
1

Multiple-GPU parallelisation of three dimensional material point 1

method based on single-root complex 2

Youkou Dong, Lan Cui, and Xue Zhang 3

 4

Manuscript submitted to International Journal for Numerical Methods in Engineering on 14/07/2021 5

1st Revised manuscript resubmitted on 12/10/2021 6

2nd Revised manuscript resubmitted on 30/11/2021 7

 8

 9

Youkou Dong 10

Associate Professor 11

College of Marine Science and Technology, China University of Geosciences, 388 Lumo Road, 12

Wuhan 430074, China 13

State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, 2 14

Linggong Road, Dalian, 116024, China 15

Tel: +86 132 1271 4650 16

Email: dongyk@cug.edu.cn 17

 18

Lan Cui (corresponding author) 19

Assistant Professor 20

State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil 21

Mechanics, Chinese Academy of Sciences, Wuhan 430071, China 22

Email: lcui@whrsm.ac.cn 23

 24

Xue Zhang 25

Lecturer 26

Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool, UK 27

2

College of Marine Science and Technology, China University of Geosciences, China 28

xue.zhang2@liverpool.ac.uk 29

 30

3

Abstract 31

As one of the arbitrary Lagrangian-Eulerian methods, the material point method (MPM) owns 32

intrinsic advantages in simulation of large deformation problems by combining the merits of the 33

Lagrangian and Eulerian approaches. Significant computational intensity is involved in the 34

calculations of the MPM due to its very fine mesh needed to achieve a sufficiently high accuracy. A 35

new multiple-GPU parallel strategy is developed based on a single-root complex architecture of the 36

computer purely within a CUDA environment. Peer-to-Peer (P2P) communication between the GPUs 37

is performed to exchange the information of the crossing particles and ghost element nodes, which is 38

faster than the heavy send/receive operations between different computers through the infiniBand 39

network. Domain decomposition is performed to split the whole computational task over the GPUs 40

with a number of subdomains. The computations within each subdomain are allocated on a 41

corresponding GPU using an enhanced ‘Particle-List’ scheme to tackle the data race during the 42

interpolation from associated particles to common nodes. The acceleration effect of the parallelisation 43

is evaluated with two benchmarks cases, mini-slump test after a dam break and cone penetration test 44

in clay, where the maximum speedups with 1 and 8 GPUs are 88 and 604, respectively. 45

 46

Keywords: material point method, parallel computation, cone penetration test, mini slump test 47

 48

1. Introduction 49

The material point method (MPM), one of the arbitrary Lagrangian Eulerian methods, owns intrinsic 50

advantages in simulation of large deformation problems by combining the merits of the Lagrangian 51

and Eulerian methods[1-4]. The Lagrangian particles, inheriting all the history-dependent information 52

of material, are allowed to move through the background Eulerian mesh, while the mesh is always 53

fixed in space to avoid the potential mesh distortion. The MPM, introduced to solid mechanics[5] from 54

computational fluid dynamics[6], was used to simulate high explosive explosions[7], propagation of 55

wood cracks[8], impact between solid bodies[9-12], fluid-structure interactions[13] and computer 56

animations[14-16]. In the recent decade the MPM was applied to geotechnical engineering to investigate 57

runout of submarine landslides[17-20], penetration and pull-out of structures[21-23] and flow of granular 58

materials[24-26]. Coupling analysis of pore or free water and soil, mainly used in the analysis of slope 59

stability[27-30], is a new trend of the MPM simulations. 60

One of the main obstacles to the widespread application of the MPM is its low computational 61

efficiency, especially for large-scale and long-period problems. As the particles mostly are not at the 62

4

optimum locations for integration in the elements[31-33], the mesh adopted in the MPM should be much 63

finer than that in large deformation finite element analysis to obtain sufficient accuracies[3, 34-35]. 64

Structured elements, used as often as the unstructured elements[36-37], bring extra computational loads 65

with identical mesh size from the concerning domain to the far field. Elements in singularity zone 66

around structures need to be further refined for soil-structure interaction problems[38-39]. Although an 67

initial assignment of four particles in per element is often sufficient to obtain a smooth stress/strain 68

field in many cases of MPM simulations[40], the configuration of 16 particles in each element 69

sometimes is necessary for high-speed impacting problems[14, 41]. Therefore, most existing MPM 70

analyses were limited to small-scale problems or two-dimensional plane-strain scenarios[14, 21, 41]. 71

Parallel computation on the central processing units (CPU) or graphic processing units (GPU) is the 72

most viable option to promote the efficiency of the MPM, which often requires special treatments to 73

make the algorithm more parallelisable. Acceleration effect of the parallelisation can be significantly 74

influenced by different parallel techniques and hardware platforms. Reference [9] and [42] proposed 75

a single-CPU parallelisation scheme of the MPM with the loop-based parallel library OpenMP, 76

achieving a five-fold speedup over a sequential calculation by mobilising eight CPU cores. The 77

OpenMP-based parallelisation is quite simple by invoking an executable directive before each loop 78

operation; however, its limitation is also obvious as most commercially available CPUs have less 79

than 32 cores. Reference [43] developed a multiple-CPU parallelisation strategy using the message 80

passing interface (MPI), accelerating the computation for up to 2,500 times with 16,384 CPU cores 81

on a supercomputer. In comparison with the CPU parallelisation, the state-of-the-art GPU 82

parallelisation is more cost effective as each GPU hosts thousands of GPU cores[44-45], but its parallel 83

techniques are more complex. Reference [46] proposed a specialised parallelisation scheme with 84

single GPU by using the compute unified device architecture (CUDA), obtaining speedups of around 85

25 times given double precision numbers were used. Limited by the memory size dedicated on the 86

GPU, the maximum number of particles allowed in the MPM model was around six million. 87

Reference [47] adopted a similar technique to parallelise an implicit MPM algorithm and applied it 88

to computer animations. Reference [48] then extended the framework to orchestrate multiple GPUs 89

on a multiple-computer cluster based on a hybrid MPI-CUDA environment, which was sensitive to 90

the data exchange between the computers through a private network. Given 16 GPUs were used on 91

four tandem computers, up to 900 times speedup was then obtained with the maximum number of 92

particles as 96 million. Recently, Reference [49] further optimised the massively parallel framework 93

of the MPM and achieved over 100 times speedup on a single GPU; however, its acceleration effect 94

on multiple-GPU platform is heavily dependent on the hardware performance for the stream event 95

synchronisation on the specific GPU device; as a result, speedup of the framework is not always so 96

5

high (~ 100) as presented in Reference [49], especially for medium scale problems with less than 97

500,000 particles; and much complexities were caused in the parallel scheme (such as the Particle-98

Grid offset technique) and the data transport between the GPUs (such as the AoSoA data structure), 99

which may undermine the reliability and maintainability of the programme. Therefore, a reliable and 100

efficient MPM program based on a simple multiple-GPU parallel framework is still needed. 101

In this paper, a parallelisation strategy with multiple GPUs is developed within the CUDA 102

environment. Different to that in Reference [48], the mobilised GPUs are hosted in an identical 103

computer platform with a shared random access memory (RAM). Peer-to-Peer (P2P) communication 104

between the GPUs is performed to exchange the information of the crossing particles and ghost 105

element nodes, which is faster than the heavy send/receive operations between different computers 106

through the infiniBand network in Reference [48]. Domain decomposition is performed to split the 107

whole computational task over the GPUs with a number of subdomains. The computations within 108

each subdomain are allocated on a corresponding GPU and the MPM algorithm on each GPU is 109

parallelised with the technique proposed in Reference [46] with specific improvements, which further 110

enhance the speedup and reliability of the computation. The calculation results are assembled on the 111

shared RAM of the computer through the connection with the GPU devices. In comparison to the 112

parallel framework in Reference [49], the parallel strategy in this study is more reliable and friendly 113

to the new developers of the MPM, which also presents satisfying acceleration effects. Specifically, 114

this paper includes the following contributions: (1) an efficient parallel technique is proposed to 115

invoke multiple GPUs on an identical computer using P2P communication with each other; (2) a 116

hybrid memory IO framework is developed based on the shared RAM and distributed GPU memory 117

hierarchy; (3) an enhanced ‘Particle-List’ scheme to parallelise the interpolation from particles to 118

nodes, which is also parallelised on GPUs and hence avoids the frequent data exchange between the 119

