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1   |   INTRODUCTION

Rock bursts are a common dynamic disaster in coal mines, 
and they crucially affect the safety, economics, and effi-
ciency of mining operations. The mitigation and control 
of rock bursts is challenging owing to their violent, un-
predictable characteristics.1,2 Rock bursts are charac-
terized by the sudden release of elastic strain energy in 
rock and coal during mining or roadway excavation. The 
mining-induced redistributed high-stress regions around 

surrounding rocks are crucial for the evaluation of rock 
bursts risk, particularly when using the longwall mining 
method. The excavation is surrounded by thick layers of 
hard, intact rock capable of storing high levels of strain 
energy.3 Therefore, the determination of mining-induced 
stresses is essential for the evaluation of rock bursts risk 
in coal mines. Several approaches have been employed to 
assess and calculate the stress distribution around the ex-
traction field, such as empirical and analytical,4–9 numer-
ical simulation,10–15 and field monitoring16–20 approaches.
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Abstract
Real-time monitoring of three-dimensional stress in the field is an effective ap-
proach to detect evolving stress in roof rock and to evaluate rock bursts risk. 
However, the sensors or data transmission cables may be damaged due to the 
volatile environment found in coal mines, which can lead to the loss of relevant 
monitoring data, and some critical information for rock burst prediction may be 
missed entirely. A number of methods that use historical data to predict missing 
data or future structural states have been proposed. However, the performance 
of these methods is poor when the training data are insufficient owing to lack 
of data. To address this issue, a methodology framework is proposed to predict 
the mining-induced stress when some monitoring data are missing. The frame-
work uses a long short-term memory neural network integrated with the transfer 
learning method. The proposed method can transfer the knowledge learned from 
complete monitored data of adjacent sensor to target sensor to boost forecasting. 
A case study has been conducted to evaluate the method. The results show that 
the developed model can significantly improve the prediction performance for 
the target domain, which can be improved further by increasing the size of the 
target domain training data available.
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Three-dimensional (3D) stress monitoring is a crucial 
and effective approach for revealing the stress state, pre-
dicting rock burst events, and adopting countermeasures 
in coal mines.21 Generally, long-term stress monitoring 
is helpful for analyzing and predicting the evolution of 
stresses in surrounding rock. Therefore, the accuracy and 
reliability of early disaster warnings rely on the quantity 
and quality of the in situ monitoring data.22 However, 
the sensors and data transmission cables are often dam-
aged in the volatile environment in underground mines, 
which leads to the loss of monitoring data.19,23,24 The loss 
of data greatly affects the early warning of surrounding 
rock instability. Therefore, it is essential to reconstruct 
the missing data and predict the stress state in the fol-
lowing few days to enable evaluations of safety, reliability 
analyses, and real-time early warnings of disasters. The 
reconstruction and completion of missing data in field 
monitoring can be converted to a time series prediction 
task, and the process has been studied widely. Numerous 
methods of model-based and data-driven approaches 
have been proposed in the structure health monitoring 
(SHM) field. These approaches include time series state 
space modeling, autoregressive modeling, Gaussian pro-
cess modeling, Bayesian multi-task learning method-
ologies, support vector regression methodologies, and 
long short-term memory (LSTM) neural networks.25–27 
However, the performance of these methods is highly de-
pendent on the quantity of training data available. When 
monitoring data are lost due to the failure of sensors or 
optical fiber cables, sufficient training data may not be 
available to train the models. Conventional methods do 
not perform well with insufficient data. Therefore, in this 
situation, how to improve the prediction accuracy is a 
critical issue.

To this end, an LSTM neural network based on trans-
fer learning for stress prediction is proposed. The LSTM 
neural network is a special and advanced recurrent neural 
network (RNN) that is capable of learning the long and 
short time series patterns from historical data. This type 
of networks has been proved to exhibit excellent perfor-
mance for addressing time series problems and has the 
best performance compared with the other algorithms.34,41 
Recently, LSTM neural networks have been wildly used 
and achieved great success in civil engineering, for exam-
ple, stress-strain behavior of soils,42 tunneling-induced 
ground settlement,43 performance of EPB shield tunnel-
ing,44,45 and seismic bearing capacity of foundations.46 
However, few studies have been performed to predict the 
mining-induced stress using LSTM neural networks. More 
importantly, insufficient training data limit the effective 
performance of such a network. Therefore, in this study, 
we integrate the LSTM neural network and the transfer 
learning method to predict the mining-induced stress 

and improve the prediction accuracy. Transfer learning, 
on the other hand, is an important development in ma-
chine learning that aims to improve the prediction per-
formance by transferring knowledge learned from source 
domains to target domains. The source domain refers to 
the domain with knowledge and more labeled data and 
is the object that is to be transferred. The target domain 
refers to a new but related domain with a small amount 
of labeled data and is the object to which the knowledge 
is transferred.28,29 To test and verify the proposed method, 
we selected the vertical stress data of monitored results 
in a coal mine as a case study. The results show that the 
developed model can significantly improve the prediction 
performance for the target domain, which can be im-
proved further by increasing the size of the target domain 
training data available.

