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SUMMARY

Recognition of non-linear constitutive rock/soil model from experimental results is often multi-modal in
the large parameter space. A genetic evolution algorithm is thus proposed for its recognition, including that
of structure of the model and coefficients in the model. The structure of the model can be firstly determined
according to mechanical mechanism if the mechanism is clearly understood or searched by using
evolutionary algorithm. The coefficients to be determined are then searched in global optional space. With
the new evolutionary algorithm, the non-linear stress–strain–time constitutive law to describe strain
softening behaviours of diatomaceous soil under consolidated and undrained state was recognized by
learning stress–strain–time behaviour of an intact sample under consolidated pressure of sc ¼ 0:1 MPa and
strain velocity of ’eea ¼ 0:175%=min: This model gave reasonable prediction for diatomaceous soils under
varying consolidated pressures (0.1–3:5 MPa) and strain velocities (0.0044–1:75%=min). It indicates that
the methodology proposed in this paper is robust enough and strongly attractive for recognition of non-
linear constitutive model of soil and rock materials. Copyright # 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

Recognition of non-linear behaviours of rocks and soils becomes increasingly interesting and is
one of the key important problems in design, stability analysis, prediction and control of failure
for geotechnical engineering projects. Many researchers gave their effort to build these non-
linear constitutive models based either on mechanics [1–6] or on back recognition from
experimental data [7]. The former needs to understand well the mechanism of deformation and
failure of soils. The mechanical mechanism determines the type of the structure of the model.
The latter is an inverse problem. It has to determine the unknown structure and parameters of
model. Thus, it has the large parameter space and is highly multimodal. There are three main
types of search methods for this recognition: calculus-based, enumerative, and random. Since
recognition of highly non-linear constitutive material model is of the large parameter space and
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highly multimodal, calculus-based and enumerative techniques were discounted as being either
not robust enough or not efficient enough to handle this problem. Thus, the two most efficient
algorithms are the genetic algorithm and the simulated annealing technique.

In this paper, mechanical methods and intelligent back-recognition are integrated. Structure
of the constitutive model is determined from its mechanical mechanism. The genetic algorithm
[8] was then chosen for its biological and evolutionary appeal to find the set of unknown
parameters that best matched modelling prediction with experimental data. The details of
this genetic algorithm technique and the implementation for non-linear stress–strain–time
relationship of a soil are the subject of this paper.

2. GENETIC ALGORITHM

A genetic algorithm operates on the Darwinian principle of ‘survival of the fittest’. An initial
population of size w is created from a random selection of the parameters in the parameter
space. Each parameter set represents the individual’s chromosomes. Each individual is assigned
a fitness based on how well each individual’s chromosomes allow it to perform in its
environment. Through selection, crossover, and mutation operations, with the probabilities
Ps; Pc; and Pm; respectively, the next generation is created. Fit individuals are selected for mating,
whereas weak individuals die off. Mated parents create a child with a chromosome set that is
some mix of the parent’s chromosomes. For example, parent 1 has chromosomes HIJKL,
whereas parent 2 has chromosomes ABCDE, one possible chromosome for the child is HICDE,
where the position between the chromosomes I and C is the crossover point. There is a small
probability that one or more of the child’s chromosome will be mutated, e.g. the child ends up
with chromosome HOCDE. The process of mating and child creation is continued until an
entire population of size w is generated, with the hope that strong parents will create a fitter
generation of children; in practice, the average fitness of the population tends to increase with
each generation. The fitness of each of the children is determined, and the process of selection/
crossover/mutation is repeated. Successive generations are created until very fit individuals are
obtained.

3. EXPERIMENTAL DATA FOR RECOGNITION OF MODEL

The triaxial tests were conducted on diatomaceous mudstones specimens consisting of residual
diatomaceous, clay, and pozzolana. The cylindrical specimens with diameter 5 cm and height
10 cm were drilled from cubic of 40� 40� 40 cm3: The mudstones are specific gravity of
2:183 g=cm3; natural water content wn of 119.6%, liquid limit wl of 172.7%, plastic limit wp of
94.7%, and compressive index cc of 1.458. The specimens were completely saturated. It is a high
porosity and high compressive material. Two types of specimens, intact and precut (see Figure 1),
were used to investigate effect of discontinuities. The consolidated and undrained triaxial tests
were conducted with various strain velocity ’eea of 0.0044–1:75%=min: Its standard value is
0:175%=min: In order to investigate time-dependent behaviours, the creep tests were also
conducted.