CPU and GPUs; (4) the parallelised MPM algorithm is extended from two to three dimensional, 120

which is more computationally intensive and requires larger memory space. 121

2. Material point method 122

2.1 MPM program 123

The parallelisation strategy was developed based on an in-house program, MPM-GeoFluidFlow, 124

which stems from an open-source package, Uintah (http://uintah.utah.edu/), and features a novel 125

contact algorithm ‘Geo-contact’[50], as well as a particle reseeding technique[51]. Geo-contact, 126

specialised for soil-structure interactions, was developed from the conventional contact algorithm 127

with enhancement of a penalty function[5, 13, 50, 52-53]. The explicit updated Lagrangian calculation in 128

each incremental step was based on the uGIMP method[40, 54]. Meshes with identical sizes of square 129

6

elements were used[18, 41], and unstructured elements can be found in Reference [22, 23]. The 130

definition of the stresses and strains followed finite strain theory taking account of the incremental 131

rotation of the configurations between time steps for objectivity: the stresses were measured with the 132

Cauchy stress and updated with the Jaumann rate, and the strains were calculated with the 133

deformation gradient. Applications of the programme are mainly focused on penetrometer 134

penetration[51], submarine landslide[55], and impact dynamics[18, 41]. In this paper we only describe the 135

framework utilised to solve the mass and momentum equations, but it can be applied 136

straightforwardly to other boundary-value problems, such as heat flux in an energy equation[7]. 137

2.2 Governing equations 138

The formulation was derived from the conservation of mass and linear momentum balance. The 139

conservation of mass requires that the time derivative of the mass entering or leaving a specific 140

domain is zero, which can be written in mathematical form as 141

 0v
t


+ =


 (1) 142

in which ρ is the material density, v is the velocity and t is the time. In the MPM, Equation (1) is 143

satisfied naturally by discretising the objects into a cloud of Lagragian particles with consistent 144

masses and volumes[33]. 145

The linear momentum balance means that the time-variation of the linear momentum of a material is 146

equal to the resultant of the internal and external forces, i.e. Newton’s second law of motion: 147

v

b
t


 =+


 (2) 148

in which σ is the Cauchy stress, and b is the body force. Equation (2) is the strong form of the 149

conservation of linear momentum, which is usually difficult to achieve as a closed-form solution due 150

to mathematical difficulties. Therefore, the weak form is derived instead, expressed as 151

V V V V

v
u dV udV ubdV uTdS

t


 = −  +  +

    (3) 152

in which u is the virtual velocity, V and S are the volume and surface area, and T is the prescribed 153

surface traction. Numerical integration is adopted with the simplification of lumped mass, producing 154

a concise form 155

 ext int+ma F F= (4) 156

where m is the lumped mass, a is the acceleration, Fext and Fint are the external and internal forces, 157

respectively. 158

7

2.3 Numerical procedures 159

The explicit integration scheme was adopted to solve the governing equations. The history-dependent 160

information carried by particle p are: position Xp, mass mp, volume Vp, density ρ, velocity vp, 161

deformation rate Dp, vorticity Wp, stress σp, and external force
ext

pf . The governing equations (3) and 162

(4) are solved on element nodes in terms of variables interpolated from the particles, i.e. mass mi, 163

velocity vi, momentum Mi, acceleration ai, internal force int

iF , external force ext

iF , normal direction 164

norm

i and tangential direction
tang

i
 , where the subscript i represents the node number. For the soil-165

structure interaction problems, the structure is simplified as a rigid body. The main functions within 166

each incremental step are: 167

(i) Initialisation of nodal variables. The time step always starts with the initialisation of the nodal 168

variables of the structure and soil, which will be automatically abandoned at the end of the step. 169

(ii) Interpolation from particles to nodes. The masses and momenta of the associated particles 170

(inherited from the previous incremental step) are interpolated to the nodes 171

i ip p

p

m S m= (5) 172

i ip p p

p

M S m v= (6) 173

norm

ip p

p

i

ip p

p

S m

S m





=






 (7) 174

where Sip and ipS are the shape function and its gradient at node i evaluated at particle p, 175

respectively[40];
p

 represents the summation over all related particles. The derivation of the normal 176

direction
norm

i in Eq. (7) can be referred to in Reference [52-53]. For the soil, the internal force is 177

obtained 178

int

i ip p p

p

F S V= −   (8) 179

The tractions on the Neumann boundary is calculated[56-57] 180

ext ext

i ip p p

p

F S f V= (9) 181

8

(iii) Calculate nodal velocities and accelerations. The velocities and accelerations on the background 182

mesh can be obtained. At the commencement of the incremental step, the velocity of the node is 183

i
i

i

M
v

m
= (10) 184

The acceleration for the soil node from the internal and external forces can be calculated from the 185

governing equation as 186

int ext+i i
i

i

F F
a

m
= (11) 187

Then the nodal velocity is updated as 188

i i iv v a t = +  (12) 189

where t is the time increment and determined through the Courant–Friedrichs–Lewy stability 190

condition 191

()
Δ

2

h
t

λ G ρ


=

+
 (13) 192

where φ is the Courant number, h is the size of the square element, and G and λ are the Lamé’s 193

parameters. 194

For the soil node in contact with a structure moving with a prescribed velocity 0v , iv is further 195

adjusted depending on the adopted contact algorithm ‘Geo-contact’[50]. The soil may be in contact 196

with the structure if the soil mass projections are non-zero within the predefined area of the structure. 197

For a specific node i of the soil in contact, its normal relative velocity to the structure is 198

()norm norm

0Δ i i iv v v = − , with v0 as the velocity of the structure. Node i of the soil can be distinguished as 199

approaching or departing from the structure with the relative normal velocity 200

norm

norm

Δ 0, approach

Δ 0, depart

i

i

v

v




 (14)

The normal contact strategy between the soil and the structure is realised by adjusting the normal 201

relative velocity by
norm,*Δ iv : (i) for soil node i approaching the structure, the normal relative velocity 202

is eliminated; and (ii) for soil node i departing from the structure, the normal relative velocity is 203

eliminated only if no separation between the structure and the soil is considered (otherwise, the 204

normal relative velocity is maintained). 205

The relative tangential velocity of the soil node i to the structure is 206

9

()

()

()

tang tang

0

norm

0tang norm

norm

0

Δ
i

i

i i

i

i i

i

i

v v v

v v

v v

= − 

 − 
 =  

 − 

 (15)

where function ‘×’ represents the cross product. The shear along the interface is governed by the 207

Coulomb friction law, i.e. the adjusted tangential relative velocity
tang,*Δ iv is bounded by

norm,*

cΔ iv , 208

in which µc is the Coulomb friction coefficient. In geotechnical applications involving soils with low 209

permeability, a threshold value of the friction stress is usually applied for total stress analyses under 210

undrained conditions 211

us =  (16)

where τ is the maximum shear stress along the interface and α is the limiting shear stress ratio, ranging 212

from 0 to 1. So the tangential relative velocity will be adjusted by 213

tang,* tang norm,* u
cΔ min Δ , Δ , i

i i i

i

s A t
v v v

m

  
=  

 
 (17)

where Ai is the interface area represented by node i. 214

A penalty factor βi is then introduced to the overall adjustment of the relative velocity adjuΔ iv to obtain 215

a smooth reaction force 216

()adju norm,* tang,*Δ Δ Δi i i iv v v=  +

()min ,
1

k

i

i

s h

h


 
= −  

 