This paper is organized as follows. Section 2 presents 
a detailed analysis of a field case study of a stress moni-
toring scheme and the results of the study. The method-
ology framework of the proposed model, base theory of 
the LSTM network, and transfer learning are described in 
Section 3. In Section 4, a case study of a model application 
and experiments over two datasets of adjacent monitoring 
sections are described, and corresponding experimental 
results and analysis are presented. Section 5 concludes the 
paper.

2   |   BACKGROUND: IN SITU REAL-
TIME STRESS MONITORING IN 
COAL MINE

2.1  |  Geological and mining conditions at 
Dongtan coal mine

The Dongtan coal mine is located in Ji-ning, Shandong, 
China (Figure 1). The longwall panel in this study was the 
6303 working face. One side of the 6304 panel had been 
previously extracted. The protective coal pillar between 
the 6303 panel and the gob was 5-m-wide. The panel over-
burden depth was approximately 660 m, and the panel was 
245-m-wide and 1400-m-long. The immediate roof of the 
panel comprised mudstone and had an average thickness 
of 0.8 m. The main roof was fine-grained sandstone with 
an average thickness of 12.9 m. The immediate floor of the 
panel was composed of siltstone and was approximately 
1.54-m-thick. The main floor comprised fine-grained silt-
stone and was approximately 7.7-m-thick. The detailed in-
formation geological conditions of panel 6303 are shown 
in Figure 1. As shown in Figure 1, the geological condi-
tions of the monitoring sections from S-1 to S-6 are rela-
tively simple, and they are not located in densely faulted 
areas. To avoid the influence of geological conditions on 
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this study, we selected the monitoring section of S-3 and 
S-4 as the research subject.

2.2  |  Monitoring scheme

The working face of the 6303 panel experienced frequent 
microseismic events during extraction, which were closely 
related to the high-stress distribution around the mining 
area. A Fiber Bragg Grating (FBG) borehole deformation 
sensor for stress measurement in coal mine roof rock is 
adopted. The details of the measurement technique can be 
found in the literature.39 To ensure accurate monitoring of 
the long-term stress changes during the mining process, 
sensors were installed in the intact homogenous main 
roof. This installation avoided the difficulties associated 
with drilling and installing sensors in the soft coal.

According to the theory of rock mechanics, stress in rock 
involves both in situ stresses �0

ij
 and excavation-induced 

stresses Δ�ij. The in situ stresses in a rock mass depend 
largely on the geological structure, such as discontinuities, 
faults, folds, and dikes. Excavation-induced stresses are due 
to the mining process or nearby activities such as excava-
tion, blasting, or pumping. Therefore, the real stress state 

of the rock mass is the sum of in situ stresses and induced 
stresses, which can be denoted as follows.

Therefore, the monitoring of the dynamic evolution of 
mining-induced stress should include two steps, the inves-
tigation of the in situ stresses and real-time investigation 
of the induced stresses.

First, we measured the in situ stresses using the over-
coring stress measurement method for the 6303 working 
face before long-term monitoring. The in situ stresses 
measured by overcoring tests are shown in Table  1. As 
shown in Figures 2 and 3, eight FBG borehole stress sen-
sors were installed in the main roof of the 6303 panel at 
different section positions ahead of the working face. The 
sensor installation inclination was approximately 35º, 
the depth was approximately 15–20 m, and the distance 
between adjacent sensors was approximately 90  m. The 
detailed information of these stress monitoring boreholes 
is shown in Table 2. Figure 4 shows the core with sensor 
by overcoring test and on-site installation work. The dy-
namic 3D stress was obtained by the sensors with the vari-
ations of strains that were calculated from the variation of 

(1)�ij = �0ij +Δ�ij

F I G U R E  1   The location of Dongtan 
coal mine and the plan of panel 6303

Shandong

Heze

Jining

Dongtan coal mine

Panel 6303
S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8

90m

Panel 6303

T A B L E  1   The in situ stresses

Geodetic coordinate system

Oblique 
angle (°)

Working sector coordinate system

Principal 
stress Value (MPa)

Azimuth 
angle (°)

Stress 
components Value (MPa)

Stress 
components Value (MPa)

σ11 33.2 167.20 4.36 σxx 16.96 τxy −0.52

σ22 24.2 68.51 63.23 σyy 33.09 τyz −0.64

σ33 15.2 259.37 26.36 σzz 22.43 τzx −3.61
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wave lengths and the results of three normal stresses and 
three principal stresses within the rock mass. To illustrate 
the stress evolution law and data characteristics, normal 
stress measurements were taken from only two sections 
(S-2 and S-3) for a detailed analysis.

