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Abstract
Saline loess is an important cause of environmental geo-issues in northwest China. In this research, electrical resistivity of 
loess with different moisture contents and NaCl concentrations was measured at three test frequencies. Results indicates 
the plastic limit (16%) and around 2% NaCl concentration are the critical content affecting the variation of loess electrical 
resistivity. The variation and conductivity for conductive paths are affected by moisture content and NaCl concentration 
respectively. Combined with three-phase composition and diffuse double-layer structure, new models that consider the effect 
of moisture content and NaCl concentration indicate good applicability in the validation datasets from different types of 
soil. A new model was verified by comparison between previous studies and experimental results. This research provides 
(i) theoretical support for the calibration of large-scale electrical field surveys and the observation of saline loess and (ii) a 
valuable reference for the prevention of environmental geo-crisis and the utilization of soil resources in northwestern China.
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Introduction

Loess is associated with various environmental geohazards 
that threaten people and infrastructure in the widespread 
loess region of northwestern China (Chang et al. 2021a, 
2021b; Duan et al. 2021b, 2020; Yin et al. 2021), so it is 
necessary to investigate the loess properties in this area. The 
perennial arid environment of northwestern China means 
that agriculture requires large-area irrigation, which affects 
groundwater levels and causes serious soil salinization 
(Weisbrod and Dragila 2006). Previous studies have found 
that salinity has significant influences on environmental geo-
crisis such as landslides, debris flows, and ground collapses 
(Fan et al. 2017; Fu et al. 2019; Li et al. 2020a; Wang et al. 
2019). Therefore, it is urgent to investigate the properties of 
loess under the influence of water and salt.

In recent years, field surveys using electrical resistance 
technology (ERT) have been widely used in the investigation 
of geo-materials, and play an important role in field monitor-
ing and assessment of water infiltration in soil (De Jong et al. 
2020; Sendrós et al. 2020; Zhao et al. 2020), groundwa-
ter potential assessments (Doetsch et al. 2012; Hasan et al. 
2019; Joel et al. 2019), soil liquefaction (Ronald and Ronald 
1982), and the stability evaluation of geo-materials (Kemna 
et al. 2002; Park et al. 2017; Snapp et al. 2017; Zhou and 
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Che 2020; Zhou et al. 2002). As a non-invasive method, 
ERT avoids significant damage to geotechnical materials and 
has the advantages of wide detection range and simple oper-
ation (Tabbagh et al. 2007). However, ERT is often limited 
by the complex topography and poor working environments 
of field sites, which can cause inaccurate results (Hen Jones 
et al. 2014). Meanwhile, the electrical resistivity theory of 
the Archie model originated from pure sandstone has been 
extended to a variety of other geo-materials (Cai et al. 2017; 
Ellis et al. 2010; Rhoades and Schilfgaarde 1976). Combined 
with laboratorial experimental methods, some researchers 
revealed the electrical resistivity of geotechnical materials 
from a new perspective (Erzin et al. 2010; Ozcep et al. 2010; 
Yin et al. 2021). Laboratory electrical resistivity tests have 
been widely used in the study of silty clay (Rinaldi Victor 
and Cuestas German 2002), marine clay (Zhang et al. 2014), 
expansive soil (Chu et al. 2018), compacted kaolin (Cardoso 
and Dias 2017), and loess (Liu et al. 2014; Zha et al. 2010) 
for their rapid, economical, and easy-to-use techniques, and 
accurate test results (Samouëlian et al. 2005). Therefore, it 
is a feasible method to obtain the characteristic parameters 
and their variation law of geotechnical materials through 
laboratory test method (Tang et al. 2018; Zhou et al. 2015), 
which can provide reference for field geophysical test and 
reduce the field test error (Islam et al. 2012).