(18)

where si is the distance from node i to the surface of the structure and k is the penalty power. The total 217

contact force on the structure is 218

adjuΔi i

i

m v
P

t
=


 (19)

The new velocity of node i is
new adju=i i iv v v + . Roller (Neumann) boundary condition can be imposed 219

by removing the new nodal velocity normal to the boundary. Then, the overall acceleration for the 220

current time step at soil node i is 221

new
new i i
i

v v
a

t

−
=


 (20) 222

10

(iv) Update particle state. The strains of the soil particles are calculated with the deformation gradient 223

using an updated formulation 224

new

p p pF f F= (21) 225

where fp is the relative deformation gradient 226

new

p ip i

i

f I S v= +  (22) 227

with I indicating the identity matrix. The stresses and material properties of the soil particles are 228

calculated using an elastic-perfectly plastic constitutive model with the deformation rate Dp and 229

vorticity Wp 230

T

new new1

2
p ip i ip i

i i

D S v S v
  

=  +   
   

  (23) 231

T

new new1

2
p ip i ip i

i i

W S v S v
  

=  −   
   

  (24) 232

where the superscript T means the transposition of a tensor. The definition of the stresses follows 233

finite strain theory taking account of the incremental rotation of the configurations between time steps 234

for objectivity, the trial stresses being measured with the Cauchy stress and updated with the Jaumann 235

rate according to 236

()trial

p p p p p p pt W W CD  =  +  −  +
  (25) 237

where C is the fourth-order stiffness tensor. The trial Cauchy stresses should satisfy the von Mises 238

criterion 239

2 u

2
2 0

3
f J s= −  (26) 240

where J2 is the second deviatoric stress invariant. Otherwise, the trial Cauchy stresses will be updated 241

with radial return mapping as the Mises yield surface is circular in the π plane. 242

In addition, the velocities and positions are updated by mapping the nodal accelerations and velocities 243

new new

p p ip i

i

v v S a t= +  (27) 244

new new

p p ip i

i

X X S v t= +  (28) 245

11

For the structure moving with a prescribed velocity 0v , its velocity is unchanged and the new position 246

is updated by addition with 0v t . 247

3. Multiple-GPU platform 248

Expansion from a single-GPU into multiple-GPU parallelisation can be categorised into two 249

directions: within a single computer and across multiple computers[48]. This paper focuses on the 250

former (Figure 1). A GPU has different memory hierarchies, such as the register, texture, constant, 251

shared, local and global memories. The global memory, the largest memory on each GPU, is the main 252

space to save the variables in the calculations. Access to the global memory from the multiprocessors 253

needs to be coalesced on aligned contiguous memory addresses to achieve a high bandwidth. The 254

GPUs are plugged on the PCI-E slots on the motherboard of the host computer and connected with 255

the shared RAM via quick-path interconnect (QPI), shaping a shared-distributed hybrid memory 256

hierarchy. Computational tasks shared between the GPU devices necessitate data manipulations 257

between the RAM and the GPU memories, which is through the PCI-Express bus and controlled by 258

the PCI-E controller element on the CPU. 259

 260

Figure 1 Configuration of a multiple-GPU system with a single root complex (Reference: 261

https://www.servethehome.com/single-root-or-dual-root-for-deep-learning-gpu-to-gpu-systems/) 262

Conventional communication between the GPUs was traditionally in procedures with MPI and 263

CUDA commands[48]: (i) read the information on the global memory of the local GPU; (ii) copy to 264

the RAM on the computer via PCI-E (also implicitly via CPU and QPI); (iii) write to the global 265

memory of the remote GPU from the shared RAM. Overhead on the communication is often the 266

bottleneck of parallelisation since different components are involved, especially for frequent 267

12

synchronisation between the GPUs in each incremental step. Also, the hybrid MPI-CUDA 268

environment causes extra complexities to the coding and increases the risk of failure in the execution. 269

In modern PCI-E architectures, GPUs connected to the same PCI-E root are allowed to access the 270

global memory of each other with the P2P communication technique without using the RAM as a 271

transit storage. Therefore, MPI send/receive manipulations as in Reference [48] can be avoided with 272

more conveniences and higher performance. 273

4. Parallelisation of MPM 274

Parallelisation of the in-house program MPM-GeoFluidFlow was specially tuned for a single-GPU[46] 275

and a multiple-computer multiple-GPU frameworks[48]. In this work, the program was parallelised on 276

the platform of a one-computer multiple-GPU system with a single-root PCI-E complex (Figure 1). 277

The parallelisation was performed purely within the CUDA environment without the MPI interface 278

required in the conventional multi-GPU parallelisation[46, 48]. Improvements were made on the data 279

transport scheme between the shared RAM and the member GPUs, which was boosted by taking 280

advantage of the P2P technique supported on the single-root complex PCI-E architecture. 281

Parallelisation of the function ‘Interpolation from particles to nodes’ was optimised with an enhanced 282

‘Particle-List’ scheme, which is parallelised on the GPUs. As a result, the MPM computation was 283

further accelerated and the complexity of the code was reduced. The original two dimensional 284

framework was extended to three dimensional. 285

4.1 Task distribution and assembly 286

In the pre-processing stage, the whole domain of the task is assigned over the shared RAM on the 287

computer, with the material discretised into a cloud of particles and a structured mesh constructed. 288

The history-dependent information carried on the particles and the temporary variables for the 289

element nodes are declared. Then the computational domain is evenly decomposed into a number of 290

subdomains to distribute the entire task onto the individual GPUs (Figure 2). The number of elements 291

in each subdomain is around M/n, where M is the total number of elements in the whole domain and 292

n the total number of subdomains. The discretised particles are associated with the background 293

subdomain by their locations. Variables of the particles and the element nodes in each subdomain are 294

copied from the computer RAM to the global memory of each GPU through the PCI-E and QPI. 295

Therefore, the space of the shared RAM should be larger than the total size of the global memories 296

of the hosted GPUs. Two additional layers of ghost elements in each direction are generated out of 297

the computational subdomain, which is to maintain the continuity of the information at the border of 298

the subdomain. The roller (Neumann) boundary condition is implemented on the outer boundaries of 299

the outer subdomains. Calculations of the MPM algorithm within each subdomain is parallelised on 300

13

the corresponding GPU within the CUDA environment. The interpolated information on the 301

overlapping ghost element nodes from the neighbouring subdomains will be added and saved on both 302

sides into the GPU global memories. Therefore, the neighbouring subdomains are essentially 303

boundary conditions to each other. After the computation, the information of the particles in the 304

subdomains is re-assembled into the RAM and will be used for post-processing. 305

 306

Figure 2 Domain decomposition in multiple-GPU parallelisation 307

4.2 Parallelisation on each GPU 308

In order to control the overhead of the frequent data transfer between the RAM and the GPUs, all the 309

variables of the particles and nodes required in the essential calculations of Eqs. (5) – (28) are reserved 310

on the global memory of the GPUs, and are accessible from the active multiprocessors. The functions 311

‘Initialisation of nodal variables’ and ‘Calculate nodal velocities and accelerations’ (Eqs. (10) – (20)) 312

are parallelised over the nodes, i.e. updating the information of one node on one GPU core (Figure 313

3). In the thread for node i, only the information of the node is involved in the calculations as in Eqs. 314

(10) – (20), which means the parallel computations in the GPU cores are independent to each other. 315

Therefore, the two functions present relatively high parallelisability and are straightforward to 316

parallelise over the nodes. Particularly for the soil-structure interactions by Eqs. (14) – (18), the 317

velocity adjustment on each node, controlled by its kinematic state relative to the structure, is 318

independent to each other and can be parallelised over the nodes. As a whole system, the total reaction 319

force on the structure (Eq. (19)) will be collected from the contacting nodes on the GPUs and 320