2.3  |  Variation of normal stresses

The magnitude and distribution of existing in situ stresses 
around a coal seam are disturbed by a goaf formed due to 
underground mine excavation. Figure 5 shows typical moni-
toring results of the changes in the three normal stresses (σxx, 
σyy, σzz) in the monitoring sections S-2 and S-3. The three 
normal stresses vary, as shown in Figures 5(a) and 3(b). The 
figures show that the stress states in the monitoring sections 
are not affected by mining disturbance and are similar to the 
in situ stresses at distances >80 m from the working face. 
As the working face advances the three normal stresses in-
crease; the vertical stress increases rapidly compared to the 
other two horizontal stresses. At a distance of about 20 m 
ahead of the working face, all the three normal stresses reach 
a peak and then decrease sharply because the integrity of the 
roof and coal seam is violated.

To quantitatively evaluate the degree of disturbance 
to the roof rock mass caused by mining activities, we as-
sume that k1, k2, and k3 are the corresponding stress con-
centration coefficients of the ratio of the three normal 
stresses to in situ stresses. The values of the coefficients 
when the working face is at different distances from the 
monitoring section can be calculated using the following 
equation:

Figure 6 shows the variations of the concentration coef-
ficients of the three normal stresses during the coal mining 

(2)
⎧⎪⎨⎪⎩

�xx=k1�
0
xx

�yy=k2�
0
yy

�zz=k3�
0
zz

F I G U R E  2   Sketch map of FBG sensor installation (Plan)

Panel 6303

Mining advanceS-1

S-2

S-3

S-4

S-5

S-6

S-7

S-8

90m

Goaf

C
oal pillar

A set of FBG sensors

H
aulage roadw

ay

Ventilation roadw
ay

Panel 6302

Goaf

o

x

y

F I G U R E  3   Sketch map of FBG sensor installation (Profile)

Coal seam
5m

Mudstone
1m

Sandstone
13m

Roadway
35Goaf

Pillar

o

z

y

660m

T A B L E  2   The information of stress monitoring boreholes

Monitoring 
sections

Angel 
(°)

Depth 
(m)

Location (distance to 
the cut-out hole)

S-1 35 15.97 Haulage roadway 420 m

S-2 35 17.13 Haulage roadway 510 m

S-3 35 16.87 Haulage roadway 600 m

S-4 35 14.94 Haulage roadway 690 m

S-5 35 17.14 Haulage roadway 780 m

S-6 35 17.89 Haulage roadway 870 m

S-7 35 19.07 Haulage roadway 960 m

S-8 35 16.91 Haulage roadway 1050 m

F I G U R E  4   The core with sensor by overcoring test (A) and 
on-site installation work (B)

(A)

(B)
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process. Therefore, the area ahead of the working face can 
be divided into four zones, namely, the in situ stresses zone, 

slightly disturbed zone, violently disturbed zone, and stress 
relief zone according to the values of the coefficients.

From above, field measurement can more directly 
reflect the distribution and variation law of mining-
induced stress, and the monitoring data are essential 
for rock burst warning and prevention. However, it is 
ubiquitous and inevitable that monitoring data may be 
lost due to sensor malfunction, optical fiber cable dam-
age caused by coal mining activities, and the volatile 
environment.30 Because of lost data, information that 
is critical for safety evaluation may not be available. 
Thus, data that can be recovered when the sensor fails 
or short-term stress data predictions can have important 
implications for the diagnosis and prognosis of disasters 
in coal mines. For example, relevant destress measures 
can be adopted to mitigate high-stress concentration, 
and an early warning can be raised timeously. Therefore, 
in the next section, a methodology framework of an 
LSTM neural network that integrates transfer learning 
is proposed for stress prediction.

3   |   METHODOLOGY FRAMEWORK

Figure 7 shows a flow chart of the methodology proposed in 
this study, and the algorithm of ensemble of the LSTM and 
transfer learning method is shown in Table 3. To summa-
rize, the ensemble of LSTM and transfer learning method 
can be generalized into the following steps. First, the 
time series datasets DS = 

{(
xS
1
, tS
1

)
,
(
xS
2
, tS
2

)
,…,

(
xSn , t

S
n

)}
 

and DT = 
{(
xT
1
, tT
1

)
,
(
xT
2
, tT
2

)
,…,

(
xTn , t

T
n

)}
 are collected to 

serve as source domain and target domain, respectively. 
Second, time series dataset DS is preprocessed by roll-
ing window method to obtain time series samples. The 
LSTM neural network is used to predict the stress; thus, 
the next step is to construct a base LSTM model using 
the source domain data. The grid search method is used 
to optimize the hyperparameters for the base model. 
Subsequently, the parameter transfer approach is used 
to complete knowledge transfer. The weights of hidden 
layers and the hyperparameters of the above pre-trained 
base LSTM model act as initialization parameters of the 
target LSTM model over the target domain data. The 
model parameters are then fine-tuned according to the 
test results. The proposed model is used to improve the 
prediction accuracy to overcome the missing data prob-
lem resulting from sensor or optical fiber cable damage 
caused by mining activities.