In addition, the theoretical study of electrical resistivity 
has also attracted the attention of many researchers. Archie 
(1942) proposed an electrical resistivity model for cohesion-
less soil and pure sandstone, but it was assumed in the model 
that solid particles do not conduct electricity. Later, Waxman 
and Smits (1968), Rhoades and Schilfgaarde (1976), and 
Fortier et al. (2008) improved Archie’s model from different 
perspectives and expanded its application scope. Based on 
the difference of three-phase conductivity of geotechnical 
materials (Fukue et al. 1999; Hasan et al. 2018; Yang et al. 
2020), some researchers have theoretically deduced the con-
ductivity model of geotechnical materials from the perspec-
tive of series and parallel connections (Fukue et al. 1999; 
Hasan et al. 2018; Tang et al. 2018). Shan et al. (2015) estab-
lished a new model to characterize the electrical resistivity 
of frozen soils based on laboratorial tests and combined with 
the soil structure, and the new model was tested by the vali-
dation datasets from the four conditions (water, temperature, 
density, salt). Nevertheless, most of these studies involve 
empirical models and few theoretical models of electrical 
resistivity in loess have been proposed. Furthermore, there 
has been little research on electrical resistivity in the loess 
of northwest China.

The aims of this study were twofold: (i) to investigate 
the effects of moisture content and salt concentration on the 
electrical resistivity of loess from northwestern China and 
(ii) to propose a new loess electrical resistivity theoretical 
model comprised of simple parameters that consider the 

influences of moisture content and salt concentration. This 
result will (i) help to calibrate large-scale field-based elec-
trical-resistivity datasets, (ii) provide a valuable reference 
for the prevention and control of environmental geo-crisis 
induced by groundwater changes in loess regions, (iii) obtain 
a basic data support to explore the environmental status of 
saline soils, and (iv) allow better utilization of soil resources 
in northwest China.

Materials and method

Materials

Materials tested in this research were Q2 loess, which were 
collected from the south Jingyang platform on the southern 
edge of the Chinese Loess plateau (Fig. 1). Over 62 severe 
loess landslides occurred in this area since agricultural irri-
gation began in 1976 (Duan et al. 2021a, 2019; Ma et al. 
2021). The loess samples in field were obtained about 17 m 
away from the ground surface. Its basic physical proper-
ties were determined following relevant standard methods 
(ASTM 2009), and results are presented in Table 1. Par-
ticle-size distribution of experimental loess in Fig. 2 was 
obtained using a laser particle size tester, which indicates 
that the loess is classified as a silty clay (ASTM-D2487 
2017). The mineralogical composition and major chemical 
composition of loess were determined by an XRD and XRF 
respectively, and the results are listed in Tables 2 and 3. In 
addition, Table 3 represents that soluble salt of loess in this 
area is mainly NaCl, which is also widely mentioned in oth-
ers’ study (Duan et al. 2021b; Yan et al. 2021).

Sample preparation

The preparation of loess samples consisted of the fol-
lowing five steps: (1) the fresh loess was oven-dried at 
110℃ for 12 h, subsequently grounded by a rubber ham-
mer, and sieved through 2-mm sieve (Chen et al. 2020; 
Hu et al. 2021; Li et al. 2021a; Xu et al. 2021b); the above 
operations can remove organic matter and residual mois-
ture; (2) dried loess was mixed with distilled water and 
sodium chloride to reach the target moisture content and 
salt concentration from Table 4, and the mass of distilled 
water, sodium chloride, and dried loess was calculated 
using the weighting method; (3) loess, distilled water, and 
NaCl were mixed by stirring for 10 min with the agita-
tor and sealed in a double-layer plastic bag for 24 h on 
average 20℃ to homogenize the water (Lyu et al. 2020; 
Xue et al. 2021); (4) static compaction method can con-
trol the distance from hydraulic jack, and ensure each 
sample has the same volume, compactness, and density 
(Geng and Sun 2018; Melo et al. 2021). Then, the mixed 
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loess was compacted in three layers by a hydraulic jack 
in the rigid mold (Islam et al. 2012; Wang et al. 2020). 
Finally, required loess sample was fabricated into a cylin-
drical specimen with a dry density of 1.70 g·cm−3 and 
dimensions of 39.1 mm × 30.0 mm; (5) the error of the 
sample size, moisture content, and NaCl concentration of 
all remold loess specimens should be controlled within 
0.2% (Liu et al. 2021; Xu et al. 2021a). All specimens 
were placed in a constant temperature chamber before the 
test starts. The entire sample preparation procedure was 
carried out at room temperature to eliminate the influences 
of temperature on the experimental results.