It can be seen from Figures 2 and 3 that it exists a low strain softening and deviator
stress decreased gradually after peak strength if previous consolidation pressure is larger than
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1:5 MPa: This belongs to normal consolidation state. Contrastively, strain softening abruptly
occurs after peak strength and then deviator stress decrease to a value, residual strength, as over
consolidation state. Therefore, time dependency is important to strain softening of soils
(Figure 4). There raises a problem: How to determine accurately a constitutive law, a non-linear

Figure 1. Schematic view of the precut specimen.
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Figure 2. The measured data for intact diatomaceous soil specimens.
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stress–strain–time relationship, for these complicated behaviours? A recognition based on
genetic algorithm shown as follows can be constructed for this.

4. METHODOLOGY FOR IDENTIFYING NON-LINEAR STRESS–STRAIN–TIME
RELATIONSHIP OF SOILS

Identification of non-linear stress–strain–time relationship of soil starts with determination of
the underlying response mechanism. It is used to determine expression, i.e. the structure, of the
model.

And then coefficients in the tentative model are recognized by using evolutionary algorithm.

4.1. Basic stress–strain relationship

The incremental stress–strain relation for geotechnical materials is basically written by [1,9,10]

dv

de

( )
¼

C11 C12

C21 C22
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Figure 3. The measured data for diatomaceous soil specimens with a joint at different angle y:

————————————————————————————————————————"
Figure 4. Relationship between strain and time stress control under consolidated and undrained condition:
(a) the experimental results for diatomaceous soil without joint; (b) the experimental results for

diatomaceous soil with a joint at given angle; and (c) a representative e–log t plot.
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where dv is volume strain increment, de is shear strain increment, dp0 is effective stress
increment, dq is deviator stress increment. According to yield function and correlation flow rule,
the coefficients C11; C12; C21; and C22 in Equation (1) can be represented by

C11 ¼ 1þ ln
p0

p0
0

� �� �
þ

1

K
; C12 ¼

w
Mp0

C21 ¼ C12; C22 ¼
w

M2p0½1þ lnðp0=p0
0Þ�

þ
1

3G
ð2Þ

where

w ¼
l� k
1þ e0

; M ¼
6 sin j0

3� sinj0

j0 is the effective friction angle, M is the slope of critical state line at surface p0 and q; e0 is initial
pore ratio, l is compressive coefficient, k is dilation coefficient, p0 is average effective stress, p0

0 is
average effective stress after consolidation, K is volume deformation modulus and G is shear
modulus.

4.2. Stress–strain–time relationship

Since mechanical behaviours of diatomaceous soils investigated here is time dependent and
similar to that of over-consolidated clay, the stress–strain–time constitutive model for it can be
built by expanding Equation (1) through adding C13 and C23 items related to time as

dv

de

( )
¼

C0
11 C0

12 C13

C0
21 C0

22 C23

" # dp0

dq

dt

8>><
>>:

9>>=
>>; ð3Þ

For the consolidated and undrained triaxial tests of soils, volume strain increment is zero [9,10],
i.e. dv ¼ 0: Therefore, Equation (3) can be simplified as

fdeg ¼ ½C0
21 C0

22 C23�

dp0

dq

dt

8>><
>>:

9>>=
>>; ð4Þ

where

C0
21 ¼ m

w0

Mp0 � 10�1
;

