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Abstract 31 

As one of the arbitrary Lagrangian-Eulerian methods, the material point method (MPM) owns 32 

intrinsic advantages in simulation of large deformation problems by combining the merits of the 33 

Lagrangian and Eulerian approaches. Significant computational intensity is involved in the 34 

calculations of the MPM due to its very fine mesh needed to achieve a sufficiently high accuracy. A 35 

new multiple-GPU parallel strategy is developed based on a single-root complex architecture of the 36 

computer purely within a CUDA environment. Peer-to-Peer (P2P) communication between the GPUs 37 

is performed to exchange the information of the crossing particles and ghost element nodes, which is 38 

faster than the heavy send/receive operations between different computers through the infiniBand 39 

network. Domain decomposition is performed to split the whole computational task over the GPUs 40 

with a number of subdomains. The computations within each subdomain are allocated on a 41 

corresponding GPU using an enhanced ‘Particle-List’ scheme to tackle the data race during the 42 

interpolation from associated particles to common nodes. The acceleration effect of the parallelisation 43 

is evaluated with two benchmarks cases, mini-slump test after a dam break and cone penetration test 44 

in clay, where the maximum speedups with 1 and 8 GPUs are 88 and 604, respectively.  45 

 46 

Keywords: material point method, parallel computation, cone penetration test, mini slump test 47 

 48 

1. Introduction  49 

The material point method (MPM), one of the arbitrary Lagrangian Eulerian methods, owns intrinsic 50 

advantages in simulation of large deformation problems by combining the merits of the Lagrangian 51 

and Eulerian methods[1-4]. The Lagrangian particles, inheriting all the history-dependent information 52 

of material, are allowed to move through the background Eulerian mesh, while the mesh is always 53 

fixed in space to avoid the potential mesh distortion. The MPM, introduced to solid mechanics[5] from 54 

computational fluid dynamics[6], was used to simulate high explosive explosions[7], propagation of 55 

wood cracks[8], impact between solid bodies[9-12], fluid-structure interactions[13] and computer 56 

animations[14-16]. In the recent decade the MPM was applied to geotechnical engineering to investigate 57 

runout of submarine landslides[17-20], penetration and pull-out of structures[21-23] and flow of granular 58 

materials[24-26]. Coupling analysis of pore or free water and soil, mainly used in the analysis of slope 59 

stability[27-30], is a new trend of the MPM simulations. 60 

One of the main obstacles to the widespread application of the MPM is its low computational 61 

efficiency, especially for large-scale and long-period problems. As the particles mostly are not at the 62 
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optimum locations for integration in the elements[31-33], the mesh adopted in the MPM should be much 63 

finer than that in large deformation finite element analysis to obtain sufficient accuracies[3, 34-35]. 64 

Structured elements, used as often as the unstructured elements[36-37], bring extra computational loads 65 

with identical mesh size from the concerning domain to the far field. Elements in singularity zone 66 

around structures need to be further refined for soil-structure interaction problems[38-39]. Although an 67 

initial assignment of four particles in per element is often sufficient to obtain a smooth stress/strain 68 

field in many cases of MPM simulations[40], the configuration of 16 particles in each element 69 

sometimes is necessary for high-speed impacting problems[14, 41]. Therefore, most existing MPM 70 

analyses were limited to small-scale problems or two-dimensional plane-strain scenarios[14, 21, 41]. 71 

Parallel computation on the central processing units (CPU) or graphic processing units (GPU) is the 72 

most viable option to promote the efficiency of the MPM, which often requires special treatments to 73 

make the algorithm more parallelisable. Acceleration effect of the parallelisation can be significantly 74 

influenced by different parallel techniques and hardware platforms. Reference [9] and [42] proposed 75 

a single-CPU parallelisation scheme of the MPM with the loop-based parallel library OpenMP, 76 

achieving a five-fold speedup over a sequential calculation by mobilising eight CPU cores. The 77 

OpenMP-based parallelisation is quite simple by invoking an executable directive before each loop 78 

operation; however, its limitation is also obvious as most commercially available CPUs have less 79 

than 32 cores. Reference [43] developed a multiple-CPU parallelisation strategy using the message 80 

passing interface (MPI), accelerating the computation for up to 2,500 times with 16,384 CPU cores 81 

on a supercomputer. In comparison with the CPU parallelisation, the state-of-the-art GPU 82 

parallelisation is more cost effective as each GPU hosts thousands of GPU cores[44-45], but its parallel 83 

techniques are more complex. Reference [46] proposed a specialised parallelisation scheme with 84 

single GPU by using the compute unified device architecture (CUDA), obtaining speedups of around 85 

25 times given double precision numbers were used. Limited by the memory size dedicated on the 86 

GPU, the maximum number of particles allowed in the MPM model was around six million. 87 

Reference [47] adopted a similar technique to parallelise an implicit MPM algorithm and applied it 88 

to computer animations. Reference [48] then extended the framework to orchestrate multiple GPUs 89 

on a multiple-computer cluster based on a hybrid MPI-CUDA environment, which was sensitive to 90 

the data exchange between the computers through a private network. Given 16 GPUs were used on 91 

four tandem computers, up to 900 times speedup was then obtained with the maximum number of 92 

particles as 96 million. Recently, Reference [49] further optimised the massively parallel framework 93 

of the MPM and achieved over 100 times speedup on a single GPU; however, its acceleration effect 94 

on multiple-GPU platform is heavily dependent on the hardware performance for the stream event 95 

synchronisation on the specific GPU device; as a result, speedup of the framework is not always so 96 
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high (~ 100) as presented in Reference [49], especially for medium scale problems with less than 97 

500,000 particles; and much complexities were caused in the parallel scheme (such as the Particle-98 

Grid offset technique) and the data transport between the GPUs (such as the AoSoA data structure), 99 

which may undermine the reliability and maintainability of the programme. Therefore, a reliable and 100 

efficient MPM program based on a simple multiple-GPU parallel framework is still needed.  101 