3.1  |  LSTM neural network

Long short-term memory is a special RNN that is ap-
plicable to time series problems, compared to RNNs or 

F I G U R E  5   Monitoring results of normal stresses of the 
monitoring sections of S-2 (A) and S-3 (B)
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F I G U R E  6   Variations of the concentration coefficients of the 
three normal stresses
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traditional neural networks, which is best able to solve 
vanishing gradient and exploding gradient problems of 
long time series. A single LSTM cell comprises an input 
gate, a forget gate, an output gate, and the cell state mem-
ory (Figure  8). Gates are used to optionally perform in-
formation saving, adding, or deleting using the activation 
functions, thereby updating the cell state to achieve long-
term storage of information and resolve the dependence of 
the time series on time. More specifically, the input gate 
controls the flow of input activation into the internal cell 
state. The forget gate controls the LSTM cell to forget or 
reset the cell's memory adaptively. The output gate con-
trols the flow of output activation into the LSTM cell out-
put.31 The activation functions are sigmoid and tanh.

At the time phase t (t = 1, …, n) and inside the lth LSTM 
network layer, the input state of the LSTM cell is x(l)t ; the 
forget gate is f (l)t ; the input gate is i(l)t ; the output gate is o(l)t  ; 
the hidden state output is h(l)t ; and the memory cell state is 
c(l)t . At the previous time t − 1, the cell state memory is c(l)

t−1
 

and the hidden state output is h(l)
t−1

. The following equations 
describe the relationship between these variables.31,32(3)sigmoid (x) =

1

1 + e−x

(4)
tanh (x) =

ex − e−x

ex + e−x (5)
f (l)t = �

(
W

(l)
f

[
ht−1, xt

]
+ b

(l)
f

)

F I G U R E  7   Flow chart of the stress prediction model using 
LSTM neural network and transfer learning method

T A B L E  3   The algorithm of ensemble of the LSTM and transfer 
learning

Algorithm 1 The Algorithm of Ensemble of the LSTM and 
Transfer Learning

Input: Source domain time series dataset 
DS = 

{(
xS
1
, tS
1

)
,
(
xS
2
, tS
2

)
,…,

(
xS
N
, tS
N

)}

Target domain time series dataset 
DT = 

{(
xT
1
, tT
1

)
,
(
xT
2
, tT
2

)
,…,

(
xT
N
, tT
N

)}

Rolling window size Δt

Learning rate �

Hidden layer L

Hidden units U

Epoch times I

Forecast horizon h

Output: The final model generated by the ensemble LSTM and 
transfer learning.

Pretreatment: Time series dataset DS is preprocessed by rolling 
window method to obtain time series samples.

For DS = 
{(
xS
1
, tS
1

)
,
(
xS
2
, tS
2

)
,…,

(
xS
N
, tS
N

)}

Calculate the autocorrelation coefficients �Δt according to 
Eq. (16).

Determine the Δt1 according to the values of �Δt.

The DS was divided into K = N − (Δt + h) + 1 time series 
samples.

1: For DS = 
{(
xS
1
, tS
1

)
,
(
xS
2
, tS
2

)
,…,

(
xS
N
, tS
N

)}

1.1: Build a base LSTM model, set h = 1, and set a group 
appropriate values for each parameters of �, L, U, and I.

1.2: Traverse the parameter combination to optimize the 
LSTM model by grid search method.

1.3: Calculate the RMSE according to Eq. (13).

1.4: Get an optimal pre-trained LSTM model.

2: For DT = 
{(
xT
1
, tT
1

)
,
(
xT
2
, tT
2

)
,…,

(
xT
N
, tT
N

)}

2.1: Build a new LSTM model, set h=1, Δt2=Δt1.

2.2: Transfer the weights of hidden layers and 
hyperparameters of h = 1, Δt, �, L, U, and I from the above 
optimal pre-trained LSTM model act as initialization 
parameters of the new LSTM model over the DT.

2.3: Fine-tune the new model according to Eq. (13–15).

2.4: Update weights and hyperparameters, obtain the final 
model.

End For
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Also shown in Figure 8 for schematic illustration, where 
W

(l)
�

[
ht−1, xt

]
 (with � = {f, i, c, o}) are the weight matrices 

corresponding to different input vectors xt or ht−1 , respec-
tively, within different gates. ĉ(l)

t−1
 is a vector of candidate 

memory cells created by the tanh function. � and tanh are 
the sigmoid and tanh activation function, respectively.