C0
22 ¼ f

w0

M2p0 � 10�1½1þ lnðp0=p0
0Þ�

; C23 ¼ b
de
t
; w0 ¼

l� k
1þ ce0

; ð5Þ

where m; f ; b and c are coefficients to be determined.
According to the relationship between strain and time obtained in consolidated and

undrained creep test (Figure 4), the following representative equation can be established by:

e ¼ a log t þ b ð6Þ

where a; b are coefficients to be determined.
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Combining Equations (4), (5), and (6), the following equation can be obtained as:

de ¼
a

4:605b
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

9:21

a
ðC0

21 dp
0 þ C0

22 dqÞ

r" #
ð7Þ

Obviously, Equation (7) is a representation of non-linear stress–strain–time law for
diatomaceous soils. The problem is to determine unknown coefficients in Equation (7).
Therefore, recognition of non-linear stress–strain–time law for diatomaceous soils reduces here
to that of parameters. A good candidate evolutionary algorithm for this was genetic algorithm.
After different tentative settings (different set of the coefficients a; m; f ; b and c in Equations
(5) and (7)), our choice is to find a best set of coefficient set with minimum error (fitness) from
experimental results. The recognition starts creation of initial tentative sets of coefficients and
finishes through evolution of sets.

4.3. Creation of initial tentative non-linear stress–strain–time relationship

Initially, the w groups of tentative coefficient set can be randomly generated to generate w
tentative non-linear stress–strain–time relationships represented by Equation (7). Since Knuth’s
subtractive algorithm is regarded as one of the best random number generators [8], random
numbers may be generated using Knuth’s method. The question is what is an appropriate
population size w; number of the tentative models, must be addressed before any genetic
algorithm calculations can be run. From Reference [11], appropriate population size is

w ¼ OðdwqÞ ¼ O½ðl=qÞwq�

where d ¼ l=q; w is the cardinality of chromosomes, i.e. for binary coding w ¼ 2; q is the size of
the schema of interest, and l is the length of the chromosome string.

Among all search spaces, a special attention is paid to those that can be mapped onto the
Euclidean vector space Rn; for some integer n; e.g. the set of polynomials of a given degree.

4.4. Evaluation of tentative non-linear stress–strain–time relationship

The quality of a tentative model can be easily derived by comparing, under given experimental
conditions, the actual experimental responses with their numerical simulations obtained using
that tentative set: a good model should give simulated results close to the experimental ones. A
model with the tentative coefficient set is evaluated through the difference between the observed
strain Demea and the strain Decom computed from that model according to the experimental
loading history:

Fitness ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðDecom � DemeaÞ

2

r
ð8Þ

Two errors were considered: the overall average error of all of the members of the population
and the best individual with the smallest error. The average error is a measure of how well the
population as a whole is doing, as well as how fast it is converging to the optimal solution. The
best error simply indicates how well the genetic algorithm has done in finding a minimum cost
solution.

If error represented by Equation (8) is not accepted or desired, then the tentative material
models should be recreated by evolving. This evolution is carried out by reproduction, crossover
and mutation operation performed on binary string representing constitutive model.
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4.5. Evolution of tentative non-linear stress–strain–time relationship

The w groups of tentative non-linear stress–strain–time relationship are than evolved through
reproduction, crossover and mutation on chromosomes. Reproduction is a process in which
individual strings are copied according to their error function values, Fitness. Intuitively, we can
think of the function Fitness as some measure of profit, utility, or goodness that we want to
optimize. Coping strings according to their fitness values means that strings with a lower value
have a higher probability of contributing one or more offspring in the next generation. This
operator, of course, is an artificial version of natural selection, a Darwinan survival of the fittest
among string creatures. This is the standard roulette wheel reproduction operator, with Monte
Carlo selection with probabilities based on fitness levels. As no explicit local optimizing operator
is used, we introduced fitness scaling; a procedure that enhances differences among similar
fitness values, to improve fine tuning of the solutions. An elitist strategy is also implemented,
preserving the best individual of the last iteration in the new population.