In this paper, a parallelisation strategy with multiple GPUs is developed within the CUDA 102 

environment. Different to that in Reference [48], the mobilised GPUs are hosted in an identical 103 

computer platform with a shared random access memory (RAM). Peer-to-Peer (P2P) communication 104 

between the GPUs is performed to exchange the information of the crossing particles and ghost 105 

element nodes, which is faster than the heavy send/receive operations between different computers 106 

through the infiniBand network in Reference [48]. Domain decomposition is performed to split the 107 

whole computational task over the GPUs with a number of subdomains. The computations within 108 

each subdomain are allocated on a corresponding GPU and the MPM algorithm on each GPU is 109 

parallelised with the technique proposed in Reference [46] with specific improvements, which further 110 

enhance the speedup and reliability of the computation. The calculation results are assembled on the 111 

shared RAM of the computer through the connection with the GPU devices. In comparison to the 112 

parallel framework in Reference [49], the parallel strategy in this study is more reliable and friendly 113 

to the new developers of the MPM, which also presents satisfying acceleration effects. Specifically, 114 

this paper includes the following contributions: (1) an efficient parallel technique is proposed to 115 

invoke multiple GPUs on an identical computer using P2P communication with each other; (2) a 116 

hybrid memory IO framework is developed based on the shared RAM and distributed GPU memory 117 

hierarchy; (3) an enhanced ‘Particle-List’ scheme to parallelise the interpolation from particles to 118 

nodes, which is also parallelised on GPUs and hence avoids the frequent data exchange between the 119 

CPU and GPUs; (4) the parallelised MPM algorithm is extended from two to three dimensional, 120 

which is more computationally intensive and requires larger memory space.  121 

2. Material point method  122 

2.1 MPM program 123 

The parallelisation strategy was developed based on an in-house program, MPM-GeoFluidFlow, 124 

which stems from an open-source package, Uintah (http://uintah.utah.edu/), and features a novel 125 

contact algorithm ‘Geo-contact’[50], as well as a particle reseeding technique[51]. Geo-contact, 126 

specialised for soil-structure interactions, was developed from the conventional contact algorithm 127 

with enhancement of a penalty function[5, 13, 50, 52-53]. The explicit updated Lagrangian calculation in 128 

each incremental step was based on the uGIMP method[40, 54]. Meshes with identical sizes of square 129 
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elements were used[18, 41], and unstructured elements can be found in Reference [22, 23]. The 130 

definition of the stresses and strains followed finite strain theory taking account of the incremental 131 

rotation of the configurations between time steps for objectivity: the stresses were measured with the 132 

Cauchy stress and updated with the Jaumann rate, and the strains were calculated with the 133 

deformation gradient. Applications of the programme are mainly focused on penetrometer 134 

penetration[51], submarine landslide[55], and impact dynamics[18, 41]. In this paper we only describe the 135 

framework utilised to solve the mass and momentum equations, but it can be applied 136 

straightforwardly to other boundary-value problems, such as heat flux in an energy equation[7].  137 

2.2 Governing equations 138 

The formulation was derived from the conservation of mass and linear momentum balance. The 139 

conservation of mass requires that the time derivative of the mass entering or leaving a specific 140 

domain is zero, which can be written in mathematical form as 141 

 0v
t


+ =


                                                             (1) 142 

in which ρ is the material density, v is the velocity and t is the time. In the MPM, Equation (1) is 143 

satisfied naturally by discretising the objects into a cloud of Lagragian particles with consistent 144 

masses and volumes[33].  145 

The linear momentum balance means that the time-variation of the linear momentum of a material is 146 

equal to the resultant of the internal and external forces, i.e. Newton’s second law of motion:  147 

   
v

b
t


 =+


                                                             (2) 148 

in which σ is the Cauchy stress, and b is the body force. Equation (2) is the strong form of the 149 

conservation of linear momentum, which is usually difficult to achieve as a closed-form solution due 150 

to mathematical difficulties. Therefore, the weak form is derived instead, expressed as 151 

    
V V V V

v
u dV udV ubdV uTdS

t


 = −  +  +

                                              (3) 152 

in which u is the virtual velocity, V and S are the volume and surface area, and T is the prescribed 153 

surface traction. Numerical integration is adopted with the simplification of lumped mass, producing 154 

a concise form  155 

     ext int+ma F F=                                                             (4) 156 

where m is the lumped mass, a is the acceleration, Fext and Fint are the external and internal forces, 157 

respectively.  158 
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2.3 Numerical procedures 159 

The explicit integration scheme was adopted to solve the governing equations. The history-dependent 160 

information carried by particle p are: position Xp, mass mp, volume Vp, density ρ, velocity vp, 161 

deformation rate Dp, vorticity Wp, stress σp, and external force 
ext

pf . The governing equations (3) and 162 

(4) are solved on element nodes in terms of variables interpolated from the particles, i.e. mass mi, 163 

velocity vi, momentum Mi, acceleration ai, internal force int

iF , external force ext

iF , normal direction 164 

norm

i and tangential direction 
tang

i
 , where the subscript i represents the node number. For the soil-165 

structure interaction problems, the structure is simplified as a rigid body. The main functions within 166 

each incremental step are: 167 

(i) Initialisation of nodal variables. The time step always starts with the initialisation of the nodal 168 

variables of the structure and soil, which will be automatically abandoned at the end of the step.   169 

(ii) Interpolation from particles to nodes. The masses and momenta of the associated particles 170 