Test methods

Existing measurement systems have certain disadvantages: 
the four-electrode resistivity measurement system disturbs 
soil structure (Shan et al. 2015), and the DC (direct cur-
rent) method can change in moisture, pore-fluid chemistry, 
and soil structure that cause data scatter (Abu-Hassanein 
Zeyad et  al. 1996). Therefore, the LCR digital bridge 
tester using two-electro resistivity measurement system 
and AC (alternating current) was used for this test (Fig. 3, 
Table 5). Two copper electrodes with a diameter of 40 mm 
and thickness of 2 mm were placed at the top and bottom 

Fig. 1   Details of the study area 
and sampling site. (a) Distribu-
tion of Chinese Loess Plateau. 
(b) Environmental geo-condi-
tion in sampling site. (c) Loess 
profile at the sampling site

Table 1   Basic physical properties of the loess used in the experiment

Sample Moisture con-
tent (%)

Dry density 
(g·cm−3)

Void ratio Plastic limit (%) Liquid limit (%) Specific gravity

Loess 7.5 1.44 0.72 16.0 32.1 2.71
Standard deviation 0.10 0.20 0.02 0.5 0.5 0.3
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Fig. 2   Particle-size distribution 
curve for the loess used in the 
study

Table 2   Mineralogical 
composition of the loess used in 
the experiment

Item Quartz Carbonate Illite Kaolinite Chlorite Smectite Others

Content (%) 28 23 21 3 16 6 3

Table 3   Major chemical 
composition of the loess used in 
the experiment

Item Na+ K+ Mg2+ Ca2+ Cl− SO4
2−

Content (g/kg) 42.42 0.58 2.39 12.82 40.26 14.61

Table 4   Moisture content 
and NaCl concentration of 
each sample in the test design 
scheme

Moisture content (w): the ratio of distilled water weight to weight of the dry loess; NaCl concentration (c): 
the ratio of sodium chloride weight to weight of the distilled water

Sample 1 2 3 4 5 6 7 8 9 10 11 12

Moisture content (%) 8 8 8 8 10 10 10 10 12 12 12 12
NaCl concentration (%) 0 2 4 6 0 2 4 6 0 2 4 6
Sample 13 14 15 16 17 18 19 20 21 22 23 24
Moisture content (%) 14 14 14 14 16 16 16 16 18 18 18 18
NaCl concentration (%) 0 2 4 6 0 2 4 6 0 2 4 6

Fig. 3   LCR digital bridge 
instrument
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of a cylindrical loess sample (Liu et al. 2008; Zhang et al. 
2014) and connected to an experimental instrument. A 
pressure block was placed on the top of loess sample to 
ensure a well contact between the copper electrodes and 
loess samples (Muñoz-Castelblanco et al. 2012), which 
can effectively reduce the error (Muñoz-Castelblanco et al. 
2012; Shah and Singh 2004). Before the test, open and 
circuit corrections were applied before conducting experi-
ments and the authors calibrated the LCR tester accord-
ing to the method of Shah and Singh (2004) and Tang 
et al. (2018). To eliminate the adverse effect of high fre-
quencies and low frequencies on the electrical resistivity, 
three test frequencies (100 Hz, 1 kHz, 10 kHz) were used 
in this research (Duan et al. 2021b). Each loess sample 
was measured four times at each test frequency, and test 
results were averaged to minimize the test error. All of the 
measurements of the resistance were performed under the 
controlled temperature (20 ± 1℃). The electrical resistiv-
ity of loess is calculated based on the following equation:

In which ρ = loess electrical resistivity (Ω·m); R = loess 
resistance measured by measuring (Ω); S = cross-section area 
through which electrical current conducts (m2). L = height 
of the loess sample (m).

Results

Variation of loess electrical resistivity with moisture 
content

Figure 4 shows the variation of loess electrical resistivity 
with moisture content under the three test frequencies. It 
indicates that the reduction effect of moisture content on 
loess electrical resistivity plays a key role: with the increase 
of moisture content, the electrical resistivity values of loess 

(1)� = R ∙
S

L

decrease and finally tend to a minimum value. Loess electri-
cal resistivity continues to decrease as the testing frequency 
grows. Furthermore, with increases in loess moisture con-
tent, the slope of electrical resistivity curve decreases. The 
characteristics of these curves indicate that the effect of 
water on the electrical resistivity of loess may be gradual. 
A detailed analysis is provided in the “Discussion” section.