During crossover with binary coding, the crossover point may occur in the middle of one of
the parameter string; this allows the child to have a parameter string that is a mix of the parent
parameter strings and, consequently, the child may have an allel (parameter value) between the
two alleles of the parents. Single-point crossover strategy is used here. The chromosome set of
the first parent is mapped into the child. A crossover point is randomly chosen where the
chromosome set of the second parent, overwrites the chromosome set of the parent, e.g., one
possible chromosome set for the child. If it has probability Pc; then there is a 1� Pc probability
that the child would retain the entire chromosome set of the first parent. The following is an
example for evolution of models to next generation

As before, the new created tentative constitutive models is tested using both the learning cases
and the testing cases again. Their applicability is evaluated using Equation (8). The algorithm
stops whenever the fitness of the best individual (error in the time–strain–stress space) becomes
lower than the heuristically computed unavoidable error, or after a given number of generations.

4.6. Algorithm for genetic evolution of material constitutive models

Summarily, algorithm for genetic evolution of material constitutive models is described as
follows.

Step 1: Collect a set of experimental data obtained in rock mechanical tests. The data set is
divided into two groups. One is used as fitness cases to obtain constitutive model.
Another is used as testing cases to appraise applicability of the learned constitutive
model. Follow the following learning process to find the best model whose predictions
both for learning cases and test cases agree well with the measurements.

Step 2: Generate randomly w groups of tentative constitutive models fwg ¼ fw1;w2; . . . ;wmg as
initial generation of model evolution.

Step 3: Errors are calculated using Equation (8) to evaluate fitness of each tentative model
individual.

Step 4: If the calculated error is less than the allowable error, then genetic evolutionary
procedure is finished. Otherwise, go to Step 5.

Step 5: Perform genetic operations on the binary (or real number) string presenting the current
tentative model individuals to obtain w groups of new material model individuals. Then
go to Step 3.
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5. THE RECOGNITION OF NON-LINEAR STRESS–STRAIN–TIME RELATIONSHIP
OF DIATOMACEOUS SOIL

Since mechanical behaviour at pre-peak strength of soils is often different from that at post-
peak strength, the coefficients a; m; f ; b and c in Equations (5) and (7) for these two states are
separately determined. The critical issue is the choice of the search space in which to look for a
solution. It should be large enough to include high-quality solutions, but not too large, as the
search would then be intractable. The search space is thus determined to be 04a410; 04m; f ;
b4100; 04c410: The population size was determined to be w ¼ 1000: The random seed
number was set to be S ¼ 2000: The specimen no. 17 in Table I, over consolidated with the
pressure sc ¼ 0:1 MPa and without precut, is only used as fitness case to obtain the non-linear
stress–strain–time relationship of diatomaceous soil. The evolutionary parameters were

Table I. Parameters and cases used to determine the strain–stress–time constitutive model. *

Basic experimental parameters l ¼ 0:642; k ¼ 0:071; n ¼ 0:397; M ¼ 1:75

Specimen no. Consolidation e0 Strain W ð%Þ Precut r ðt=m3Þ
pressure velocity angle
sc (MPa) ’eea ð%=minÞ (deg)

1y 0.5 2.75 1.75 128.5 1.324
2 0.5 2.75 0.7 129.64 1.331
3 0.5 2.75 0.35 14.605 1.307
4 0.5 2.75 0.0875 13.619 1.282
5 0.5 2.75 0.044 13.154 1.303
6 0.5 2.75 0.0175 124.57 1.339
7 0.5 2.75 0.0044 1.377
8 2.5 2.38 0.0044 108.77 1.323
9 2.0 2.54 0.0175 108.77 1.362
10 2.0 2.54 0.0583 104.98 1.357
11 2.0 2.54 1.75 122.11 1.355
12 2.5 2.76 0.175 123.15 1.306
13 0.5 2.75 0.175 124.31
14 2.0 2.54 0.175 118.48 1.347
15 2.5 2.38 0.175 112.53 1.394
16 3.0 2.14 0.175 114.12 57:28 1.328
17yy 0.1 2.77 0.175 123.15 1.311
18 0.5 2.75 0.175 14.384 1.335
19 0.75 2.74 0.175 124.26 1.288
20 1.0 2.70 0.175 126.4 1.325
21 1.5 2.63 0.175 128.87 1.317
22 2.0 2.54 0.525 114.22 1.35
23 2.5 2.38 0.175 112.53 1.394
24 3.0 2.14 0.175 100.96 1.392
25 3.5 2.05 0.175 97.2 1.422
26 2.5 2.38 0.525 114.22 57:28 1.25
27 2.5 2.38 0.0044 108.77 588 1.274
28 2.5 2.38 1.75 122.11 57:28 1.332
29 2.5 2.38 0.0175 108.77 588 1.597