(inherited from the previous incremental step) are interpolated to the nodes 171 

i ip p

p

m S m=                                                              (5) 172 

i ip p p

p

M S m v=                                                            (6) 173 

norm

ip p

p

i

ip p

p

S m

S m





=






                                                            (7) 174 

where Sip and ipS are the shape function and its gradient at node i evaluated at particle p, 175 

respectively[40]; 
p

 represents the summation over all related particles. The derivation of the normal 176 

direction 
norm

i in Eq. (7) can be referred to in Reference [52-53]. For the soil, the internal force is 177 

obtained  178 

int

i ip p p

p

F S V= −                                                          (8) 179 

The tractions on the Neumann boundary is calculated[56-57]  180 

 
ext ext

i ip p p

p

F S f V=                                                        (9) 181 
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(iii) Calculate nodal velocities and accelerations. The velocities and accelerations on the background 182 

mesh can be obtained. At the commencement of the incremental step, the velocity of the node is 183 

i
i

i

M
v

m
=                                                                   (10) 184 

The acceleration for the soil node from the internal and external forces can be calculated from the 185 

governing equation as 186 

int ext+i i
i

i

F F
a

m
=                                                           (11) 187 

Then the nodal velocity is updated as 188 

i i iv v a t = +                                                              (12) 189 

where t is the time increment and determined through the Courant–Friedrichs–Lewy stability 190 

condition  191 

( )
Δ

2

h
t

λ G ρ


=

+
                                                         (13) 192 

where φ is the Courant number, h is the size of the square element, and G and λ are the Lamé’s 193 

parameters. 194 

For the soil node in contact with a structure moving with a prescribed velocity 0v , iv  is further 195 

adjusted depending on the adopted contact algorithm ‘Geo-contact’[50]. The soil may be in contact 196 

with the structure if the soil mass projections are non-zero within the predefined area of the structure. 197 

For a specific node i of the soil in contact, its normal relative velocity to the structure is 198 

( )norm norm

0Δ i i iv v v = − , with v0 as the velocity of the structure. Node i of the soil can be distinguished as 199 

approaching or departing from the structure with the relative normal velocity 200 

norm

norm

Δ 0, approach

Δ 0, depart

i

i

v

v




 (14) 

The normal contact strategy between the soil and the structure is realised by adjusting the normal 201 

relative velocity by 
norm,*Δ iv : (i) for soil node i approaching the structure, the normal relative velocity 202 

is eliminated; and (ii) for soil node i departing from the structure, the normal relative velocity is 203 

eliminated only if no separation between the structure and the soil is considered (otherwise, the 204 

normal relative velocity is maintained). 205 

The relative tangential velocity of the soil node i to the structure is  206 



9 

 

( )

( )

( )

tang tang

0

norm

0tang norm

norm

0

Δ
i

i

i i

i

i i

i

i

v v v

v v

v v

= − 

 − 
 =  

 − 

 (15) 

where function ‘×’ represents the cross product. The shear along the interface is governed by the 207 

Coulomb friction law, i.e. the adjusted tangential relative velocity 
tang,*Δ iv is bounded by 

norm,*

cΔ iv , 208 

in which µc is the Coulomb friction coefficient. In geotechnical applications involving soils with low 209 

permeability, a threshold value of the friction stress is usually applied for total stress analyses under 210 

undrained conditions 211 

us =   (16) 

where τ is the maximum shear stress along the interface and α is the limiting shear stress ratio, ranging 212 

from 0 to 1. So the tangential relative velocity will be adjusted by  213 

tang,* tang norm,* u
cΔ min Δ , Δ , i

i i i

i

s A t
v v v

m

  
=  

 
 (17) 

where Ai is the interface area represented by node i.  214 

A penalty factor βi is then introduced to the overall adjustment of the relative velocity adjuΔ iv to obtain 215 

a smooth reaction force 216 

( )adju norm,* tang,*Δ Δ Δi i i iv v v=  +  

( )min ,
1

k

i

i

s h

h


 
= −  

 
 

(18) 

where si is the distance from node i to the surface of the structure and k is the penalty power. The total 217 

contact force on the structure is  218 

adjuΔi i

i

m v
P

t
=


  (19) 

The new velocity of node i is 
new adju=i i iv v v + . Roller (Neumann) boundary condition can be imposed 219 

by removing the new nodal velocity normal to the boundary. Then, the overall acceleration for the 220 

current time step at soil node i is 221 

new
new i i
i

v v
a

t

−
=


                                                                 (20) 222 
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(iv) Update particle state. The strains of the soil particles are calculated with the deformation gradient 223 

using an updated formulation 224 

new

p p pF f F=                                                                (21) 225 

where fp is the relative deformation gradient 226 

new

p ip i

i

f I S v= +                                                       (22) 227 

with I indicating the identity matrix. The stresses and material properties of the soil particles are 228 

calculated using an elastic-perfectly plastic constitutive model with the deformation rate Dp and 229 

vorticity Wp 230 

T

new new1

2
p ip i ip i

i i

D S v S v
  

=  +   
   

                                         (23) 231 

T

new new1

2
p ip i ip i

i i

W S v S v
  

=  −   
   

                                         (24) 232 

where the superscript T means the transposition of a tensor. The definition of the stresses follows 233 

finite strain theory taking account of the incremental rotation of the configurations between time steps 234 

for objectivity, the trial stresses being measured with the Cauchy stress and updated with the Jaumann 235 

rate according to 236 

( )trial

p p p p p p pt W W CD  =  +  −  +
                                         (25) 237 

where C is the fourth-order stiffness tensor. The trial Cauchy stresses should satisfy the von Mises 238 

criterion 239 

2 u

2
2 0

3
f J s= −                                                  (26) 240 

where J2 is the second deviatoric stress invariant. Otherwise, the trial Cauchy stresses will be updated 241 

with radial return mapping as the Mises yield surface is circular in the π plane. 242 

In addition, the velocities and positions are updated by mapping the nodal accelerations and velocities 243 

new new

p p ip i

i

v v S a t= +                                                   (27) 244 

new new

p p ip i

i

X X S v t= +                                                  (28) 245 
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For the structure moving with a prescribed velocity 0v , its velocity is unchanged and the new position 246 

is updated by addition with 0v t . 247 

3. Multiple-GPU platform  248 

Expansion from a single-GPU into multiple-GPU parallelisation can be categorised into two 249 

directions: within a single computer and across multiple computers[48]. This paper focuses on the 250 

former (Figure 1). A GPU has different memory hierarchies, such as the register, texture, constant, 251 

shared, local and global memories. The global memory, the largest memory on each GPU, is the main 252 

space to save the variables in the calculations. Access to the global memory from the multiprocessors 253 

needs to be coalesced on aligned contiguous memory addresses to achieve a high bandwidth. The 254 