3.2  |  Rolling window method for data 
preprocessing

The raw data cannot be fed into the proposed model di-
rectly because the LSTM neural network expects input 
or output sequences. The rolling window method is used 
to transform the raw data into X (input) and Y (output) 
sequences. In this method, Δt is defined as the rolling 
window size, and a series of small samples with the same 
number can be obtained by rolling through the whole 
sample with a fixed window size. Therefore, to predict the 
time series value at time t + 1, the rolling window feeds 
not only the value at time t but also those at times t − 1, 
t − 2, …, t − Δt to the model. The predicted value at time 
t + 1 is appended to the sequence at time t + 1, t, t − 1, 

t − 2, …, t − Δt − 1, and so on until the last value has been 
predicted.33 This can be expresses as follows.

(6)i(l)t = �
(
W

(l)
i

[
ht−1, xt

]
+ b

(l)
i

)

(7)ĉ(l)t = tanh
(
W

(l)
c

[
ht−1, xt

]
+ b(l)c

)

(8)o(l)t = �
(
W

(l)
o

[
ht−1, xt

]
+ b(l)o

)

(9)c(l)t = f (l)t ⋅ c(l)
t−1

+ i(l)t ⋅ ĉ(l)
t−1

(10)h(l)t = o(l)t ⋅ tanh
(
c(l)t

)

(11)f
(
xt , xt−1, xt−1,…, xt−Δt

)
= xt+1

(12)f
(
xt+1, xt , xt−1, xt−1,…, xt−Δt+1

)
= xt+2

F I G U R E  8   Single LSTM cell 
structure

T A B L E  4   The rolling window algorithm

Algorithm 1 The Rolling Window Algorithm

Input: A time series dataset DT = {T1, T2, Ti,…, Tn}

Rolling window size Δt

Min_periods t

Forecast horizon h

Output: The time series samples generated by rolling window 
algorithm

1: For DT = {T1, T2, Ti, …, Tn}

1.1: For i in range (1,n)

For �� = (1,�), �� = (1,�)

1.1.1: Starting with i, Record data from Ti to Ti+Δt.

1.1.2: If i + Δt + h < n

1.1.3: Save the array {Ti, …, Ti+Δt} as the first input 
sequence �1, and the array {Ti+Δt+1, …, Ti+Δt+h} as the 
first output sequence �1.

1.1.4: For ��,�� in range (1,�)

1.1.5: Rolling the window to the right, Record data from 
Ti+�t to Ti+�t+Δt.

1.1.6: If i + �t + Δt + h < n

1.1.7: Save the array {Ti+t, …, Ti+t+Δt} as the � input 
sequence ��, and the array {Ti+�t+Δt+1, …, Ti+�t+Δt+h} as 
the � output sequence ��.

1.1.8: End If

1.2: End For

2:End For

Return: The time series samples generated by rolling window 
algorithm
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      |  465QIN et al.

The algorithm of rolling window is shown in Table 4. 
Specifically, we assume 10 samples in the dataset, includ-
ing T1, T2, …, T10, and set Δt = 6. An example of the trans-
formation of the raw data to time series samples is shown 
in Figure 9.34 The appropriate window size for the study 
will be identified later in Section 4.

3.3  |  Transfer learning

Traditional machine learning (supervised learning) relies 
on the availability of a large amount of labeled data and 
the identical distribution of the training and test data.35 
However, the difference in data distribution and the lack 
of sufficient labeled data are challenges when tackling 
practical problems. Transfer learning, as opposed to tra-
ditional machine learning, uses the ability of a system to 
recognize and apply knowledge and skills learned in the 
source domains or tasks to new but related target domains 
or tasks. This is an important ability that enables solving 
the problems described above. Figure 10 shows the learn-
ing processes comparing traditional machine learning and 
transfer learning.

Given a source domain DS and a target domain DT, 
transfer learning aims to help improve the target pre-
diction performance using the transfer of knowledge in 
the source domain data when dealing with the issue of 
time series prediction but with few fresh training sam-
ples. Based on the definition of transfer learning and 
learning patterns, transfer learning can be divided into in-
stance transfer, feature-representation transfer, relational-
knowledge transfer, and parameter transfer. In this study, 
the parameter transfer approach is adopted, in which the 
parameters of hidden layers and the hyperparameters of 
the above pre-trained LSTM model act as initialization pa-
rameters of another LSTM model over the target domain 
data.