*The rest specimens were used as new cases for ‘true’ prediction.
yThe data was used to test the model learned.
yyThe data was used to recognize the model.
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determined as number of generations Z ¼ 10; jump crossover probability Pc ¼ 0:95; creep
mutation probability Pm ¼ 0:02; inversion mutation probability Pi ¼ 0:2; and gap G ¼ 100%:

These data measured at the consolidated and undrained triaxial tests are randomly divided
into three groups. One is used as fitness case to obtain constitutive model, indicated by ‘yy’ in
Table I. Another is used as new cases to test generalization capability of the learned model,
indicated by ‘y’ in Table I. The rest in Table I are used as new cases for ‘true’ predictions.

The parameter values for the coefficients a; m; f ; b and c in Equations (5) and (7) were
reasonably recognized (see Table II). The model gave its accurate learning for this specimen
with error of 2.49% (see Figure 5).

6. PREDICTIONS OF THE LEARNED CONSTITUTIVE MODEL

Another important issue is the generalization capability of the solution: How good is
the resulting model when used with experimental conditions that are similar with or

Table II. The recognized values for parameters in strain–stress–time constitutive model.

Best fitness a m f b c

Pre-peak strength 0.0177466 1.25 0.03906 0 5.32227 0.00488
ðs1–s3Þ
Post-peak strength 0.0462756 1.13769 0 0.92773 1.85546 1.88476
ðs1–s3Þ
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different from those used during the identification process? The answer to that question
can in turn give some advantage to complex but robust representations over simpler but
unstable ones.
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The computation of the fitness should take the generalization issue into account: one usually
considers during the identification process more than one experimental condition, here pre-peak
and post-peak, also termed fitness cases. The fitness is then average of the error over all fitness
cases. The recognized model was used to predict behaviours of other similar soils with different
consolidated pressure values between 0.1 and 3:5 MPa: Some results are shown in Figures 6
and 7. The model gave excellent predictions for intact samples under varying consolidated
pressures.

The model obtained from the intact soil data was also used to predict behaviours of soil with
precut with different angles under varying consolidated states with pressure values 0.1–3:5 MPa:
The predictions for non-linear behaviours of soil specimen with a precut of 57.2–588 under
consolidated pressure of 2:5 MPa are only in agreement with their measurements (see Figures 8
and 9). It indicates that the constitutive model obtained from the soil sample without precuts
under consolidated pressure of 0:1 MPa cannot be used in most cases of precut.
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Figure 10. Change of individuals as evolutionary for pre-peak strength model.
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7. DISCUSSION AND CONCLUSIONS

For highly non-linear soils, recognition of the constitutive model from experimental data has a
large parameter space and is highly multimodal. The approach shall be robust enough and
efficient enough in global optimum. A genetic evolutionary approach, a global optimal
approach, is thus proposed for recognition of non-linear constitutive models of a soil with a
given structure. The coefficients in the non-linear model are learned from experimental data
using genetic evolutionary approach. In the recognition press, the initial coefficient sets
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Figure 11. Change of fitness as generation number of evolution: (a) for pre-peak; and (b) for post-peak.
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randomly created are used to predict non-linear behaviours of the learning and testing cases.
The error between prediction of each tentative model and measurement is calculated to evaluate
its generalization capability. Then the models are evolved into next generation to create a set of
new tentative models. The created tentative models are undergone the same evaluation as
previous generation. The error decreases as progress of the evolutionary process. The process
continues until the best model having minimum error is found. For example, during recognition
of pre-peak model, the fitness of individuals at 0th and 1st generations is almost about 0.8–0.9.
As evolutionary, more and more individuals concentrated to the minimum fitness close to zero
(Figure 10). The minimum fitness of 0.0177466 was found at 7th generation for pre-peak model
and 0.0462756 was found at 2nd generation for post-peak model (Figure 11 and Table III).
Therefore, 10 generations are enough to find reasonable solution for soil recognition.