GPUs are plugged on the PCI-E slots on the motherboard of the host computer and connected with 255 

the shared RAM via quick-path interconnect (QPI), shaping a shared-distributed hybrid memory 256 

hierarchy. Computational tasks shared between the GPU devices necessitate data manipulations 257 

between the RAM and the GPU memories, which is through the PCI-Express bus and controlled by 258 

the PCI-E controller element on the CPU.  259 

 260 

Figure 1 Configuration of a multiple-GPU system with a single root complex (Reference: 261 

https://www.servethehome.com/single-root-or-dual-root-for-deep-learning-gpu-to-gpu-systems/) 262 

Conventional communication between the GPUs was traditionally in procedures with MPI and 263 

CUDA commands[48]: (i) read the information on the global memory of the local GPU; (ii) copy to 264 

the RAM on the computer via PCI-E (also implicitly via CPU and QPI); (iii) write to the global 265 

memory of the remote GPU from the shared RAM. Overhead on the communication is often the 266 

bottleneck of parallelisation since different components are involved, especially for frequent 267 



12 

 

synchronisation between the GPUs in each incremental step. Also, the hybrid MPI-CUDA 268 

environment causes extra complexities to the coding and increases the risk of failure in the execution. 269 

In modern PCI-E architectures, GPUs connected to the same PCI-E root are allowed to access the 270 

global memory of each other with the P2P communication technique without using the RAM as a 271 

transit storage. Therefore, MPI send/receive manipulations as in Reference [48] can be avoided with 272 

more conveniences and higher performance.  273 

4. Parallelisation of MPM  274 

Parallelisation of the in-house program MPM-GeoFluidFlow was specially tuned for a single-GPU[46] 275 

and a multiple-computer multiple-GPU frameworks[48]. In this work, the program was parallelised on 276 

the platform of a one-computer multiple-GPU system with a single-root PCI-E complex (Figure 1). 277 

The parallelisation was performed purely within the CUDA environment without the MPI interface 278 

required in the conventional multi-GPU parallelisation[46, 48]. Improvements were made on the data 279 

transport scheme between the shared RAM and the member GPUs, which was boosted by taking 280 

advantage of the P2P technique supported on the single-root complex PCI-E architecture. 281 

Parallelisation of the function ‘Interpolation from particles to nodes’ was optimised with an enhanced 282 

‘Particle-List’ scheme, which is parallelised on the GPUs. As a result, the MPM computation was 283 

further accelerated and the complexity of the code was reduced. The original two dimensional 284 

framework was extended to three dimensional.  285 

4.1 Task distribution and assembly 286 

In the pre-processing stage, the whole domain of the task is assigned over the shared RAM on the 287 

computer, with the material discretised into a cloud of particles and a structured mesh constructed. 288 

The history-dependent information carried on the particles and the temporary variables for the 289 

element nodes are declared. Then the computational domain is evenly decomposed into a number of 290 

subdomains to distribute the entire task onto the individual GPUs (Figure 2). The number of elements 291 

in each subdomain is around M/n, where M is the total number of elements in the whole domain and 292 

n the total number of subdomains. The discretised particles are associated with the background 293 

subdomain by their locations. Variables of the particles and the element nodes in each subdomain are 294 

copied from the computer RAM to the global memory of each GPU through the PCI-E and QPI. 295 

Therefore, the space of the shared RAM should be larger than the total size of the global memories 296 

of the hosted GPUs. Two additional layers of ghost elements in each direction are generated out of 297 

the computational subdomain, which is to maintain the continuity of the information at the border of 298 

the subdomain. The roller (Neumann) boundary condition is implemented on the outer boundaries of 299 

the outer subdomains. Calculations of the MPM algorithm within each subdomain is parallelised on 300 
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the corresponding GPU within the CUDA environment. The interpolated information on the 301 

overlapping ghost element nodes from the neighbouring subdomains will be added and saved on both 302 

sides into the GPU global memories. Therefore, the neighbouring subdomains are essentially 303 

boundary conditions to each other. After the computation, the information of the particles in the 304 

subdomains is re-assembled into the RAM and will be used for post-processing.  305 

 306 

Figure 2 Domain decomposition in multiple-GPU parallelisation 307 

4.2 Parallelisation on each GPU 308 

In order to control the overhead of the frequent data transfer between the RAM and the GPUs, all the 309 

variables of the particles and nodes required in the essential calculations of Eqs. (5) – (28) are reserved 310 

on the global memory of the GPUs, and are accessible from the active multiprocessors. The functions 311 

‘Initialisation of nodal variables’ and ‘Calculate nodal velocities and accelerations’ (Eqs. (10) – (20)) 312 

are parallelised over the nodes, i.e. updating the information of one node on one GPU core (Figure 313 

3). In the thread for node i, only the information of the node is involved in the calculations as in Eqs. 314 

(10) – (20), which means the parallel computations in the GPU cores are independent to each other. 315 

Therefore, the two functions present relatively high parallelisability and are straightforward to 316 

parallelise over the nodes. Particularly for the soil-structure interactions by Eqs. (14) – (18), the 317 

velocity adjustment on each node, controlled by its kinematic state relative to the structure, is 318 

independent to each other and can be parallelised over the nodes. As a whole system, the total reaction 319 

force on the structure (Eq. (19)) will be collected from the contacting nodes on the GPUs and 320 
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superimposed on the CPU. For the function ‘Update particle state’ (Eqs. (21) – (28)), the workload is 321 

decomposed over the particles, for each of which the interpolated information are superimposed from 322 

the surrounding nodes sequentially. Different to the writing operations, which may induce data race 323 

in the memory and will be discussed later, reading data from the identical memory address by 324 

different threads is allowed in the parallelisation. Furthermore, a high bandwidth can be achieved 325 

when the multiprocessors reading the consecutive memory addresses. Hence, the function ‘Update 326 

particle state’ is expected to have a high acceleration effect by the parallelisation.  327 

 328 

Figure 3 Essential operations in multiple-GPU parallelisation of MPM 329 

In contrast, the function ‘Interpolation from particles to nodes’ is more difficult to parallelise. If the 330 

function is simply parallelised over the particles, i.e. the interpolation from each individual particle 331 

to its related nodes is configured on a thread, data race can be induced by concurrently writing the 332 

interpolation outcomes from different GPU cores into identical addresses of the global memory 333 