14

superimposed on the CPU. For the function ‘Update particle state’ (Eqs. (21) – (28)), the workload is 321

decomposed over the particles, for each of which the interpolated information are superimposed from 322

the surrounding nodes sequentially. Different to the writing operations, which may induce data race 323

in the memory and will be discussed later, reading data from the identical memory address by 324

different threads is allowed in the parallelisation. Furthermore, a high bandwidth can be achieved 325

when the multiprocessors reading the consecutive memory addresses. Hence, the function ‘Update 326

particle state’ is expected to have a high acceleration effect by the parallelisation. 327

 328

Figure 3 Essential operations in multiple-GPU parallelisation of MPM 329

In contrast, the function ‘Interpolation from particles to nodes’ is more difficult to parallelise. If the 330

function is simply parallelised over the particles, i.e. the interpolation from each individual particle 331

to its related nodes is configured on a thread, data race can be induced by concurrently writing the 332

interpolation outcomes from different GPU cores into identical addresses of the global memory 333

(Figure 4a). The data race makes the final writings to the memory unpredictable, which means the 334

interpolations would be erroneous. Reference [47] avoided the data race by using the atomic 335

operations, which is often supported in the modern GPUs. However, the atomic operation is not 336

recommended as it is essentially a sequential writing action to the memory, which undermines the 337

overall acceleration effect. In Reference [49], a special technique ‘Particle-Grid offset’ was developed 338

to tackle the data race; however, a series of complicated operations are involved to make the algorithm 339

15

parallelisable. In Reference [46] and [48], the problem was solved by parallelising the function over 340

the nodes, for each of which the interpolation outcomes from associated particles were superimposed 341

sequentially. Before the parallel computation, a particle list for each node needs to be constructed, 342

which was saved on the RAM and was transported to the GPU periodically. Comparing with the 343

‘Particle-Grid offset’ technique, the ‘Particle-List’ scheme seems to be more accessible as only two 344

steps (generation of particle list and interpolation operation) are required. However, the updating 345

frequency of the particle list, often determined by experience and through trial calculations, depends 346

on the mesh size and the intrinsic characteristics of the problem to be analysed and may be very high 347

(such as once for five incremental steps) for impact problems. In three-dimensional analysis, each 348

node may be associated with around 216 particles (6 × 6 × 6; Figure 4a) as regulated by the uGIMP 349

shape function[40, 54]; therefore, a particle list relating the surrounding particles for all the nodes would 350

exhaust the memory space on the GPU, which is typically upper bounded by 24 GB. 351

 352

(a) Data race 353

 354

(b) Particle list 355

16

 356

(c) Parallelisation by layers 357

Figure 4 Parallelisation of the function ‘Interpolation from particles to nodes’ 358

In this work, the ‘Particle-List’ scheme was improved by generating the particle list for each element 359

rather than the node, which means the total memory requirement by the particle list is O(Np) and 360

much smaller than that by the original scheme O(216Ni), where Np and Ni are the total number of the 361

particles and nodes, respectively. The generation of the particle list is parallelised with the GPUs 362

instead of the CPU sequential operations in the original scheme. A fully engaged element often 363

accommodates 4 or 16 particles[40, 41]. To avoid the potential data race, an expanded particle list of 364

each element is adopted, which was developed from a similar method used in the creation of contact 365

pair list in the discrete element method[58]. The original elements are evenly divided into a number of 366

finer cells (Figure 4b). Each fine cell corresponds to a specific memory address of the particle list, 367

and accommodates only one particle or less[59]. Then, the particle sorting operations can be 368

parallelised across the GPU cores over the particles, in which each memory address is written with 369

only one or less particle ID without the risk of data race. The number of the fine cells in each element, 370

dependent on the smallest distance between the particles controlled by the strains, can be determined 371

through trial calculations and 8 × NPPC is often acceptable, where NPPC represents the particle number 372

in per element. For specific problems with extreme strains of material, the number of the fine cells 373

can be increased and a novel technique in Reference [60] reseeding the particles in the elements is 374

also suggested. The particle list is sparse due to the large number of empty fine cells out of the 375

engaged ones (Figure 4b), which still means a heavy memory requirement. An additional compression 376

step is then performed to obtain a dense particle list. The enhanced ‘Particle-List’ scheme is fully 377

performed on the GPUs and need no data transport between the RAM and the GPUs. Therefore, 378

improvement of the speedup of the parallelisation is expected with the enhanced scheme. 379

17

The interpolations from the particles to nodes are then parallelised over the nodes. The particles on 380

the particle list of the surrounding elements within the influence range of each node are involved in 381

the interpolation on one GPU thread. In consideration of the heavy requirement of memory space for 382

the particle list of large-scale problems, the generation of particle list and the interpolations are 383

performed in layers of nodes (Figure 4c). 384

4.3 GPU communications 385

In order to keep the continuity of the stress and strain field between the connected subdomains, the 386

interpolated variables on the border nodes within the neighbouring subdomains, including the mass, 387

momentum and internal force, by the function ‘Interpolation from particles to nodes’ is superimposed 388

at each incremental step (Figure 3). The operations are implemented with the direct P2P operations 389

between the GPU memories for the single-root complex PCI-E framework, which owns much higher 390

bandwidths (5 GB/s) than that used in Reference [48] through the RAM and the infiniBand network 391

(1.25 GB/s) within MPI environment (Figure 1). The send and receive operations can be performed 392

in bi-direction with a modern PCI-E, which doubles the intrinsic bandwidth of the data migration to 393

10 GB/s. Furthermore, the transfer of data between the GPUs can be hidden by the essential 394

calculations on each GPU, which means overhead on the synchronisation process is virtually nil and 395

a perfect scaling may be possible. In comparison, the data transfers within MPI environment accounts 396

for about 5% of the total computational effort[48]. The exchanged information of the ghost element 397

nodes from the neighbouring GPUs is added to the counterparts on the local GPU (Figure 2). 398

The particles may move across the subdomains and hence migrate from a GPU to its neighbour, for 399

which all the information of the migration particles should be transferred to the new subdomain with 400

P2P operations similar to that exchange the neighbouring nodal information. The subdomains 401

communicate with their neighbours in six directions (left-right; front-rear; up-down) (Figure 5a). For 402

most ghost elements (Figure 5b) and particle migrations (Figure 5c), send/receive operations are 403

performed between two subdomains in two directions; there are also some corner ghost elements are 404

shared by four or eight subdomains and some particles moves to unconnected subdomains (such as 405

upper-right subdomain), which need more than one synchronisation step (Figure 5). The particle 406

migration can be time-consuming if performed in every incremental step. If a particle moves from 407

the current subdomain to the neighbouring one between the particle migration operations, the 408

interpolations from the particle are allocated to the ghost element nodes of the current subdomain, 409

which will be synchronised between the neighbouring subdomains as described previously. Therefore, 410

the interpolation results are accurate if only the particles do not move across the outer layer of ghost 411

elements of the current subdomain. The one layer of ghost elements essentially functions as a 412

buffering zone of the particle migration between the subdomains. Therefore, the particle migration is 413

18

conducted for once in a number of steps in this study, which is controlled by the time of particles 414

move across the outer ghost element and depends on the mesh and particle discretization. In the 415

calculations, the number of step to migrate the particles can be determined by an experimental 416

computation, which is often selected as 5 in this study. 417

 418

(a) GPU communications between subdomains 419

 420

(b) Corner ghost elements 421

 422

(c) Particle migration 423

Figure 5 GPU communications 424

19

In the calculations, void areas tend to be formed in the subdomains due to the large deformation of 425

materials, e.g. in the mini-slump test in Section 5.1, which idle the computational resource. The 426

migration of the particles between the subdomains may also undermine the workload balance among 427

the GPUs. A simple procedure of domain re-decomposition is then performed to updates the 428

subdomain dimensions periodically at intervals of a large number of incremental steps, such as 50,000. 429