Variation of loess electrical resistivity with NaCl 
concentration

The variation of loess electrical resistivity with different 
NaCl concentrations under the influence of test frequency 
is shown in Fig. 5. The effect of salt increases on the elec-
trical resistivity of geo-materials has been mentioned in 
many studies (Lyu et al. 2019; Rhoades et al. 1989; Zhou 
et al. 2015). The electrical resistivity of loess is significantly 
higher at 0% NaCl than at other concentrations. Variations 
in electrical resistivity characteristics occurred at all mois-
ture contents (from 8–20%). At higher NaCl concentrations 
of 2–6%, the electrical resistivity decreases overall but at a 
much lower rate than from 0–2% NaCl. Finally, the mini-
mum electrical resistivity was reached at an NaCl concen-
tration of 6%. The above interesting phenomenon indicates 
that there is an approximate critical content around 2% NaCl 
concentration (Duan et al. 2021b; Lyu et al. 2019).

Discussion

Electrical resistivity models of geo-materials have been sys-
tematically studied (Bai et al. 2013; Datsios et al. 2017); 
however, there are few studies on the loess electrical resis-
tivity. In this study, combined with the three-phase path (Li 
et al. 2021b, 2020b; Tang et al. 2018) and diffuse double-
layer structure (Darrow et al. 2020; Ruedrich et al. 2011), 
loess conductive models are shown in Fig. 6. Paths 1, 2, and 
3 represent three conductive paths: (i) loess particle contact 
points (Kubliha et al. 2017), (ii) the alternating conductivity 

Table 5   Equipment parameters 
of LCR digital bridge tester

Items Parameters

Indices L-Q, C-D, R-Q, |Z|-Q
Basic accuracy 0.2%
Frequency range (Hz) 100–10,000
Equivalent circuit Serial and parallel connection
Output impedance (Ω) 30, 100
Trigger mode Inside
Test signal level (Vrms) 0.3, 1
Measuring range R (0.1 mΩ–99.99 MΩ); C (0.01 pF–99.99 μF); 

L (0.01 μH–99.99 μH); Q (0.0001–9999); D 
(0.0001–9.999)
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of loess particles and pore water (Fukue et al. 1999; Hasan 
et al. 2018; Mojid et al. 2006), and (iii) continuous free pore 
water, respectively (You et al. 2020). The physical–chemical 
interactions between the electrically charged surface of loess 
particles (mainly clay particles) and the surrounding pore 
water form a diffuse double-layer structure that surrounds 
the loess particles, where both anions and cations have con-
ductive capacity under electric field condition rather than 
insulating (Soga and Mitchell 2005). The above is shown 
in Figs. 6 and 7.

Influence of moisture content on loess electrical 
resistivity

At low moisture contents, the conductivity of loess is low, 
being almost equivalent to that of an insulator (Fukue et al. 
1999). Combined with the three-phase path conduction 
model of loess, variation in the conductive paths in loess in 
relation to moisture content is shown in Fig. 6. Firstly, due 
to the lack of pore water, the single point contact mode of 
loess particles becomes the main conductive path (path 1). In 

fact, the electrical conductivity of loess particles is far less 
than that of pore water (Kubliha et al. 2017; Palacky 1987; 
Shevnin et al. 2007). Thereby, the electrical resistivity of 
loess in the initial stage is the greatest and is significantly 
higher than that at other moisture contents. Secondly, due 
to the increase of moisture content, some pores in loess are 
filled with water, the adverse effect of air on the formation 
of conductive path is reduced, and some path 2 begins to 
form. Finally, when moisture content exceeds the critical 
content, the conductive path 3 formed by continuous pore 
water gradually becomes the main conductive mode. Actu-
ally, the plastic limit (16.0%) of soil has been mentioned as 
a key critical content in many literatures (Fukue et al. 1999; 
Herring et al. 2019).