(Figure 4a). The data race makes the final writings to the memory unpredictable, which means the 334 

interpolations would be erroneous. Reference [47] avoided the data race by using the atomic 335 

operations, which is often supported in the modern GPUs. However, the atomic operation is not 336 

recommended as it is essentially a sequential writing action to the memory, which undermines the 337 

overall acceleration effect. In Reference [49], a special technique ‘Particle-Grid offset’ was developed 338 

to tackle the data race; however, a series of complicated operations are involved to make the algorithm 339 
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parallelisable. In Reference [46] and [48], the problem was solved by parallelising the function over 340 

the nodes, for each of which the interpolation outcomes from associated particles were superimposed 341 

sequentially. Before the parallel computation, a particle list for each node needs to be constructed, 342 

which was saved on the RAM and was transported to the GPU periodically. Comparing with the 343 

‘Particle-Grid offset’ technique, the ‘Particle-List’ scheme seems to be more accessible as only two 344 

steps (generation of particle list and interpolation operation) are required. However, the updating 345 

frequency of the particle list, often determined by experience and through trial calculations, depends 346 

on the mesh size and the intrinsic characteristics of the problem to be analysed and may be very high 347 

(such as once for five incremental steps) for impact problems. In three-dimensional analysis, each 348 

node may be associated with around 216 particles (6 × 6 × 6; Figure 4a) as regulated by the uGIMP 349 

shape function[40, 54]; therefore, a particle list relating the surrounding particles for all the nodes would 350 

exhaust the memory space on the GPU, which is typically upper bounded by 24 GB.  351 

 352 

(a) Data race  353 

 354 

(b) Particle list  355 
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 356 

(c) Parallelisation by layers 357 

Figure 4 Parallelisation of the function ‘Interpolation from particles to nodes’ 358 

In this work, the ‘Particle-List’ scheme was improved by generating the particle list for each element 359 

rather than the node, which means the total memory requirement by the particle list is O(Np) and 360 

much smaller than that by the original scheme O(216Ni), where Np and Ni are the total number of the 361 

particles and nodes, respectively. The generation of the particle list is parallelised with the GPUs 362 

instead of the CPU sequential operations in the original scheme. A fully engaged element often 363 

accommodates 4 or 16 particles[40, 41]. To avoid the potential data race, an expanded particle list of 364 

each element is adopted, which was developed from a similar method used in the creation of contact 365 

pair list in the discrete element method[58]. The original elements are evenly divided into a number of 366 

finer cells (Figure 4b). Each fine cell corresponds to a specific memory address of the particle list, 367 

and accommodates only one particle or less[59]. Then, the particle sorting operations can be 368 

parallelised across the GPU cores over the particles, in which each memory address is written with 369 

only one or less particle ID without the risk of data race. The number of the fine cells in each element, 370 

dependent on the smallest distance between the particles controlled by the strains, can be determined 371 

through trial calculations and 8 × NPPC is often acceptable, where NPPC represents the particle number 372 

in per element. For specific problems with extreme strains of material, the number of the fine cells 373 

can be increased and a novel technique in Reference [60] reseeding the particles in the elements is 374 

also suggested. The particle list is sparse due to the large number of empty fine cells out of the 375 

engaged ones (Figure 4b), which still means a heavy memory requirement. An additional compression 376 

step is then performed to obtain a dense particle list. The enhanced ‘Particle-List’ scheme is fully 377 

performed on the GPUs and need no data transport between the RAM and the GPUs. Therefore, 378 

improvement of the speedup of the parallelisation is expected with the enhanced scheme. 379 
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The interpolations from the particles to nodes are then parallelised over the nodes. The particles on 380 

the particle list of the surrounding elements within the influence range of each node are involved in 381 

the interpolation on one GPU thread. In consideration of the heavy requirement of memory space for 382 

the particle list of large-scale problems, the generation of particle list and the interpolations are 383 

performed in layers of nodes (Figure 4c). 384 

4.3 GPU communications 385 

In order to keep the continuity of the stress and strain field between the connected subdomains, the 386 

interpolated variables on the border nodes within the neighbouring subdomains, including the mass, 387 

momentum and internal force, by the function ‘Interpolation from particles to nodes’ is superimposed 388 

at each incremental step (Figure 3). The operations are implemented with the direct P2P operations 389 

between the GPU memories for the single-root complex PCI-E framework, which owns much higher 390 

bandwidths (5 GB/s) than that used in Reference [48] through the RAM and the infiniBand network 391 

(1.25 GB/s) within MPI environment (Figure 1). The send and receive operations can be performed 392 

in bi-direction with a modern PCI-E, which doubles the intrinsic bandwidth of the data migration to 393 

10 GB/s. Furthermore, the transfer of data between the GPUs can be hidden by the essential 394 

calculations on each GPU, which means overhead on the synchronisation process is virtually nil and 395 

a perfect scaling may be possible. In comparison, the data transfers within MPI environment accounts 396 

for about 5% of the total computational effort[48]. The exchanged information of the ghost element 397 

nodes from the neighbouring GPUs is added to the counterparts on the local GPU (Figure 2).  398 

The particles may move across the subdomains and hence migrate from a GPU to its neighbour, for 399 

which all the information of the migration particles should be transferred to the new subdomain with 400 