Through this evolution process, the constitutive model for describing the time dependency of
diatomaceous soil under consolidated and undrained state both for pre- and post-peak strength
process was found as

de ¼
a

4:605b
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

9:21

a
ðC0

21 dp
0 þ C0

22 dqÞ

r" #

C0
21 ¼ m

w0

Mp0 � 10�1
; C0

22 ¼ f
w0

M2p0 � 10�1½1þ lnðp0=p0
0Þ�

; w0 ¼
l� k
1þ ce0

Table III. The best individual at each evolutionary generation.

Generation no. The best The minimum a m f b c
people no. fitness

Pre-peak strength ðs1–s3Þ
0 532 2.49137 5.12207 1.95313 4.366523 1.06445 7.21191
1 979 0.0953485 0.01953 0 0 5.00977 0
2 732 0.022104 0.01953 0.01953 0 0.09765 5
3 18 0.0210963 0.01953 0.01953 0 0.09765 0
4 923 0.0179771 0.15625 0.03906 0 0.67383 0.3125
5 991 0.0179771 0.15625 0.03906 0 0.67383 0.3125
6 986 0.0179771 0.15625 0.03906 0 0.67383 0.3125
7 910 0.0177466 1.25 0.03906 0 5.32227 0.00488
8 70 0.0177466 1.25 0.03906 0 5.32227 0.00488
9 962 0.0177466 1.25 0.03906 0 5.32227 0.00488
10 191 0.0177466 1.25 0.03906 0 5.32227 0.00488

Post-peak strength ðs1–s3Þ
0 249 0.0786414 1.13769 0.01953 1.24023 2.40234 1.88964
1 521 0.0648654 2.38769 0.01953 1.04492 3.33007 6.88964
2 423 0.0462756 1.13769 0 0.92773 1.85546 1.88476
3 340 0.0462756 1.13769 0 0.92773 1.85546 1.88476
4 145 0.0462756 1.13769 0 0.92773 1.85546 1.88476
5 36 0.0462756 1.13769 0 0.92773 1.85546 1.88476
6 181 0.0462756 1.13769 0 0.92773 1.85546 1.88476
7 34 0.0462756 1.13769 0 0.92773 1.85546 1.88476
8 361 0.0462756 1.13769 0 0.92773 1.85546 1.88476
9 694 0.0462756 1.13769 0 0.92773 1.85546 1.88476
10 641 0.0462756 1.13769 0 0.92773 1.85546 1.88476
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For the different state, pre- and post-peak strength process, the only difference is values of
the coefficients in the equation. The recognized results for pre-peak strength process are
a ¼ 1:25; m ¼ 0:03906; f ¼ 0:0; b ¼ 5:3227; and c ¼ 0:00488; respectively. However, a ¼ 1:13769;
m ¼ 0:0; f ¼ 0:92773; b ¼ 1:85546; and c ¼ 1:88476 are recognized for post-peak strength
process.

Since the constitutive model is learned from experimental data. The experimental data both
for learning and testing cases should be representative at indicating essence of non-linear
behaviours of materials. It needs not only learning cases but also testing cases. Use of the testing
cases can avoid ‘lack-learning’ or ‘over-learning’ problem. Therefore, it needs at least two sets of
the entire stress vs strain curve obtained from mechanical test. One is used for fitness cases and
another is used for testing case. The constitutive model in the paper is recognized only using
stress–strain data of an consolidated soil with consolidated pressure of 0:1 MPa and gave good
predictions for all other consolidated pressures (Figures 6–7). It indicates that the recognized
non-linear constitutive model captured the intrinsic characteristics and has good generalization
capability for predicting non-linear time-dependency behaviour of diatomaceous soil at
different consolidation pressures. The proposed method can be used to construct automatically
soil constitutive models once the underlying response mechanism has been determined.
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