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Abstract

Evaluation of the non-linear deformation behavior of geo-materials is an important aspect of the safety assessment for

geotechnical engineering in complex conditions. This paper presents a novel machine learning method, termed support vector

machine (SVM), to obtain a global optimization model in conditions of large project dimensions, small sample sizes and non-

linearity. A new idea is put forward to combine the SVM with a genetic algorithm. The method has been used in the analysis of the

high rock slope of the permanent shiplock of the Three Gorges Project and the horizontal deformation at depth in the Bachimen

landslide in Fujian Province, China. The 92 non-linear SVMs in total were constructed with their kernel functions and the

parameters were recognized using a genetic algorithm. The results indicate that the established SVMs can appropriately describe the

evolutionary law of deformation of geo-materials at depth and provide predictions for the future 6–10 time steps with acceptable

accuracy and confidence.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Evolutionary support vector machine; Genetic algorithm; Slope; Tunnel; Non-linear time series; Displacement
1. Introduction

Evaluation of the non-linear deformation behavior of
geo-materials is an important aspect of the safety
assessment for geotechnical engineering in complex
conditions. In line with the implementation of the
general development strategy in Western China, there
are many large-scale rock engineering projects being
built and to be built in complex conditions, such as the
Three Gorges Project, the Qinghai–Tibet Rail Road, the
South–North water transfer project and the West–East
gas transfer project. The deformation behavior of large-
scale rock masses is aggravated by complex rock
structures, excavation blasting, reinforcements, seismic
forces, tectonic activities, high stresses, high water
pressure, temperature gradient, strong geo-chemical
reaction and their coupled effects. The deformation
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behavior of rock under such complicated circumstances
is complex, evolutionary, and is a non-linear dynamic
system. The displacement, stresses and acoustic emission
in such systems are inherently noisy, non-stationary, and
deterministically chaotic. This means that the distribu-
tion of displacements is variable over time. Not only is a
single data series non-stationary in terms of its mean
and variance, but also its relation with other related data
series is variable over time. Modeling such dynamic and
non-stationary time series is a challenging task. The
structure of the model and its parameters cannot be
easily determined from prior knowledge in a straightfor-
ward fashion.

Over the past few years, neural networks have been
successfully used for modeling non-linear time series of
rock behavior, such as roof pressure [1], acoustic
emission [2–5], and displacement [6]. Neural networks
are universal functional approximators capable of
mapping any non-linear function without prior assump-
tions relating to the data [4]. Unlike traditional
statistical models, neural networks are data-driven
models. Therefore, neural networks are less susceptible
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Fig. 1. Locations of case studies for modeling of SVMs for non-linear displacement time series.
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to model conceptualization errors than the traditional
parametric models, and they are more powerful in
describing the dynamics of, for example, displacement/
stress/acoustic emission time series than traditional
statistical models [1–7].

A novel machine learning method, termed support
vector machines (SVMs), was proposed by Vapnik and
his co-workers in 1995 [8,9]. This is a new generation
learning system based on advances in statistical learning
theory, enabling non-linear mapping of an n-dimen-
sional input space into a higher-dimensional feature
space where, for example, a linear classifier can be used.
The SVM can train non-linear models based on the
structural risk minimization principle that seeks to
minimize an upper bound of the generalization error
rather than minimize the empirical error as implemented
in other neural networks. This induction principle is
based on the fact that the generalization error is
bounded by the sum of the empirical error and a
confidence interval term depending on the Vapnik–
Chervonenkis (VC) dimension. Based on this principle,
SVMs will achieve an optimal model structure by
establishing a proper balance between the empirical
error and the VC-confidence interval, leading eventually
to a better generalization performance than other neural
network models. An additional merit of SVMs is that
training SVMs is a uniquely solvable quadratic optimi-
zation problem, and the complexity of the solution in
SVMs depends only on the complexity of the desired
solution, rather than on the dimensionality of the input
space. Thus, SVMs use a non-linear mapping, based on
a kernel function, to transform an input space to a high-
dimension space and then look for a non-linear relation
between inputs and outputs in the higher dimension
space. SVMs not only have a rigorous theoretical
background but also can find global optimal solutions
for problems with small training samples, high dimen-
sion, non-linearity and local optima. Originally, SVMs
were developed for pattern recognition problems [10–
12]. Recently, SVMs have been shown to give good
performance for a wide variety of problems,
such as non-linear regression [12–15,9]. A genetic
algorithm is a global optimization algorithm [16].
Genetic algorithms can be used to automatically
recognize kernel functions and parameters of support
vector machines.