P2P operations similar to that exchange the neighbouring nodal information. The subdomains 401 

communicate with their neighbours in six directions (left-right; front-rear; up-down) (Figure 5a). For 402 

most ghost elements (Figure 5b) and particle migrations (Figure 5c), send/receive operations are 403 

performed between two subdomains in two directions; there are also some corner ghost elements are 404 

shared by four or eight subdomains and some particles moves to unconnected subdomains (such as 405 

upper-right subdomain), which need more than one synchronisation step (Figure 5). The particle 406 

migration can be time-consuming if performed in every incremental step. If a particle moves from 407 

the current subdomain to the neighbouring one between the particle migration operations, the 408 

interpolations from the particle are allocated to the ghost element nodes of the current subdomain, 409 

which will be synchronised between the neighbouring subdomains as described previously. Therefore, 410 

the interpolation results are accurate if only the particles do not move across the outer layer of ghost 411 

elements of the current subdomain. The one layer of ghost elements essentially functions as a 412 

buffering zone of the particle migration between the subdomains. Therefore, the particle migration is 413 
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conducted for once in a number of steps in this study, which is controlled by the time of particles 414 

move across the outer ghost element and depends on the mesh and particle discretization. In the 415 

calculations, the number of step to migrate the particles can be determined by an experimental 416 

computation, which is often selected as 5 in this study. 417 

 418 

(a) GPU communications between subdomains 419 

 420 

(b) Corner ghost elements 421 

 422 

(c) Particle migration 423 

Figure 5 GPU communications 424 
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In the calculations, void areas tend to be formed in the subdomains due to the large deformation of 425 

materials, e.g. in the mini-slump test in Section 5.1, which idle the computational resource. The 426 

migration of the particles between the subdomains may also undermine the workload balance among 427 

the GPUs. A simple procedure of domain re-decomposition is then performed to updates the 428 

subdomain dimensions periodically at intervals of a large number of incremental steps, such as 50,000. 429 

The communication overhead for the neighbouring nodes and the migration particles between the 430 

subdomains may be non-ignorable but acceptable in many cases, which can be compensated by the 431 

substantial calculations in each GPU. The information of all the particles in the subdomains are 432 

gathered from the GPUs’ global memories to the shared RAM of the computer. The upper and lower 433 

boundaries of the material are derived from the particle coordinates, based on which the boundaries 434 

of the computational domain in the following steps are updated. Then the task distribution operations 435 

in Section 4.1 is re-performed by evenly decompose the computational domain. The present domain 436 

de-composition procedure is mainly to solve the problem of void areas, and somehow mitigate the 437 

workload imbalance between the GPUs. More advanced technique with adaptive subdomain sizes to 438 

balance the workloads between the GPUs will be developed in the future work.  439 

5. Performance assessment  440 

The accuracy and convergence for the standard MPM algorithm with explicit calculations have been 441 

assessed in Reference [32, 35], which may be inherited here due to the trivial modifications. The 442 

benchmark cases, mini-slump test and cone penetration test, were simulated to assess the acceleration 443 

effect of the multiple-GPU parallelisation scheme. The parallel computations were performed on a 444 

single-computer server, which hosts 8 NVIDIA Titan Xp GPUs based on a single-root complex 445 

(Figure 1) and 2 Intel Xeon E5-2687WV4 CPUs. Each CPU has 12 cores with frequency of 3.0 GHz; 446 

on each GPU, a total number of 3840 cores are accessible and the dedicated global memory is 12 GB; 447 

The RAM space of the server is 256 GB. The operating system was Ubuntu 18.04, the C++ compiler 448 

was gcc 5.3.0 and the GPU compiler was CUDA v8.0.44. All the computations were based on double-449 

precision numbers to guarantee the accuracy.  450 

The soil was considered to be an elastic-perfectly plastic material and regulated with the von Mises 451 

yield criterion. The Poisson’s ratio of the soil was selected as 0.49. The time step was calculated by  452 

 
( )2

d
t

G


 

 + 
                                        (29) 453 

where G is the shear modulus of soil, λ is the Lamé constant, d represents the mesh size, and α is the 454 

Courant number. The ‘speedup’ factor was to characterise the acceleration effect of the parallel 455 



20 

 

computations: Speedup = TSequential / TParallel, where TSequential and TParallel are the runtimes of the CPU 456 

sequential and GPU parallel calculations over a number of incremental steps (Appendixes A and B). 457 

5.1 Mini-slump test 458 

Submarine landslides are known as one of the most hazardous threat to the submarine structures, 459 

featuring enormous volumes of sediments running at very high velocities and reaching very far runout 460 

distances before final deposition[61]. The sliding behaviour of the soil can be studied in laboratory 461 

through the mini-slump test, in which the soil is released from a cylinder and then runout along a flat 462 

base. The test performed by Reference [62] with the remoulded soil from Heimdal, Norway was 463 

simulated using the MPM (Figure 6a). The cylinder had a height H of 120 mm and a diameter of 100 464 

mm. The mechanical behaviour of the soil was considered by a Herschel-Bulkley (H-B) model[63]  465 

u u0

ns s K= +                                                            (30) 466 

where su is the undrained shear strength of the soil, su0 is the threshold shear strength su0 = 200 Pa, γ 467 

the shear strain rate, K the consistency coefficient and n the shear-thinning index. In the experimental 468 

test, the parameters in Eq. 2 were determined as su0 = 200 Pa, K = 15 Pa·sn, and n = 0.35. In the MPM 469 

analysis, the mesh size d was selected as H/60, which was validated to be sufficiently fine in viscous 470 

sliding problems of soil as it presents similar results with a finer mesh H/120[18, 41]. The Young’s 471 

modulus was 500 times the undrained shear strength su. In total, there were 393,216 slurry particles. 472 

The flat base was assumed as a no-slip boundary. The time step ∆t was determined with a Courant 473 

number of 0.3. Another numerical simulation using the computational fluid dynamics (CFD) method 474 

was also performed by Reference [64]. Figure 6b shows the final morphologies of the soil predicted 475 

by the CFD and MPM analyses, which matches well with each other. The slumped width of the soil 476 

was 0.12 m in the experiment and the final height was 0.04 m, which are close to that of the numerical 477 

predictions. The profile of the soil at 0.3 s in the MPM simulation was shown in Figure 6c.  478 

 479 

(a) Laboratory test[65] 480 
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 481 

(b) 482 

 483 

(c) 0.3 s 484 

Figure 6 Mini-slump test and runout morphologies 485 

To investigate the acceleration effect of the GPU parallel framework, the particle number Np was 486 

increased from 393,216 to 1,572,864, 2,102,203, 4,343,424, 19,232,055, 34,744,320, 50,035,200 and 487 

121,065,216. The total memory space engaged in the simulation is proportional to the particle number, 488 

which increases from 0.08 GB (393,216 particles) to 23.5 GB (121,065,216 particles). In Reference 489 