Influence of NaCl concentration on loess electrical 
resistivity

The movement of ions in pore water is the main cause of geo-
material conductivity (Yang et al. 2020). It has been found 
that as the salt concentration of pore water solution alters, the 

Fig. 4   Variations in the loess 
electrical resistivity with mois-
ture content. a c = 0%; b c = 2%; 
c c = 4%; d c = 6%
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surface potential of soil particles will alter accordingly, which 
led to the changes in the thickness of the diffusion double layer 
of loess (Fig. 7) (Shevnin et al. 2007; Wang et al. 2019). When 
Na+ and Cl− added to the loess, under the influence of the 
external electric field, the diffuse double-layer properties (i.e., 
thickness, cation-exchange capacities, and counterion concen-
tration) will change (Shevnin et al. 2007). The relatively free-
moving ions from diffusion layer are more likely to produce 
directional movement to form conductive path under the action 

of external electric field, which is also the main reason for 
the significant decrease of loess electrical resistivity after the 
increase of salinity. In addition, as the pores of loess are gradu-
ally occupied by salt water, some salts and minerals gradually 
decompose in the pore water, which is beneficial to current 
transfer (Yang et al. 2020). The conductive path is formed by a 
large number of free-moving ions in the diffusion layer of clay 
particles and its surrounding pore water under the action of 
external electric field. Simultaneously, softening and melting 
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Fig. 5   Variations in the loess electrical resistivity with NaCl concentration. a w = 8%; b w = 10%; c w = 12%; d w = 14%; e w = 16%; f w = 18%; g 
w = 20%
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of soil particles due to chemical reactions around the pore 
walls not only expands the pores in the loess, which facilitates 
the connection of pore water, but also releases free-moving 
ions that contribute to the conductivity of the conductive path. 
Thereby, in this stage (c is from 2 to 6%), the electrical resistiv-
ity of loess decreases continuously.

Theoretical model and calculations

Theoretical model

Model of loess electrical resistivity under the influence 
of moisture content

Conduction in loess involves two different processes: (i) 
pore water in the gaps between loess particles and (ii) the 
diffuse double layer around the clay surfaces. These pro-
cesses are closely related to the moisture content, NaCl 
concentration, and porosity of loess. Figure 8 shows the 
three-phase conductive system of the loess, where the 
electrical resistivity is the result of interactions between 
the pore water, loess particles, and loess structure (Fukue 
et al. 1999).

Firstly, the following assumptions are made based on 
the three-phase conductive system of the loess and simpli-
fied circuit diagram in Fig. 8.

Series and parallel connections are used to characterize 
the complex connection among three components in soil 
(Ellis et al. 2010; Mojid et al. 2006). Therefore, the loess 
electrical resistivity is expressed as:

where R
1
 represents the loess resistance under the 

influence of moisture content. According to the electrical 
resistivity calculation equation ( R = �L∕ ), the following 
equations are obtained:

After, the following definitions are given:

(2)L
s
+ L

w
+ L

a
+ L

1
= 1

(3)L
s1
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w1
= 1

(4)
1
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w
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=

R
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Fig. 6   Conceptual diagram of loess conductive path with different 
moisture content. The red, green and blue arrows represent paths 1, 2, 
and 3 respectively (Al Rashid et al. 2018; Choo et al. 2016)

Fig. 7   Structural diagram of the diffuse double layer in loess (Chen 
et al. 2019; Darrow et al. 2020; Rinaldi Victor and Cuestas German 
2002)
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Thereby, the following equation can be obtained:

Loess electrical resistivity is closely related to the dif-
fusion double-layer structure around the soil particles. 
Therefore, the conductivity of diffusion double layer is 
introduced into Eq. 11 to simplify the model (Waxman 
and Smits 1968). There is a power function relationship 
between the electrical resistivity of pore water and mois-
ture content. The simplification process takes into account 
the diffusion double-layer structure and cation exchange 

(10)�
1
=

R
w1

R
w

(11)
1

R
1

=
2�

1
+ 2�

1
+ 1

�
1
�
s
L
s
+ �

1
�
w
L
w

capacities (CEC). Finally, the electrical resistivity model 
of loess affected by moisture content is as follows:

where �
1
 represents the loess electrical resistivity (Ω·m); 

w represents the loess moisture content; a
1
= 2�

1
+ 2�

1
+ 1 

is the soil structure parameter; b
1
= �

1
�
s
L
s
 represents the 

conductivity parameter of diffuse double layer; c
1
 and θ rep-

resent the resistance parameter under the influence of loess 
moisture content.