The communication overhead for the neighbouring nodes and the migration particles between the 430

subdomains may be non-ignorable but acceptable in many cases, which can be compensated by the 431

substantial calculations in each GPU. The information of all the particles in the subdomains are 432

gathered from the GPUs’ global memories to the shared RAM of the computer. The upper and lower 433

boundaries of the material are derived from the particle coordinates, based on which the boundaries 434

of the computational domain in the following steps are updated. Then the task distribution operations 435

in Section 4.1 is re-performed by evenly decompose the computational domain. The present domain 436

de-composition procedure is mainly to solve the problem of void areas, and somehow mitigate the 437

workload imbalance between the GPUs. More advanced technique with adaptive subdomain sizes to 438

balance the workloads between the GPUs will be developed in the future work. 439

5. Performance assessment 440

The accuracy and convergence for the standard MPM algorithm with explicit calculations have been 441

assessed in Reference [32, 35], which may be inherited here due to the trivial modifications. The 442

benchmark cases, mini-slump test and cone penetration test, were simulated to assess the acceleration 443

effect of the multiple-GPU parallelisation scheme. The parallel computations were performed on a 444

single-computer server, which hosts 8 NVIDIA Titan Xp GPUs based on a single-root complex 445

(Figure 1) and 2 Intel Xeon E5-2687WV4 CPUs. Each CPU has 12 cores with frequency of 3.0 GHz; 446

on each GPU, a total number of 3840 cores are accessible and the dedicated global memory is 12 GB; 447

The RAM space of the server is 256 GB. The operating system was Ubuntu 18.04, the C++ compiler 448

was gcc 5.3.0 and the GPU compiler was CUDA v8.0.44. All the computations were based on double-449

precision numbers to guarantee the accuracy. 450

The soil was considered to be an elastic-perfectly plastic material and regulated with the von Mises 451

yield criterion. The Poisson’s ratio of the soil was selected as 0.49. The time step was calculated by 452

()2

d
t

G


 

 + 
 (29) 453

where G is the shear modulus of soil, λ is the Lamé constant, d represents the mesh size, and α is the 454

Courant number. The ‘speedup’ factor was to characterise the acceleration effect of the parallel 455

20

computations: Speedup = TSequential / TParallel, where TSequential and TParallel are the runtimes of the CPU 456

sequential and GPU parallel calculations over a number of incremental steps (Appendixes A and B). 457

5.1 Mini-slump test 458

Submarine landslides are known as one of the most hazardous threat to the submarine structures, 459

featuring enormous volumes of sediments running at very high velocities and reaching very far runout 460

distances before final deposition[61]. The sliding behaviour of the soil can be studied in laboratory 461

through the mini-slump test, in which the soil is released from a cylinder and then runout along a flat 462

base. The test performed by Reference [62] with the remoulded soil from Heimdal, Norway was 463

simulated using the MPM (Figure 6a). The cylinder had a height H of 120 mm and a diameter of 100 464

mm. The mechanical behaviour of the soil was considered by a Herschel-Bulkley (H-B) model[63] 465

u u0

ns s K= +  (30) 466

where su is the undrained shear strength of the soil, su0 is the threshold shear strength su0 = 200 Pa, γ 467

the shear strain rate, K the consistency coefficient and n the shear-thinning index. In the experimental 468

test, the parameters in Eq. 2 were determined as su0 = 200 Pa, K = 15 Pa·sn, and n = 0.35. In the MPM 469

analysis, the mesh size d was selected as H/60, which was validated to be sufficiently fine in viscous 470

sliding problems of soil as it presents similar results with a finer mesh H/120[18, 41]. The Young’s 471

modulus was 500 times the undrained shear strength su. In total, there were 393,216 slurry particles. 472

The flat base was assumed as a no-slip boundary. The time step ∆t was determined with a Courant 473

number of 0.3. Another numerical simulation using the computational fluid dynamics (CFD) method 474

was also performed by Reference [64]. Figure 6b shows the final morphologies of the soil predicted 475

by the CFD and MPM analyses, which matches well with each other. The slumped width of the soil 476

was 0.12 m in the experiment and the final height was 0.04 m, which are close to that of the numerical 477

predictions. The profile of the soil at 0.3 s in the MPM simulation was shown in Figure 6c. 478

 479

(a) Laboratory test[65] 480

21

 481

(b) 482

 483

(c) 0.3 s 484

Figure 6 Mini-slump test and runout morphologies 485

To investigate the acceleration effect of the GPU parallel framework, the particle number Np was 486

increased from 393,216 to 1,572,864, 2,102,203, 4,343,424, 19,232,055, 34,744,320, 50,035,200 and 487

121,065,216. The total memory space engaged in the simulation is proportional to the particle number, 488

which increases from 0.08 GB (393,216 particles) to 23.5 GB (121,065,216 particles). In Reference 489

[46], the maximum particle number for a 2D model with a memory size of 4 GB was 50,035,200, and 490

will be much less for a 3D model than the counterpart in this study. The reason is that the size of the 491

particle list for the element nodes in Reference [46] was nearly 25 times of the total particle number, 492

which is avoided in this study by establishing a particle list for the elements in each layer. Therefore, 493

22

the maximum particle number accommodated in 8 GPUs can be up to 400,035,200 as the concern of 494

many large-scale geotechnical problems. A total runtime within 100 incremental steps was recorded 495

for each case with the CPU sequential and GPU parallel simulations, in which the acceleration effect 496

by the GPU parallel strategy is clearly demonstrated (Table 1). Within the CPU sequential 497

calculations, the runtime is linearly proportional to the scale of the case in terms of particle number. 498

The speedup linearly increases for less than 4,000,000 particles (Figure 7); if the computational scale 499

is enlarged further with more particles, the GPU seems to be fully loaded, and the acceleration effect 500

presents a good scaling behaviour and converges to an average speedup of about 80. The average 501

speedup of ~ 80 in this study is much higher than that in Reference [35] of around 20 for two main 502

reasons: the GPU Titan Xp in this study outperforms that GTX 780M in Reference [46]; the 503

parallelisation schemes are optimised in this study in terms of particle list and memory access. Among 504

all the functions of the MPM, the function ‘Interpolation from particles to nodes’ consumes the most 505

computational efforts for around 70%, which is due to the non-coalesced memory access when 506

writing the interpolations to the nodal addresses. The overhead on the establishment of the particle 507

list takes less than 2% of the total runtime, much less than that in Reference [46] and [48] of around 508

15%, as the operations are fully moved and parallelised onto the GPU. The remaining 28% of the 509

computations is mainly on the function ‘Update particle state’, while that on the functions 510

‘Initialisation of nodal variables’ and ‘Calculate nodal velocities and accelerations’ are ignorable. 511

Specifically, the average speedup for the function ‘Interpolation from particles to nodes’ is around 512

65, while it increases to about 170 for the functions ‘Initialisation of nodal variables’ and ‘Calculate 513

nodal velocities and accelerations’. Therefore, the function ‘Interpolation from particles to nodes’ is 514

the bottleneck of the parallelisation of the MPM. Additional calculations were performed for the case 515

with 4,343,424 particles by using naїve atomic operations to parallelise the function ‘Interpolation 516

from particles to nodes’, which presents very low speedup of less than 5 due to the heavy writing 517

conflicts between the neighbouring particles. Further experiments show that the speedup with the 518

naїve atomic operations is not stable, which varies with data structure of the particles. Due to the very 519

low efficiency, atomic operations are not recommended in many parallel algorithms. 520

The acceleration effect of the multiple-GPU parallelisation over the CPU sequential computations is 521

shown in Table 1 and Figure 8. The total runtime for 100 incremental steps rather than one step was 522

recorded for each case to avoid the random errors during recording. For example, in the case with 523

393,216 particles, the average runtime for the cases with GPU is smaller than 0.2 s, which will be 524

significantly influenced by a small random error. The average runtime for an incremental step can be 525

easily obtained from the total value for 100 steps. The performance of the GPU is maximised when 526

it is fully loaded with workload. Given one or two GPUs are invoked, the GPU seems to be fully 527