[46], the maximum particle number for a 2D model with a memory size of 4 GB was 50,035,200, and 490 

will be much less for a 3D model than the counterpart in this study. The reason is that the size of the 491 

particle list for the element nodes in Reference [46] was nearly 25 times of the total particle number, 492 

which is avoided in this study by establishing a particle list for the elements in each layer. Therefore, 493 
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the maximum particle number accommodated in 8 GPUs can be up to 400,035,200 as the concern of 494 

many large-scale geotechnical problems. A total runtime within 100 incremental steps was recorded 495 

for each case with the CPU sequential and GPU parallel simulations, in which the acceleration effect 496 

by the GPU parallel strategy is clearly demonstrated (Table 1). Within the CPU sequential 497 

calculations, the runtime is linearly proportional to the scale of the case in terms of particle number. 498 

The speedup linearly increases for less than 4,000,000 particles (Figure 7); if the computational scale 499 

is enlarged further with more particles, the GPU seems to be fully loaded, and the acceleration effect 500 

presents a good scaling behaviour and converges to an average speedup of about 80. The average 501 

speedup of ~ 80 in this study is much higher than that in Reference [35] of around 20 for two main 502 

reasons: the GPU Titan Xp in this study outperforms that GTX 780M in Reference [46]; the 503 

parallelisation schemes are optimised in this study in terms of particle list and memory access. Among 504 

all the functions of the MPM, the function ‘Interpolation from particles to nodes’ consumes the most 505 

computational efforts for around 70%, which is due to the non-coalesced memory access when 506 

writing the interpolations to the nodal addresses. The overhead on the establishment of the particle 507 

list takes less than 2% of the total runtime, much less than that in Reference [46] and [48] of around 508 

15%, as the operations are fully moved and parallelised onto the GPU. The remaining 28% of the 509 

computations is mainly on the function ‘Update particle state’, while that on the functions 510 

‘Initialisation of nodal variables’ and ‘Calculate nodal velocities and accelerations’ are ignorable. 511 

Specifically, the average speedup for the function ‘Interpolation from particles to nodes’ is around 512 

65, while it increases to about 170 for the functions ‘Initialisation of nodal variables’ and ‘Calculate 513 

nodal velocities and accelerations’. Therefore, the function ‘Interpolation from particles to nodes’ is 514 

the bottleneck of the parallelisation of the MPM. Additional calculations were performed for the case 515 

with 4,343,424 particles by using naїve atomic operations to parallelise the function ‘Interpolation 516 

from particles to nodes’, which presents very low speedup of less than 5 due to the heavy writing 517 

conflicts between the neighbouring particles. Further experiments show that the speedup with the 518 

naїve atomic operations is not stable, which varies with data structure of the particles. Due to the very 519 

low efficiency, atomic operations are not recommended in many parallel algorithms.   520 

The acceleration effect of the multiple-GPU parallelisation over the CPU sequential computations is 521 

shown in Table 1 and Figure 8. The total runtime for 100 incremental steps rather than one step was 522 

recorded for each case to avoid the random errors during recording. For example, in the case with 523 

393,216 particles, the average runtime for the cases with GPU is smaller than 0.2 s, which will be 524 

significantly influenced by a small random error. The average runtime for an incremental step can be 525 

easily obtained from the total value for 100 steps. The performance of the GPU is maximised when 526 

it is fully loaded with workload. Given one or two GPUs are invoked, the GPU seems to be fully 527 
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loaded with 4 million particles: for the cases with < 4 million particles on each GPU, the speedup 528 

increases with the particle number when using an identical number of GPUs. The maximum speedup 529 

with less than two GPUs is around 80Ngpu with Ngpu as the number of GPUs, which is similar to the 530 

average speedup predicted previously with one GPU. When four or eight GPUs are mobilised, the 531 

GPU is not fully loaded even with 30 million particles on each GPU. The reason is not very clear but 532 

is inferred to be related to the scheduling elements in the CPU. The overall speedup with less than 8 533 

GPUs is fitted as 71.5Ngpu. Although it is not meaningful to compare the speedups of the multiple-534 

GPU parallel schemes based on different hardware and software, the speedups of about 59Ngpu and 535 

110Ngpu in Reference [48] and [49] were obtained. In consideration of the convenient implementation 536 

and high reliability of the present parallel framework, the speedup of 71.5Ngpu is quite satisfactory. 537 

Due to the optimisation of communication between the neighbour domains as described in Section 538 

3.4, overhead on the synchronisation of the ghost nodal information, the particle migration, and the 539 

domain re-decomposition is ignorable with less than 2% when comparing to that on the essential 540 

computations. Therefore, the parallel framework of the MPM with multiple-GPU in this study 541 

presents good behaviour in terms of hardware communications, which has been the common problem 542 

of many numerical methods. Also, the advantage of the P2P technique based on the single-root 543 

complex structure of the PCI-E is well presented. 544 

 545 

Figure 7 Speedups of GPU parallelisation with one GPU 546 
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 547 

Figure 8 Speedups of GPU parallelisation with multiple-GPU 548 

Table 1 Speedups of GPU parallel simulations in 100 incremental steps for mini-slump test cases 549 

 550 

5.2 Cone penetration test  551 

The cone penetrometer has been considered as the most widely used in-situ geotechnical instrument 552 

to obtain the sequence and the physical and mechanical properties of the subsurface strata. For the 553 

cone penetrated in pure clays, the penetration resistance is related with the undrained shear strength 554 

of the soil su through the calibration of a bearing factor Nk, which was often investigated with 555 

theoretical, experimental and numerical analyses[65-67]. The numerical model of a cone penetration 556 

test used in Reference [68] with a large deformation finite element (LDFE) method was duplicated in 557 

this study. The standard cone had a diameter of D = 35.7 mm and its tip had an angle of 60°, as shown 558 

in Figure 9. Quarter of the model was simulated by taking advantage of its symmetry to save the 559 

runtime. In Reference [69], a smaller model with a wedge of 20° in the rotational direction was 560 
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simulated, which was also proven to be accurate to represent the full model of the test. Herein, the 561 

parallel efficiency is the main concern, therefore, the quarter model was used and the wedge model 562 