Loess electrical resistivity model under the influence 
of NaCl concentration

The increased NaCl concentration in pore water allows the 
entire conductive loess to be regarded as a mixed conductive 

(12)�
1
=

a
1

b
1
+ c

1
w�

Fig. 8   Schematic diagram of 
the loess conductivity model 
with moisture content. a Loess 
conductivity model diagram; b 
simplified circuit diagram

((a)) LLooeesss ccoonnduucctivvitty mmooddel ddiiaggrrammm ((b) Siimmppliififieed cirrcuuit ddiiaggrrammm 

Fig. 9   Schematic diagram of the 
loess conductivity model with 
NaCl concentration. a Loess 
conductivity model diagram; b 
simplified circuit diagram

((a)) LLooeesss ccoonndduccttivvitty mmooddel ddiiaggrrammm ((bb) Siimmppliififieed cirrcuuit ddiiaggrrammm
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body as caused by solid-phase loess particles, liquid-phase 
saline water, and air-phase void air, as shown in Fig. 9. There-
fore, according to the loess electrical resistivity model deriva-
tion for the moisture content condition in the “Model of loess 
electrical resistivity under the influence of moisture content” 
section, this research provides the following assumptions:

where R2 represents the loess resistance under influence 
of NaCl concentration.

Therefore, the following equation was concluded:

When the loess has a high NaCl concentration, most of 
the pore water is full of freely moving conductive ions. Pore 
water can be regarded as a conductive unit closely related to 
NaCl concentration. Therefore, the equation for loess electri-
cal resistivity is deduced as:
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Fig. 10   Validation results for the electrical resistivity model affected 
by moisture content based on experimental data
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Fig. 11   Validation results for the electrical resistivity model affected 
by NaCl concentration based on experimental data

Table 6   Validation results for 
electrical resistivity model 
affected by moisture content 
based on experimental data

NaCl concen-
tration (%)

Test fre-
quency (Hz)

a1 b1 c1 θ R-squared values

2 100 1313.500 0.168 0.159 2.281 0.975
2 1 k 814.600 1.234 0.147 2.393 0.984
2 10 k 1090.700 0.930 0.148 2.400 0.981
4 100 4961.100 19.370 0.043 3.369 0.998
4 1 k 2677.900 22.770 0.345 3.400 0.998
4 10 k 19,073.000 161.300 0.350 3.382 0.998
6 100 1843.000 5.755 0.150 2.672 0.995
6 1 k 713.640 6.856 0.150 2.533 0.994
6 10 k 460.950 9.669 0.173 2.431 0.995
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where �
2
 represents the loess electrical resistivity; c rep-

resents the NaCl concentration; a
2
= 2a

2
+ 2�

2
+ 1 repre-

sents the loess structural parameter under the influence of 
NaCl concentration; b

2
= �

2
�
s
L

�

s
 represents the conductive 

parameter of the diffuse double layer, and c2 represents the 
coefficient under the influence of NaCl concentration.

Calculation and verification

Data from the loess electrical resistivity experiment were 
used to evaluate the proposed model. The fitting results 
under the influence of moisture content and NaCl concen-
tration are shown in Figs. 10 and 11, respectively. Determin-
istic coefficient (R2) was used to evaluate the loess electrical 
resistivity model, and the result of model validation is shown 
in Tables 6 and 7. The determination coefficient represents 
the difference between the experimental results and the theo-
retical calculation results, and its value is between 0 and 
1. The larger the value is, the stronger the adaptability of 
the model is (Wang and Hayakawa 1993; Yun et al. 2013). 
The high degree of similarity between the experimental data 
and the theoretical data in Figs. 10 and 11 and the expected 
deterministic coefficient from Tables 6 and 7 show that the 

(21)�
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=

a
2

b
2
+ c

2
c

Table 7   Validation results for electrical resistivity model affected by 
NaCl concentration based on experimental data

Moisture 
content 
(%)