In this paper, the evolutionary SVMs are modified to
model non-linear displacement of rocks under complex
conditions. The models have been tested by modeling
non-linear displacement time series of the high slope of
the permanent shiplock of the Three Gorges Project and
a large landslide in China. The predicted displacement
time series are compared with those of the measured
ones, with good agreement.
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Fig. 2. Locations of displacement monitoring points at Section 17-17 of permanent shiplock slope, Three Gorges Project, China.

Table 1

Parameters of SVMs for each monitoring point at Section 17-17 of permanent shiplock slope, Three Gorges Project, China

Stage Parameters of SVM Monitoring point

TP/BM11GP01 TP/BM26GP02 TP/BM27GP02 TP/BM29GP02

1 s 275 211 101 67

C 3091 4846 3376 2813

b 0.60 2.08 1.25 10.34

2 s 151 53 209 49

C 3181 2259 2642 4132

b 6.72 5.52 4.18 8.32

3 s 89

C 3627

b 9.94
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2. Theory of SVMs

2.1. SVMs for regression

With regard to using the support vector machines for
regression, first use a linear function f ðxÞ ¼ w � x þ b to
regress the data set fxi; yig; i ¼ 1; 2;y; n; xiARn; yiAR:
Error-free fitting by the linear function with accuracy e
is assumed to train all the data through

yi � w � xi � bpe; i ¼ 1; :::; n:

w � xi þ b � yipe;
ð1Þ

In view of the tolerable error by introducing two
relaxation factors, xiX0 and x�i X0; Eq. (1) becomes:

yi � w � xi � bpeþ xi; i ¼ 1; :::; n:

w � xi þ b � yipeþ x�i ;
ð2Þ

The optimum objective is the minimization of
1
2
jjwjj2 þ C

Pn
i¼1ðxi þ x�i Þ; where the constant C>0

stands for the penalty degree of the sample with error
exceeding e.
A dual problem can then be derived by using the
optimization method to maximize the function

W ða; a�Þ ¼ �
1

2

Xn

i;j¼1

ðai � a�i Þðaj � a�j Þðxi � xjÞ

þ
Xn

i¼1

yiðai � a�i Þ � e
Xn

i¼1

ðai þ a�i Þ ð3Þ

subject to the conditions

Xn

i¼1

ðai � a�i Þ ¼ 0;

0pai; a�i pC; i ¼ 1; 2; :::; n; ð4Þ

where ai; a�i are Lagrange multipliers.
The SVMs for function fitting obtained by using the

above-mentioned maximization function is then given
by

f ðxÞ ¼ ðw � xÞ þ b ¼
Xk

i¼1

ðai � a�i Þðx � xiÞ þ b; ð5Þ
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Table 2

Values of Lagrange multipliers of SVMs for each monitoring point at Section 17-17 of permanent shiplock slope, Three Gorges Project, China

Stage Sample no Monitoring point no.