23

loaded with 4 million particles: for the cases with < 4 million particles on each GPU, the speedup 528

increases with the particle number when using an identical number of GPUs. The maximum speedup 529

with less than two GPUs is around 80Ngpu with Ngpu as the number of GPUs, which is similar to the 530

average speedup predicted previously with one GPU. When four or eight GPUs are mobilised, the 531

GPU is not fully loaded even with 30 million particles on each GPU. The reason is not very clear but 532

is inferred to be related to the scheduling elements in the CPU. The overall speedup with less than 8 533

GPUs is fitted as 71.5Ngpu. Although it is not meaningful to compare the speedups of the multiple-534

GPU parallel schemes based on different hardware and software, the speedups of about 59Ngpu and 535

110Ngpu in Reference [48] and [49] were obtained. In consideration of the convenient implementation 536

and high reliability of the present parallel framework, the speedup of 71.5Ngpu is quite satisfactory. 537

Due to the optimisation of communication between the neighbour domains as described in Section 538

3.4, overhead on the synchronisation of the ghost nodal information, the particle migration, and the 539

domain re-decomposition is ignorable with less than 2% when comparing to that on the essential 540

computations. Therefore, the parallel framework of the MPM with multiple-GPU in this study 541

presents good behaviour in terms of hardware communications, which has been the common problem 542

of many numerical methods. Also, the advantage of the P2P technique based on the single-root 543

complex structure of the PCI-E is well presented. 544

 545

Figure 7 Speedups of GPU parallelisation with one GPU 546

24

 547

Figure 8 Speedups of GPU parallelisation with multiple-GPU 548

Table 1 Speedups of GPU parallel simulations in 100 incremental steps for mini-slump test cases 549

 550

5.2 Cone penetration test 551

The cone penetrometer has been considered as the most widely used in-situ geotechnical instrument 552

to obtain the sequence and the physical and mechanical properties of the subsurface strata. For the 553

cone penetrated in pure clays, the penetration resistance is related with the undrained shear strength 554

of the soil su through the calibration of a bearing factor Nk, which was often investigated with 555

theoretical, experimental and numerical analyses[65-67]. The numerical model of a cone penetration 556

test used in Reference [68] with a large deformation finite element (LDFE) method was duplicated in 557

this study. The standard cone had a diameter of D = 35.7 mm and its tip had an angle of 60°, as shown 558

in Figure 9. Quarter of the model was simulated by taking advantage of its symmetry to save the 559

runtime. In Reference [69], a smaller model with a wedge of 20° in the rotational direction was 560

25

simulated, which was also proven to be accurate to represent the full model of the test. Herein, the 561

parallel efficiency is the main concern, therefore, the quarter model was used and the wedge model 562

will be adopted in the future applications. The chamber extensions on the horizontal and vertical 563

directions were 2.8D and 8D, respectively. The mesh size d = D/36, which is satisfactorily fine to 564

achieve a convergent prediction of Nk. In each element fully occupied by the soil, 2 × 2 particles were 565

configured prior to the calculation. In total, 24,000,000 soil particles were discretised. The cone was 566

assumed to be rigid and smooth. The penetration speed of the cone was taken as 2.8D /s (0.1 m/s), 567

which was verified as sufficiently low to use the dynamic formulation to simulate the quasi-static 568

process[69]. The submerged density of the soil was 1500 kg/m3. The geostatic stresses induced by the 569

self-weight of soil were not considered. The clay had a uniform shear strength of su = 10 kPa and a 570

soil rigidity index G/su = 100. 571

 572

Figure 9 Setup of the cone penetration test 573

Profile of the bearing factor Nk is plotted versus the normalised penetration depth w/D as shown in 574

Figure 10, in which w is the penetration depth of the pipeline. The bearing capacity increases with 575

the penetration of the cone, which stabilises at about 8.97 with w/D = 3. The profile obtained from 576

the MPM analyses has some high-frequency fluctuations of around 1.5% due to the particles below 577

the cone crossing the element boundaries in the penetration process, which can be mitigated with 578

finer meshes without affecting the steady values[51]. The prediction by the MPM (8.97) is slightly 579

lower than those by LDFE (9.65) and arbitrary Lagrangian Eulerian (ALE; 9.47) methods with 580

discrepancies within 7.5%. Predictions of the bearing capacity factor of 11.1 and 9.7 are also available 581

with the coupled Eulerian-Lagrangian method[68] and the strain path method[65], respectively. 582

26

Therefore, the bearing capacity factor obtained with the MPM is reliable. The velocity magnitude 583

induced by the cone penetration at w = 3.47D is shown in Figure 11. 584

In the calculations, the total runtimes for 100 incremental step were recorded for the CPU sequential 585

and multiple-GPU parallel computations (Table 2). The speedup with one-GPU parallelisation is 586

about 88, which increases to 382 with 8 GPUs invoked. To investigate the acceleration effect of the 587

GPU parallel framework, the particle number Np was modified from 24,000,000 (6 GB) to 5,000,000, 588

10,000,000, 50,000,000 (12 GB), and 100,000,000. The maximum speedup of 89 is achieved for all 589

the cases with one GPU as the GPU is fully loaded with more than 4 million particles (Figure 12a). 590

For all the cases, the maximum speedups with different number of GPUs are fitted as 85Ngpu (Figure 591

12b), which is higher than that for the mini-slump test cases. That is due to the larger void areas, with 592

none essential computations, in the mini-slump test cases when the slurry expands on the base. 593

To summarise from the two benchmarks, very high speedups (> 71.5Ngpu) are expected with the 594

multiple-GPU parallelisation over the conventional CPU sequential calculations. However, it is also 595

noteworthy that the real-time speedup for specific dynamic problems (such as slurry slump) with very 596

large deformation of the material may be undermined by many factors, such as the percentage of void 597

elements and the bandwidth of the P2P channels in the computer. The particle migrations between 598

the GPUs bring extra complexity and may affect the robustness of the program. That means 599

optimisation of the program itself can be very time-consuming. Also, the multiple-GPU parallelised 600

program suffers from a lower portability since its software framework is dedicated to the hardware 601

platform. Therefore, the topic of multiple-GPU parallelisation of the MPM remains to be open in a 602

near future. 603

 604

Figure 10 Profile of resistance to the cone penetration 605

27

 606

Figure 11 Velocity distribution in soil at w/D = 3.47 607

Table 2 Speedups of multiple-GPU parallel simulations in 100 incremental step for cone penetration 608

 609

6. Conclusions 610

As one of the arbitrary Lagrangian-Eulerian methods, the material point method (MPM) owns 611

intrinsic advantages in simulation of large deformation problems by combining the merits of the 612

Lagrangian and Eulerian approaches. Significant computational intensity is involved in the 613

calculations of the MPM due to its very fine mesh needed to achieve a high accuracy. Considering 614

the limitations with the CPU and single-GPU performance, multiple-GPU parallelisation provides a 615

promising means to boost the computational efficiency of the MPM. In this study, a new multiple-616

GPU parallel strategy was developed based on a single-root complex architecture of the computer 617

within a CUDA environment. Peer-to-Peer (P2P) communication between the GPUs was performed 618

to exchange the information of the crossing particles and ghost element nodes, which is faster than 619

the heavy send/receive operations between different computers through the infiniBand network. 620

Domain decomposition is performed to split the whole computational task over the GPUs with a 621