Some studies in engineering research have recently ex-
plored the applicability of deep learning techniques and 
transfer learning strategies. Li et al.40 proposed a model to 
predict dam displacement data based on transfer learning 
and deep learning. Transfer learning is used to transfer 
the knowledge learned from similar sensors to improve 
prediction accuracy in the target sensor. Ma et al.33,34 pro-
posed a method that integrates transfer learning and ad-
vanced deep learning to transfer knowledge from existing 
air quality stations to new stations to predict air quality. 
For monitoring mining-induced stress, a set of stress sen-
sors is usually installed in different sections. Along the 
mining direction, the longwall face passes through each 
monitoring section in turn. When the longwall face is 
going through a monitoring section, the stress sensor can 
record complete monitoring data successfully if the sensor 
does not early fail work. Therefore, according to transfer 
learning theory, the complete monitoring data of the ad-
jacent stress sensor can be considered the source domain, 
and the monitoring data of the following stress sensor can 
be regarded as the target domain.

4   |   CASE STUDY

4.1  |  Data collection and preprocessing

A detailed analysis of a stress monitoring scheme and 
the results in a coal mine are presented in Section 2. To 
test the proposed model, the monitored vertical stress 
data from the field monitoring case of the Dongtan coal 
mine were used as an application study. The monitored 
vertical stress data of S-2 (Figure 5(A)) (Data acquisition 
time: 8 May 2019–15 June 2019) and S-3 (Figure 5(B)) 
(Data acquisition time: 14 June 2019–18 July 2019) are 
used as the source and target domain data, respectively. 
To avoid the influence of noise data on the model, we 
artificially eliminate some extremely outlier and in-
consistent data and select the average of the data every 
6 h as a data sample during the data collection process. 
However, the model cannot learn the full process of 
the stress variation because the data must be split into 
training and test datasets. To learn enough patterns and 
knowledge from the source domain time series, espe-
cially when the peak of stress is reached, the vertical 
stress data of S-2 are copied to augment the size of the 
dataset in source domain. This is reasonable because 
transfer learning only focuses on the performance of the 
target domain. Then, the rolling window method is used 
to transform the source domain data to time series sam-
ples and split the data into the training and test datasets 
in proportions of 90%–10%, respectively, to pre-train the 
base LSTM model.

F I G U R E  9   A preprocessing example to transform the raw data 
to time series samples
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466  |      QIN et al.

4.2  |  Performance evaluate indicators

To evaluate the performance of the proposed model, three 
widely used evaluation indicators, namely, root mean 
square error (RMSE), mean absolute percentage error 
(MAPE), and mean absolute error (MAE), are adopted to 
measure the prediction error of the model. The equations 
are described as follows:

where n is the number of the prediction, and yi and ŷi are the 
ith actual monitoring stress data and predicted value, re-
spectively. y = 1

n

∑n
i=1 yi. Low values of the RMSE, MAPE, 

and MAE indicate high accuracy of the predictions.

4.3  |  Determination of 
hyperparameters and network structure 
for base LSTM model

4.3.1  |  Rolling window sizes

The size of the rolling window Δt influences the prediction 
performance. This is because data for previous instances 

might have a strong or weak lagged effect on the data at 
the next instance. A small window size cannot guarantee 
that enough information and sample features will be pro-
cessed for the LSTM neural network inputs, while a large 
window size might increase unrelated information and, 
thus, the computation complexity.34,36 To determine an 
appropriate window size, the autocorrelation function37 is 
used to measure the temporal correlations among stress 
time series. Higher autocorrelation coefficients indicate 
stronger time correlations. For a window size Δt, the au-
tocorrelation functions can be calculated as follows:

where y (t) and y (t +Δt) denote the stress value at time 
t and t + Δt, respectively, Cov ( ⋅ ) represents the covari-
ance, and � ( ⋅ ) is the standard deviation.

(13)RMSE =

√√√√ 1

n

n∑
i=1

(
yi− ŷi

)2

(14)MAPE =
1

n

n∑
i=1

||1 − ŷi∕yi||

(15)MAE =
1

n

n∑
i=1

||yi − ŷi||

(16)�Δt =
Cov (y (t) , y (t +Δt))√

�y(t)�y(t+Δt)

F I G U R E  1 0   Learning process differences between traditional machine learning and transfer learning29

F I G U R E  1 1   The autocorrelation coefficient as a function of 
window size
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      |  467QIN et al.

For the source domain data, Figure 11 shows the auto-
correlation coefficients for different window sizes. The au-
tocorrelation coefficients clearly decrease with increasing 
window size. This confirms that the earlier events have a 
weaker impact on the current status. In addition, when the 
window size is <7, the autocorrelation coefficient is >0.5. 
This study follows the range of the window size used in 
previous studies33,38 when the autocorrelation coefficients 
are >0.5, which indicate a high temporal correlation. 
However, for our stress data, the coefficients are >0.5 for 
a window size ≤7. To ensure enough sample features for 
model inputs, the window size Δt was therefore set as 7.