will be adopted in the future applications. The chamber extensions on the horizontal and vertical 563 

directions were 2.8D and 8D, respectively. The mesh size d = D/36, which is satisfactorily fine to 564 

achieve a convergent prediction of Nk. In each element fully occupied by the soil, 2 × 2 particles were 565 

configured prior to the calculation. In total, 24,000,000 soil particles were discretised. The cone was 566 

assumed to be rigid and smooth. The penetration speed of the cone was taken as 2.8D /s (0.1 m/s), 567 

which was verified as sufficiently low to use the dynamic formulation to simulate the quasi-static 568 

process[69]. The submerged density of the soil was 1500 kg/m3. The geostatic stresses induced by the 569 

self-weight of soil were not considered. The clay had a uniform shear strength of su = 10 kPa and a 570 

soil rigidity index G/su = 100.  571 

 572 

Figure 9 Setup of the cone penetration test 573 

Profile of the bearing factor Nk is plotted versus the normalised penetration depth w/D as shown in 574 

Figure 10, in which w is the penetration depth of the pipeline. The bearing capacity increases with 575 

the penetration of the cone, which stabilises at about 8.97 with w/D = 3. The profile obtained from 576 

the MPM analyses has some high-frequency fluctuations of around 1.5% due to the particles below 577 

the cone crossing the element boundaries in the penetration process, which can be mitigated with 578 

finer meshes without affecting the steady values[51]. The prediction by the MPM (8.97) is slightly 579 

lower than those by LDFE (9.65) and arbitrary Lagrangian Eulerian (ALE; 9.47) methods with 580 

discrepancies within 7.5%. Predictions of the bearing capacity factor of 11.1 and 9.7 are also available 581 

with the coupled Eulerian-Lagrangian method[68] and the strain path method[65], respectively. 582 
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Therefore, the bearing capacity factor obtained with the MPM is reliable. The velocity magnitude 583 

induced by the cone penetration at w = 3.47D is shown in Figure 11.  584 

In the calculations, the total runtimes for 100 incremental step were recorded for the CPU sequential 585 

and multiple-GPU parallel computations (Table 2). The speedup with one-GPU parallelisation is 586 

about 88, which increases to 382 with 8 GPUs invoked. To investigate the acceleration effect of the 587 

GPU parallel framework, the particle number Np was modified from 24,000,000 (6 GB) to 5,000,000, 588 

10,000,000, 50,000,000 (12 GB), and 100,000,000. The maximum speedup of 89 is achieved for all 589 

the cases with one GPU as the GPU is fully loaded with more than 4 million particles (Figure 12a). 590 

For all the cases, the maximum speedups with different number of GPUs are fitted as 85Ngpu (Figure 591 

12b), which is higher than that for the mini-slump test cases. That is due to the larger void areas, with 592 

none essential computations, in the mini-slump test cases when the slurry expands on the base.  593 

To summarise from the two benchmarks, very high speedups (> 71.5Ngpu) are expected with the 594 

multiple-GPU parallelisation over the conventional CPU sequential calculations. However, it is also 595 

noteworthy that the real-time speedup for specific dynamic problems (such as slurry slump) with very 596 

large deformation of the material may be undermined by many factors, such as the percentage of void 597 

elements and the bandwidth of the P2P channels in the computer. The particle migrations between 598 

the GPUs bring extra complexity and may affect the robustness of the program. That means 599 

optimisation of the program itself can be very time-consuming. Also, the multiple-GPU parallelised 600 

program suffers from a lower portability since its software framework is dedicated to the hardware 601 

platform. Therefore, the topic of multiple-GPU parallelisation of the MPM remains to be open in a 602 

near future.  603 

 604 

Figure 10 Profile of resistance to the cone penetration 605 
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 606 

Figure 11 Velocity distribution in soil at w/D = 3.47 607 

Table 2 Speedups of multiple-GPU parallel simulations in 100 incremental step for cone penetration  608 

 609 

6. Conclusions  610 

As one of the arbitrary Lagrangian-Eulerian methods, the material point method (MPM) owns 611 

intrinsic advantages in simulation of large deformation problems by combining the merits of the 612 

Lagrangian and Eulerian approaches. Significant computational intensity is involved in the 613 

calculations of the MPM due to its very fine mesh needed to achieve a high accuracy. Considering 614 

the limitations with the CPU and single-GPU performance, multiple-GPU parallelisation provides a 615 

promising means to boost the computational efficiency of the MPM. In this study, a new multiple-616 

GPU parallel strategy was developed based on a single-root complex architecture of the computer 617 

within a CUDA environment. Peer-to-Peer (P2P) communication between the GPUs was performed 618 

to exchange the information of the crossing particles and ghost element nodes, which is faster than 619 

the heavy send/receive operations between different computers through the infiniBand network. 620 

Domain decomposition is performed to split the whole computational task over the GPUs with a 621 
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number of subdomains.  Within each GPU, a particle list was constructed for each node to avoid the 622 

data race when parallelising the ‘Interpolation from particles to nodes’. 623 

The acceleration effect of the parallelisation was evaluated with two benchmarks cases, mini-slump 624 

test and cone penetration test. The maximum speedups with 1 GPU was 88, and increased to 604 625 

using 8 GPUs. Among all the functions of the MPM, the function ‘Interpolation from particles to 626 

nodes’ consumes the most computational efforts for around 70%, which is due to the non-coalesced 627 

memory access when writing the interpolations to the nodal addresses. The overhead on the 628 

establishment of the particle list takes less than 2% of the total runtime, much less than that in Dong 629 

et al. (2015) and Dong and Grabe (2018) of around 15%, as the operations are fully moved and 630 

parallelised onto the GPU. The remaining 28% of the computations is mainly on the function ‘Update 631 

particle state’, while that on the functions ‘Initialisation of nodal variables’ and ‘Calculate nodal 632 

velocities and accelerations’ are ignorable. 633 

 634 

(a) One GPU (Np = 24,000,000) 635 

 636 

(b) Multiple GPUs 637 

Figure 12 Speedups of GPU parallelisation with multiple-GPU 638 
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Appendix B Snippets of pseudo code for CPU sequential computations 822 
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