28

number of subdomains. Within each GPU, a particle list was constructed for each node to avoid the 622

data race when parallelising the ‘Interpolation from particles to nodes’. 623

The acceleration effect of the parallelisation was evaluated with two benchmarks cases, mini-slump 624

test and cone penetration test. The maximum speedups with 1 GPU was 88, and increased to 604 625

using 8 GPUs. Among all the functions of the MPM, the function ‘Interpolation from particles to 626

nodes’ consumes the most computational efforts for around 70%, which is due to the non-coalesced 627

memory access when writing the interpolations to the nodal addresses. The overhead on the 628

establishment of the particle list takes less than 2% of the total runtime, much less than that in Dong 629

et al. (2015) and Dong and Grabe (2018) of around 15%, as the operations are fully moved and 630

parallelised onto the GPU. The remaining 28% of the computations is mainly on the function ‘Update 631

particle state’, while that on the functions ‘Initialisation of nodal variables’ and ‘Calculate nodal 632

velocities and accelerations’ are ignorable. 633

 634

(a) One GPU (Np = 24,000,000) 635

 636

(b) Multiple GPUs 637

Figure 12 Speedups of GPU parallelisation with multiple-GPU 638

29

Acknowledgements 639

This paper was supported by the National Natural Science Foundations of China (Grant No. 51909248) 640

and the Open Research Fund of State Key Laboratory of Coastal and Offshore Engineering, Dalian 641

University of Technology (Grant No. LP2012). 642

This work was also supported by the NVIDIA Corporation with the donation of the GPUs Geforce 643

Titan Xp and GeForce Titan V. 644

The authors would also like to acknowledge the valuable input of Dr. Xinlei Wang at Shenzhen Zenus 645

software technology LtD. (formerly PhD student at Zhejiang University) through personal 646

communications. 647

Data Availability Statement 648

The data that support the findings of this study are available from the corresponding author upon 649

reasonable request. 650

References 651

1. Di Y, Yang J, Sato T. An operator-split ALE model for large deformation analysis of geomaterials. International 652

Journal for Numerical and Analytical Methods in Geomechanics. 2007; 31: 1375-1399. 653

2. Nazem M, Sheng D, Carter JP, Sloan SW. Arbitrary Lagrangian–Eulerian method for large-strain consolidation 654

problems. International Journal for Numerical and Analytical Methods in Geomechanics. 2008; 32: 1023-1050. 655

3. Wang D, White DJ, Randolph MF. Large-deformation finite element analysis of pipe penetration and large-656

amplitude lateral displacement. Canadian Geotechnical Journal. 2010; 47(8): 842–856. 657

4. Zhang Z, Pan Y, Wang J, Zhang H, Chen Z, Zheng Y, Ye H. A total-Lagrangian material point method for coupled 658

growth and massive deformation of incompressible soft materials. International Journal for Numerical Methods 659

in Engineering. 2021; DOI: https://doi.org/10.1002/nme.6787. 660

5. Sulsky D, Zhou SJ, Schreyer HL. Application of a particle-in-cell method to solid mechanics. Comput Phys 661

Commun. 1995; 87: 236–52. 662

6. Harlow FH. The particle-in-cell computing method for fluid dynamics. Methods Comput Phys. 1964; 3: 319–43. 663

7. Ma S, Zhang X, Lian Y, Zhou X. Simulation of high explosive explosion using adaptive material point method. 664

Computer Modeling in Engineering & Sciences. 2009; 39(2):101-123. 665

8. Nairn JA. Material point method calculations with explicit cracks. Computer Modeling in Engineering & Sciences. 666

2003; 4 (6): 649–664. 667

9. Huang P, Zhang X, Ma S, Huang X. Contact algorithms for the material point method in impact and penetration 668

simulation. International Journal for Numerical Methods in Engineering. 2011; 85(4): 498-517. 669

10. de Vaucorbeil A, Nguyen VP, Hutchinson C. A total-Lagrangian material point method for solid mechanics 670

problems involving large deformations. Computer Methods in Applied Mechanics and Engineering. 2019; 360: 671

112783. 672

11. Nguyen VP, de Vaucorbeil A, Nguyen CT, Mandal TK. A generalized particle in cell method for explicit solid 673

30

dynamics. Computer Methods in Applied Mechanics and Engineering. 2020; 371: 113308. 674

12. de Vaucorbeil A, Nguyen VP. Modelling contacts with a total Lagrangian material point method. Computer 675

Methods in Applied Mechanics and Engineering. 2020; 373: 113503. 676

13. York AR, Sulsky D, Schreyer HL. Fluid–membrane interaction based on the material point method. International 677

Journal for Numerical Methods in Engineering. 2000; 48(6): 901–924. 678

14. Stomakhin A, Schroeder C, Chai L, Teran J, Selle A. A material point method for snow simulation. ACM Trans 679

Graph (TOG). 2013; 32(4): 102. 680

15. Jiang C, Gast T, Teran J. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Transactions 681

on Graphics. 2017; 36(4): 152. 682

16. Fei Y, Guo Q, Wu R, Huang L, Gao M. Revisiting integration in the material point method: a scheme for easier 683

separation and less dissipation. ACM Trans. Graph. 2021; 40(4): 109. 684

17. Soga K, Alonso E, Yerro A, Kumar K, Bandara S. Trends in large-deformation analysis of landslide mass 685

movements with particular emphasis on the material point method. Géotechnique. 2015; 66(3): 248–273. 686

18. Dong Y, Wang D, Randolph MF. Investigating of impact forces on pipeline by submarine landslide using 687

material point method. Ocean Engineering. 2017; 146: 21–28. 688

19. Pinyol NM, Alvarado M, Alonso EE, Zabala F. Thermal effects in landslide mobility. Géotechnique. 2018; 68(6): 689

528-545. 690

20. Zhao E, Dong Y, Tang Y, Sun J. Numerical Investigation of Hydrodynamics and Local Scour around Submarine 691

Pipeline under Joint Effect of Solitary Wave and Current. Ocean Engineering. 2021; 222: 108553. 692

21. Coetzee CJ, Vermeer PA, Basson AH. The modelling of anchors using the material point method. International 693

Journal for Numerical and Analytical Methods in Geomechanics. 2005; 29(9): 879–895. 694

22. Ceccato F, Bisson A, Cola S. Large displacement numerical study of 3D plate anchors. European Journal of 695

Environmental and Civil Engineering. 2017; 1–19. 696

23. Wang L, Coombs WM, Augarde CE, Cortis M, Brown MJ, Brennan AJ, Knappett JA, Davidson C, Richards D, 697

White DJ, Blake AP. An efficient and locking-free material point method for three-dimensional analysis with 698

simplex elements. International Journal for Numerical Methods in Engineering. 2021; 122(15): 3876-3899. 699

24. Mast CM, Arduino P, Mackenzie-Helnwein P, Gregory RM. Simulating granular column collapse using the 700

Material Point Method. Acta Geotechnica. 2015; 10: 101–116. 701

25. Yuan W, Wang H, Zhang W, Dai B, Liu K, Wang Y. Particle finite element method implementation for large 702

deformation analysis using Abaqus. Acta Geotechnica. 2021; 12: 1-14. 703

26. Zhang W, Zhong Z, Peng C, Yuan W, Wu W. GPU-accelerated smoothed particle finite element method for large 704

deformation analysis in geomechanics. Computers and Geotechnics. 2021; 129: 103856. 705

27. Abe K, Kenichi S, Samila B. Material point method for coupled hydromechanical problems. Journal of 706

Geotechnical and Geoenvironmental Engineering. 2014; 140(3): 04013033. 707

28. Yerro A, Alonso EE, Pinyol NM. The material point method for unsaturated soils. Géotechnique. 2015; 65(3): 708

201-217. 709

29. Bandara S, Ferrari A, Laloui L. Modelling landslides in unsaturated slopes subjected to rainfall infiltration using 710

material point method. International Journal for Numerical and Analytical Methods in Geomechanics. 2016; 711