4.3.2  |  Learning rate and LSTM structure

In addition to the above rolling window sizes, the LSTM neu-
ral network structure and other hyperparameters influence 
the forecasting performance. To obtain an optimal predic-
tion performance on the base LSTM model, the grid search 
method is used to optimize the hyperparameters. Given the 
premise of window size Δt = 7, the ranges of the learning rate 
(0.0001, 0.01), hidden layers (2, 3), hidden units (5, 100), and 
epoch times (200, 1000) were used to determine the optimal 
hyperparameters for the model. The evaluation criteria of 
the RMSE were used to measure the prediction performance 
for each parameter combination. In this base LSTM model, 
the Adam optimizer algorithm was used, which can replace 
the classic stochastic gradient descent method to update the 
network weights more effectively.

Table 5 shows the influence of the learning rate on per-
formance. For the models using the four network struc-
tures, the prediction error increases significantly when the 
learning rate is 0.01 and decreases when the learning rate is 
<0.001. Therefore, the recommended learning rate for this 
model is <0.001. Figure 12 shows the prediction accuracy 
as a function of the different LSTM network structures and 
number of iterations (for learning rate =0.0001). The differ-
ent network structures provide considerable improvements 
to the prediction error of the LSTM models. The minimum 

prediction error is at around the 400th iteration. However, 
the fluctuations are caused by the inherent stochasticity 
in training or poor combination of parameters, which are 
usually observed in such cases, and cannot be completely 
eliminated. Therefore, for these hyperparameters (such as 
the learning rate of 0.0005 and 0.0001, and network struc-
ture as [20,10,5]), the amplitude and frequency of fluctua-
tions can be reduced. Considering the above problems and 
learning efficiency, the learning rate, network structure, 
and epochs were set as 0.0001, [20,10,5], and 400 for the 
base LSTM model, respectively.

4.4  |  Analytical results and discussion

4.4.1  |  Performance comparison 
between without transfer learning and with 
transfer learning

To verify the effect of the proposed model, the complete 
monitoring data of vertical stress of S-3 were considered 
to be the target domain data. The hyperparameters and 

T A B L E  5   Influence of the learning rate on the performance

Network structure
Learning 
rate

Number of 
iterations RMSE Network structure

Learning 
rate

Number of 
iterations RMSE

2 layers [50,50] cells 0.0001 400 1.318 3 layers [25,25,25] cells 0.0001 1000 0.247

0.0005 400 2.178 0.0005 700 1.496

0.001 500 0.515 0.001 300 3.195

0.01 1000 14.740 0.01 500 4.753

3 layers [100,50,25] cells 0.0001 400 2.487 3 layers [20,10,5] cells 0.0001 400 0.283

0.0005 700 0.746 0.0005 400 0.718

0.001 700 3.794 0.001 700 0.818

0.01 500 17.850 0.01 300 3.105

F I G U R E  1 2   RMSE as a function of the network structure 
(learning rate = 0.0001)
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weights of the hidden layer of the pre-trained LSTM base 
model are transferred from the source domain data (ver-
tical stress of S-2) to serve as initialization for the target 
LSTM model to be trained on the target domain data (ver-
tical stress of S-3). It is assumed that the vertical stress 
data of S-3 are missing some data when the distance to 
the working face is approximately 33  m. Therefore, the 
monitored data closer than 33 m can be set as the train-
ing set, and all remaining data can be set as the test set. 
In addition, to compare the performance of the pro-
posed model using the transfer learning method, another 
LSTM model without using transfer learning, and two 
time series prediction commonly used models, including 
Autoregressive Integrated Moving Average (ARIMA) and 
Recurrent Neural Network (RNN), are also used to gener-
ate predictions.

The predicted results without transfer learning 
(LSTM), with transfer learning, ARIMA, and RNN, are 
illustrated in Figures 13, 14, 15, and 16, respectively. The 
95% confidence intervals calculated using multiple predic-
tions are also shown in these figures. Given the prediction 
results of both cases, it can be seen from Figures 13, 15, 
and 16 that the variation of the predicted vertical stress 
tends to increase indefinitely when the transfer learning 
method is not used, and the peak of stress cannot be pre-
dicted. Figure 14 shows that it can be predicted accurately 
by the proposed method using transfer learning. This has 
important implications for the diagnosis and prognosis 
of rock bursts in coal mines. A comparison of the predic-
tion error by three evaluation criteria is shown in Table 6, 
which shows that the predicted error without using trans-
fer learning is 2–3 times greater than that obtained by 
the proposed method. This confirms that the use of the 

proposed method is more efficient than the use of the 
LSTM, ARIMA, and RNN model alone.