TPBM11GP01 TPBM26GP02 TPBM27GP02 TPBM29GP02

a a� a a� a a� a a�

1 1 0.00 3091.00 0.00 4846.00 0.00 3376.00 0.00 1280.39

2 0.00 3091.00 0.00 4846.00 1043.24 0.00 700.38 0.00

3 3091.00 0.00 4846.00 0.00 0.00 3376.00 0.00 2813.00

4 0.00 0.00 0.00 0.00 0.00 3376.00 2813.00 0.00

5 0.00 0.00 0.00 0.00 3376.00 0.00 1239.45 0.00

6 0.00 0.00 0.00 0.00 3376.00 0.00 2258.57 0.00

7 0.00 0.00 0.00 0.00 0.00 3376.00 3.67 0.00

8 0.00 0.00 4846.00 0.00 1664.64 0.00 133.52 0.00

9 0.00 0.00 0.00 0.00 3376.00 0.00 0.00 2813.00

10 0.00 0.00 0.00 0.00 3376.00 0.00 624.36 0.00

11 1014.29 0.00 0.00 668.10 0.00 1725.77

12 698.59 0.00 3376.00 0.00 0.00 1764.77

13 0.00 1712.88 0.00 3376.00 0.00 2813.00

14 0.00 0.00 0.00 3376.00 0.00 374.83

15 0.00 0.00 0.00 3376.00 578.16 0.00

16 0.00 0.00 3376.00 0.00 0.00 878.85

17 0.00 0.00 0.00 3376.00 2230.75 0.00

18 0.00 0.00 3376.00 0.00 2813.00 0.00

19 3091.00 0.00 0.00 2039.77 0.00 1744.24

20 0.00 0.00 3376.00 0.00 2813.00 0.00

2 1 0.00 3181.00 0.00 904.28 0.00 1158.59 231.26 0.00

2 3181.00 0.00 2256.37 0.00 2642.00 0.00 0.00 0.00

3 0.00 438.78 0.00 2259.00 0.00 2642.00 0.00 4132.00

4 0.00 2144.25 1170.77 0.00 0.00 2642.00 0.00 4132.00

5 0.00 0.00 0.00 1647.70 0.00 2642.00 1863.82 0.00

6 0.00 0.00 446.42 0.00 0.00 2642.00 0.00 1280.00

7 0.00 0.00 913.23 0.00 0.00 2642.00 4132.00 0.00

8 2144.25 0.00 591.50 0.00 2642.00 0.00 4132.00 0.00

9 0.00 0.00 19.33 0.00 2624.06 0.00 0.00 3105.38

10 0.00 0.00 0.00 586.65 2642.00 0.00 3209.33 0.00

11 608.43 0.00 2642.00 0.00 0.00 495.97

12 194.12 0.00 0.00 2642.00 4132.00 0.00

13 0.00 413.32 2642.00 0.00 0.00 1376.49

14 458.34 0.00 2642.00 0.00 0.00 2277.77

15 355.15 0.00 0.00 2642.00 0.00 4132.00

16 630.69 0.00 2642.00 0.00 644.80 0.00

17 0.00 1019.38 0.00 2642.00 0.00 3610.98

18 300.43 0.00 2642.00 00.00 2070.20 0.00

19 0.00 675.68 1076.50 0.00 4132.00 0.00

20 0.00 0.00 0.00 2541.97 0.00 4.09

3 1 0.00 1726.72

2 3627.00 0.00

3 0.00 3627.00

4 0.00 3627.00

5 0.00 2239.91

6 66.54 0.00

7 0.00 3627.00

8 563.26 0.00

9 2668.82 0.00

10 1090.00 0.00

11 3627.00 0.00

12 2337.51 0.00

13 1896.87 0.00

14 3627.00 0.00

15 0.00 900.24

16 0.00 3197.02

17 0.00 1311.47

18 0.00 695.44

19 495.23 0.00

20 952.56 0.00
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Fig. 3. Comparison of measured and predicted displacements at

monitoring point TP/BM11GP01, Section 17-17 of permanent ship-

lock slope, Three Gorges Project, China. Stage 1: predictions during 3-

16-1998 to 11-9-1998 using the model obtained by learning measured

displacements from 1-15-1996 to 2-14-1998. Stage 2: predictions during

12-10-1998 to 7-15-1999 using the model obtained by learning

measured displacement from 10-15-1996 to 11-9-1998.
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Fig. 4. Comparison of measured and predicted displacements at

monitoring point TP/BM26GP02, Section 17-17 of permanent ship-

lock slope, Three Gorges Project, China. Stage 1: predictions during 3-

16-1998 to 11-9-1998 using the model obtained by learning measured

displacements from 11-15-1996 to 2-14-1998 and Stage 2: predictions

during 12-10-1998 to 7-15-1999 using the model obtained by learning

measured displacements from 8-16-1997 to 11-9-1998.
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Fig. 5. Comparison of measured and predicted displacements at

monitoring point TP/BM27GP02, Section 17-17 of permanent ship-

lock slope, Three Gorges Project, China. Stage 1: predictions during 1-

14-1998 to 10-8-1998 using the model obtained by learning measured

displacements from 11-15-1995 to 12-10-1997 and Stage 2: predictions

during 11-9-1998 to 7-15-1999 using the model obtained by learning

measured displacements from 9-15-1996 to 10-8-1998.
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Fig. 6. Comparison of measured and predicted displacements at

monitoring point TP/BM29GP02, Section 17-17 of permanent ship-

lock slope, Three Gorges Project, China. Stage 1: predictions during 2-

1-1997 to 11-1-1997 using the model obtained by learning measured

displacements from 12-15-1994 to 1-14-1997, Stage 2: predictions

during 12-1-1997 to 9-1-1998 using the model obtained by learning

measured displacements from 10-15-1995 to 11-1-1997, and Stage 3:

predictions during 10-1-1998 to 7-1-1999 using the model obtained by

learning measured displacements from 2-15-1997 to 9-1-1998.
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where k is the number of support vectors, b is a constant
to be determined during the optimization. Only part of
ai; a�i has non-zero values. The sample corresponding to
ai; a�i is the support vector to be sought.