40(9): 1358–1380. 712

30. Troncone A, Conte E, Pugliese L. Analysis of the slope response to an increase in pore water pressure using the 713

material point method. Water. 2019; 11(7): 1446. 714

31

31. Wallstedt PC, Guilkey JE. Improved Velocity Projection for the Material Point Method. CMES-Computer 715

Modeling in Engineering & Sciences. 2007; 19(3): 223–232. 716

32. Wallstedt PC, Guilkey JE. An evaluation of explicit time integration schemes for use with the generalized 717

interpolation material point method. Journal of Computational Physics. 2008; 227: 9628-9642. 718

33. Nair J, Hammerquist C. Material point method simulations using an approximate full mass matrix inverse. 719

Computer Methods in Applied Mechanics and Engineering. 2021; 377(2): 113667. 720

34. Buzzi O, Pedroso DM, Giacomini A. Caveats on the implementation of the generalized material point method. 721

Computer Model Eng Sci. 2008; 31(2): 85–106. 722

35. Steffen M, Kirby RM, Berzins M. Analysis and reduction of quadrature errors in the material point method 723

(MPM). Int J Numer Meth Eng. 2008; 76(6): 922–48. 724

36. Yerro A, Alonso EE, Pinyol NM. Run-out of landslides in brittle soils. Computers and Geotechnics. 2016; 80: 725

427-439. 726

37. Charlton TJ, Coombs WM, Augarde CE. iGIMP: An implicit generalised interpolation material point method for 727

large deformations. Computers and Structures. 2017; 190: 108-125. 728

38. Gan Y, Sun Z, Chen Z, Zhang X, Liu Y. Enhancement of the material point method using B‐spline basis functions. 729

International Journal for Numerical Methods in Engineering. 2018; 113: 411-431. 730

39. Sun Z, Gan Y, Huang Z, Zhou X. A local grid refinement scheme for B-spline material point method. 731

International Journal for Numerical Methods in Engineering. 2020; 121(11): 2398-2417. 732

40. Bardenhagen SG, Kober EM. The generalized interpolation material point method. Computer Model Engineering 733

and Science. 2004; 5(6): 477–96. 734

41. Dong Y, Wang D, Randolph MF. Quantification of impact forces on fixed mudmats from submarine landslides 735

using the material point method. Applied Ocean Research. 2020; 146: 21-28. 736

42. Zhang Y, Zhang X, Liu Y. An alternated grid updating parallel algorithm for material point method using 737

OpenMP. Computer Modeling in Engineering & Sciences. 2010; 69(2): 143–165. 738

43. Parker SG. A component-based architecture for parallel multi-physics PDE simulation. Future Generation 739

Computer Systems. 2006; 22(1): 204–216. 740

44. Stantchev G, Dorland W, Gumerov N. Fast parallel particle-to-grid interpolation for plasma PIC simulations on 741

the GPU. Journal of Parallel and Distributed Computing. 2008; 68(10):1339–1349. 742

45. Gibson MJ, Keedwell EC, Savić DA. An investigation of the efficient implementation of cellular automata on 743

multi-core CPU and GPU hardware. Journal of Parallel and Distributed Computing. 2015; 77: 11-25. 744

46. Dong Y, Wang D, Randolph MF. A GPU parallel computing strategy for the material point method. Computers 745

and Geotechnics. 2015; 66: 31–38. 746

47. Gao M, Wang X, Wu K, Pradhana A, Sifakis E, Yuksel C, Jiang C. GPU optimization of material point methods. 747

ACM Transactions on Graphics (TOG). 2018; 37(6), 1-12. 748

48. Dong Y, Grabe J. Large scale parallelisation of the material point method with multiple GPUs. Computers and 749

Geotechnics. 2018; 101: 149-158. 750

49. Wang X, Qiu Y, Slattery SR, Fang Y, Li M, Zhu S, Zhu Y, Tang M, Manocha D, Jiang C. A massively parallel 751

and scalable multi-GPU material point method. ACM Transactions on Graphics (TOG). 2020; 39(4): 30. 752

50. Ma J, Wang D, Randolph MF. A new contact algorithm in the material point method for geotechnical 753

simulations. International Journal for Numerical and Analytical Methods in Geomechanics. 2014; 38(11): 1197-754

1210. 755

32

51. Dong Y. Reseeding of particles in the material point method for soil-structure interactions. Computers and 756

Geotechnics. 2020; 127: 103716. 757

52. Bardenhagen SG, Brackbill JU, Sulsky D. The material-point method for granular materials. Computer Methods 758

in Applied Mechanics and Engineering. 2000; 187(3-4): 529-541. 759

53. Bardenhagen SG, Guilkey JE, Roessig KM, Brackbill JU, Witzel WM. An improved contact algorithm for the 760

material point method and application to stress propagation in granular material. Computer Modeling in 761

Engineering & Sciences. 2001; 2(4): 509-522. 762

54. Zhang D, Ma X, Giguere PT. Material point method enhanced by modified gradient of shape function. Journal 763

of Computational Physics. 2011; 230(16): 6379-6398. 764

55. Dong Y, Wang D, Randolph M. Runout of submarine landslide simulated with material point method. Journal of 765

Hydrodynamics. 2017; 29(3): 438-444. 766

56. Bing Y, Cortis M, Charlton TJ, Coombs WM, Augarde CE. B-spline based boundary conditions in the material 767

point method. Computers & Structures. 2019; 212: 257-274. 768

57. Cortis M, Coombs WM, Augarde CE, Brown M, Brennan A, Robinson S. Imposition of essential boundary 769

conditions in the material point method. International Journal for Numerical Methods in Engineering. 2018; 770

113(1): 130-152. 771

58. Nishiura D, Matsuo MY, Sakaguchi H. ppohDEM: computational performance for open source code of the 772

discrete element method. Computer Physics Communications. 2014; 185(5): 1486-1495. 773

59. Nishiura D, Sakaguchi H. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors. 774

Journal of Computational Physics. 2011; 230(5): 1923-1938. 775

60. Dong Y. Reseeding of particles in the material point method for soil-structure interactions. Computers and 776

Geotechnics. 2020; 127: 103716. 777

61. Locat J, Lee HJ. Submarine landslides: advances and challenges. Canadian Geotechnical Journal. 2002; 39(1): 778

193-212. 779

62. Thakur V, Degago SA. Quickness of sensitive clays. Géotechnique Letters. 2012; 2(3): 87-95. 780

63. Boukpeti N, White DJ, Randolph MF, Low HE. Strength of fine-grained soils at the solid-fluid transition. 781

Géotechnique. 2012; 62(3): 213-226. 782

64. Fornes P, Bihs H, Thakur VKS. Implementation of non-Newtonian rheology for Debris Flow simulation with 783

REEF3D. IAHR World Congress, 2017. 784

65. Teh CI, Houlsby GT. An analytical study of the cone penetration test in clay. Géotechnique. 1991; 41(1): 17-34. 785

66. Lu Q, Randolph MF, Hu Y, Bugarski IC. A numerical study of cone penetration in clay. Géotechnique. 2004; 786

54(4): 257-267. 787

67. Walker J, Yu HS. Analysis of the cone penetration test in layered clay. Géotechnique. 2010; 60(12): 939-948. 788

68. Wang D, Bienen B, Nazem M, Tian Y, Zheng J, Pucker T, Randolph MF. Large deformation finite element 789

analyses in geotechnical engineering. Computers and Geotechnics. 2015; 65: 104-114. 790

69. Ceccato F, Beuth L, Vermeer PA, Simonini P. Two-phase Material Point Method applied to the study of cone 791

penetration. Computers and Geotechnics. 2016; 80: 440-452. 792

 793

 794

 795

 796

33

 797

 798

34

Appendix A Snippets of pseudo code for multi-GPU parallelisation 799

 800

 801

 802

 803

 804

 805

 806

35

 807

 808

36

 809

 810

37

 811

 812

 813

38

 814

 815

 816

 817

39

 818

 819

 820

 821

40

Appendix B Snippets of pseudo code for CPU sequential computations 822

 823

 824

 825

 826

 827

 828

41

 829

 830

 831

 832

 833

 834

 835

 836

 837