Test 
frequency 
(Hz)

a2 b2 c2 R-squared values

8 100 5.866 0.019 0.216 0.974
8 1 k 56.004 0.375 0.300 0.983
8 10 k 64.155 0.554 0.400 0.984
10 100 5.233 0.019 0.042 0.990
10 1 k 3.067 0.026 0.036 0.990
10 10 k 2.624 0.030 0.038 0.990
12 100 4.984 0.015 0.059 0.990
12 1 k 2.502 0.200 0.440 0.990
12 10 k 2.933 0.039 0.061 0.990
14 100 5.340 0.024 0.097 0.990
14 1 k 3.240 0.035 0.088 0.990
14 10 k 3.851 0.070 0.130 0.990
16 100 4.058 0.040 0.103 0.990
16 1 k 3.691 0.074 0.143 0.990
16 10 k 3.311 0.096 0.166 0.990
18 100 3.712 0.043 0.134 0.990
18 1 k 3.342 0.092 0.190 0.990
18 10 k 2.067 0.087 0.152 0.990
20 100 2.466 0.133 0.187 0.990
20 1 k 2.226 0.187 0.262 0.990
20 10 k 1.989 0.203 0.281 0.990

Table 8   Validation results for new models based on the collected data from different types of soil

Number Sample name References Location R-squared values

Moisture content NaCl 
concentra-
tion

1 Cheshire clay McCarter (1984) Cheshire, UK 0.974
2 London clay McCarter (1984) London, UK 0.969
3 Loamy clay Michot et al. (2003) Paris, France 0.990
4 Type-a Wuhan clay Hu et al. (2019) Wuhan, China 0.990
5 Type-b Wuhan clay Hu et al. (2019) Wuhan, China 0.997
6 Yanan loess Nie et al. (2021) Yanan, China 0.992
7 Type a-marine clay Zhang et al. (2014) Lianyungang, China 0.895
8 Type b-marine clay Zhang et al. (2014) Lianyungang, China 0.983
9 Type c-marine clay Zhang et al. (2014) Lianyungang, China 0.810
10 Sheyang clay Zhang et al. (2018) Sheyang, China 0.934
11 Yancheng clay Zhang et al. (2018) Yancheng, China 0.979
12 NaCl-a Yangling loess Luo et al. (2019) Yangling China 0.997
13 NaCl-b Yangling loess Luo et al. (2019) Yangling China 0.956
14 Na2CO3-a Yangling loess Luo et al. (2019) Yangling China 0.993
15 Na2CO3-b Yangling loess Luo et al. (2019) Yangling China 0.938
16 Na2SO4-a Yangling loess Luo et al. (2019) Yangling China 0.984
17 Na2SO4-b Yangling loess Luo et al. (2019) Yangling China 0.893
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loess electrical resistivity model proposed in this study has 
good applicability.

In addition, soil electrical resistivity data from different 
types of researches around the world were collected to evalu-
ate the new models (Table 8; Hu et al. 2019; Luo et al. 2019; 
McCarter 1984; Michot et al. 2003; Nie et al. 2021; Zhang 
et al. 2014, 2018). Figures 12 and 13 show the results of fit-
ting the collected data with Eq. 11 and Eq. 21, respectively. 
The better results between the measured values and the theo-
retical values, and the high deterministic coefficient, show 
that the new model has strong applicability.

Conclusions

The influences of moisture content and NaCl concentration 
on the electrical resistivity of loess from the south Jingyang 
Platform, Shaanxi Province, in the Loess Plateau of North-
west China were studied by an LCR digital bridge instru-
ment with three test frequencies. The following conclusions 
were obtained:

(1)	 Test results present the plastic limit (16%) and around 
2% NaCl concentration are the critical content of loess 
electrical resistivity that affected the moisture content 
and NaCl concentration, respectively. Experimental 
values gradually decrease and tend to a minimum value 
after exceeding the critical content.

(2)	 The influence of moisture content on the loess electri-
cal resistivity is mainly reflected in the change of the 
contact model between soil particles and the change 
of conductive path. As the main factor affecting the 

number of free-moving ions in pore water, NaCl con-
centration modifies the conductive ability of conductive 
path.

(3)	 Based on the three-phase composition of loess and the 
diffuse double-layer structure around the solid parti-
cles, new models that consider the influence of mois-
ture content and NaCl concentration show good appli-
cability in the experimental data from various countries 
and regions.

(4)	 In addition, the complexity of site conditions requires 
researchers to conduct more in-depth studies, such as 
the relationship between the engineering mechanical 
properties, water sensitivity, thermal conductivity, soil 
chemical properties, and electrical resistivity.
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Fig. 12   Validation results for the electrical resistivity model affected 
by moisture content based on collected data
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