4.4.2  |  Performance on different size of the 
target domain training data availability

In the actual monitoring application, the monitoring data 
may be lost at any time due to sensor failure, abnormal 
data transmission, or human factors. Therefore, the avail-
ability and amount of target domain data depends strongly 
on the practical situation and has a significant influence 
on the prediction results. To test the performance on dif-
ferent target domain training data sizes, six versions of the 
target domain training data were established. The target 

F I G U R E  1 3   Predicted results without transfer learning 
(LSTM)

 Actual monitoring data
 Prediction data
 Confidence intervals

)ap
M(ssertslacitre

V

Distance to working face (m)

F I G U R E  1 4   Predicted results with transfer learning (TL-
LSTM)

 Actual monitoring data
 Prediction data
 Confidence intervals

)ap
M(ssertslacitre

V

Distance to working face (m)

F I G U R E  1 5   Predicted results by ARIMA
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domain training data were set at 50%, 55%, 60%, 65%, 70%, 
and 80% of the total target domain data, and the test set 
was assigned to all the remaining data. For each case, 
the same pre-trained LSTM model was used for transfer 
learning.

In addition, two metrics, which are RMSE and 
coefficient of determination

(
R2

)
, are adopt to describe 

the prediction performance on different size of the target 
domain training data availability of developed model. The 
RMSE has been defined in Section 3.4, and the R2 can be 
calculated using the following equation:

The results showed that, for each case, the stress 
peak and drop point can be predicted accurately using 
the transfer learning strategy. The stress drop points 
varied considerably; however, this was not important as 
the focus was on predictions of the buildup to the stress 

peak. The results of the RMSE and R-squared parame-
ters as a function of size of the training data are shown 
in Figure 17.

Figure 17 shows that when the training data size was 
set to 50%, the prediction performance was poor. While 
the prediction performance improves significantly when 
the availability of the training data is 55%, the RMSE de-
creased from 7.21 to 3.48 MPa and the R2 increased from 
0.32 to 0.83. The fundamental reason for this trend is that 
the stress state was still in the virgin mode with no excava-
tion disturbance at 66 m from the working face (training 
data availability 50%). The stress state is in an excavation 
disturbed zone at 54  m from the working face (training 
data availability 55%). As the training data size increases 
further, the prediction performance in terms of RMSE 
and R2 values gradually improves. When the target do-
main training data availability is >65%, the RMSE value is 
<2 MPa and the R2 is >0.9. This experiment demonstrates 
that the proposed model in this study is effective and can 
be used to predict the stress in future and recover the miss-
ing stress data when the target domain training data avail-
ability is >55%. In other words, the proposed model can 
significantly improve the prediction performance when 
the target domain training data availability has reached 
the stress disturbed zone.

5   |   CONCLUSION

In this study, a framework that integrates an LSTM neu-
ral network and the transfer learning method to improve 
the prediction performance for missing stress data is pro-
posed. To test the proposed model, vertical stress data 
of two monitoring sections obtained from previous field 
measurement for stresses in the Dongtan coal mine were 
selected as a case study for stress prediction. The main 
conclusions from this study are as follows.

For the base LSTM model, excellent prediction perfor-
mance is obtained when the network structure is set 
as three layers comprising [20,15,5] cells and when the 
window size is 7 and the learning rate is 0.0001.
Model application and experimental results showed 
that the proposed model using transfer learning is 
more efficient than a model without transfer learning. 
Moreover, the peak stress can be predicted accurately 
by the proposed model.
With the increase in the size of the target domain train-
ing data availability, the prediction performance mea-
sured by the RMSE and R-squared values improves. 
The proposed model can be used to predict the stress in 
future and recover missing stress data. The prediction 

(17)R2 = 1 −

∑n
i=1

�
yi− ŷi

�2
∑n

i=1

�
yi−y

�2

F I G U R E  1 6   Predicted results by RNN
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T A B L E  6   A comparison of predicted error by four evaluation 
criteria

Baselines
RMSE 
(MPa)

MAPE 
(%)

MAE 
(MPa)

Without transfer learning 
(LSTM)

13.71 23.0 5.86

With transfer learning 
(TL-LSTM)

5.55 10.2 2.67

ARIMA 11.09 21.8 6.11

RNN 13.50 23.8 6.12
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performance improves significantly when the target 
domain training data availability is >55%, indicating 
that the data have reached the stress disturbed zone.
The main contributions of the proposed framework are 
that the LSTM neural network and transfer learning 
method are integrated to improve the mining-induced 
stress prediction performance when data are missing. 
This can be applied to reconstruct the missing data or 
predict the stress state in the next few days, which is 
crucial for the diagnosis and prognosis of the stability 
of surrounding rock, and provides an important ref-
erence for similar projects. However, in the mining 
field, many factors such as blasting, tremor generated 
by wave propagation, and energy release of the hard 
roof fracturing can cause sudden stress changes. The 
influence of these external factors on stress cannot be 
accounted for by the proposed model. This challeng-
ing and significant work will be carried out in future 
studies.
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