensor combinations are ac-

quired with the LM-VMD-SA method when more sensors are
triggered. The relationship between the iteration time of the
LM-VMD-SA method and the number of the sensor is stud-
ied, as shown in Fig. 13. It can be seen that the iteration time
for event location in the LM-VMD-SA method increases with
the increase of the number of triggering sensors. About 2.39s
is required for blasting event location when the anisotropic
velocity model proposed by Feng et al. (2017) is adopted in
the Beiminghe IronMine. It can be concluded that the location
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efficiency of the LM-VMD-SA method is higher than that of
the anisotropic velocity model when the number of triggering
sensors of the blasting event is less than 10. Due to the discrete
sensor arrangement in the monitoring area of the Beiminghe
Iron Mine, the triggered sensors are generally less than 10, so
the LM-VMD-SA method can meet the requirements of rapid
location.

Conclusions

A novel LM-VMD-SA method is proposed by improving the
velocity model and the MS source location method, which is
achieved by introducing a velocity model database and statis-
tical analysis. Then, the effectiveness and robustness of the
proposed method are verified. Some conclusions can be
drawn as follows.

(1) Based on the ND-N method and the pattern search algo-
rithm, the LEOM-PSA method is proposed for inverting
the optimal uniform velocity model and exhibits a good
convergence.

(2) An integrated method is proposed for creating and
updating the velocity model database, where each sensor
combination is assigned an optimal uniform velocity.
Compared to the existing velocity models, the velocity
model database considers the geological difference of

several subareas and the monitoring area formed by the
sensor combination, which is more fit with the actual
conditions in mines.

(3) The LM-VMD-SA method is proposed based on the
velocity model database and the log-logistic (3P)
distribution probability density function. With the pro-
posed method, multiple location results of sensor com-
binations can be acquired, and the most accurate MS
source coordinates are then determined by data analy-
sis. Blasting tests in the Beiminghe Iron Mine show
that the LM-VMD-SA method exhibits greater accu-
racy and solving stability than the traditional method
and the subarea method.

�Fig. 9 Probability densities of 163 solutions and their errors and the
fitting curves of blasting event No. 7 in the x-, y-, and z-coordinate
directions using the log-logistic (3P) ditribution probability density func-
tion. a x-coordinate direction. b y-coordinate direction. c z-coordinate
direction
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(4) The application of the LM-VMD-SA method to the
Beiminghe Iron Mine reveals that the concentrated
abnormal blasting events are observed in the two

suspicious areas. In-site borehole information also
verifies that there are illegal mining activities at the
−125 m level and −155 m level and is completely
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Slope

Blind shaft

-125 m level illegal
mining roadway

-155 m level illegal
mining roadwaySuspicious area No.1
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Fig. 12 Locations of abnormal
blasting events using the LM-
VMD-SA method. a Top view. b
Front view
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consistent with the position of the suspicious area
No. 2.
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