As for the non-linear problems, the solution can be
found by mapping the original problem to the linear
problem in a characteristic space of high dimension,
where dot product manipulation can be substituted by a
kernel function, i.e. Kðxi;xjÞ ¼ fðxiÞfðxjÞ: The kernel
function can be represented by functions in the original
space. Therefore, we are not obliged to know the
concrete form of the non-linear mapping and Eqs. (3)–
(5) may take the following expressions:

W ða; a�Þ ¼ �
1

2

Xn

i;j¼1

ðai � a�i Þðaj � a�j ÞKðxi � xjÞ

þ
Xn

i¼1

yiðai � a�i Þ � e
Xn

i¼1

ðai þ a�i Þ; ð6Þ

Xn

i¼1

ai � a�i
� �

¼ 0;

0pai; a�i pC; i ¼ 1; 2;y; n; ð7Þ

f ðxÞ ¼ ðw � xÞ þ b ¼
Xk

i¼1

ðai � a�i ÞKðx � xiÞ þ b; ð8Þ

where Kðx � xiÞ is a kernel function which measures the
similarity or distance between the input vector xi and the
stored training vector x: Common examples of K( � ) are
the polynomial kernel function Kðx; yÞ ¼ ððx � yÞ þ
1Þd ; d ¼ 1; 2;y; n; Gaussian radial base kernel function
Kðx; yÞ ¼ exp � x � yj j2=s2

� �
; and Sigmoid kernel func-

tion Kðx; yÞ ¼ tanhðfðx � yÞ þ yÞ; where d; s are con-
stants.

The common algorithms for solving the quadratic
programming problem expressed by Eqs. (3) and (4), (6)



ARTICLE IN PRESS

Fig. 7. Location of monitoring points for geo-surface and monitoring boreholes for displacement at No.2 Bachimen landslide, Funing expressway,

Fujian, China.
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and (7), are the interior point algorithm, sequential
minimal optimization algorithm, and decompose algo-
rithm.

2.2. Sequential minimal optimization

Platt has proposed a new algorithm for training
SVMs, called Sequential Minimal Optimization
(SMO)[17]. It is a simple algorithm that can quickly
solve the SVM quadratic programming problem
without any extra matrix storage and is exempt from
using any numerical quadratic programming optimiza-
tion steps. SMO decomposes the overall quadratic
programming problem into sub-problems of quadratic
programming by using Osuna’s theorem to ensure
convergence. There are two components in SMO: an
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Vegetation soil including sand 
particle and partly gravel with
particle diameter of 25 mm

Powder clay: lark, including 
viscous sand powder partially 
mingled with little gravel,
whose diameter varies from
5~60mm, in little efflorescent 
status, stiff.

At the depth of  3.65~4.60m
and 5.05~7.40m, lies the 
nubbly rock in deep gray
color, which belongs to little
efflorescent tuff lava. The core
of rock is in cylindrical shape,
stiff and not easy to be
smashed. 

Powder clay: lark ~ sage green, including viscous sand 
particle mingled with breccia with the diameter of 5~20 
mm, which can be deduced as the soil of ancient slip strip.

Powder clay with gravel: lark, including viscous sand 
particle and gravel with the diameter of 15~20 mm;
belonging to severely~little efflorescent tuff. At the depth 
of 14.50~14.90m, lies the lark nubbly rock belonging to
weak efflorescent tuff lava, the core of which is in rubbly  
shape, stiff and not easy to be smashed by hammer.

Severely efflorescent tuff: sage green, the structure of 
intact rock can be recognized; the core is in rubbly or sand
soil shape; with the diameter of 15~50 mm, the gravel is
stiff and not easy to be smashed by hammer but partially 
can be broken by hand.

Little efflorescent tuff: sage green, nubbly; the joints and 
fracture prosper; the surface of the fracture is dyed with
ferromanganese materials. The rock is fresh, the core of 
which in short or common cylindrical shape, stiff, and not
easy to be smashed by hammer.

Fig. 8. Geological section of inclinometer borehole cx9 at No.2

Bachimen landslide, Funing expressway, Fujian, China.
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analytic method for solving for the two Lagrange
multipliers; and a heuristic one for choosing multipliers
in optimization.

The advantage of SMO lies in the fact that solving for
two Lagrange multipliers can be done analytically.
Thus, numerical quadratic programming optimization
is avoided completely. The inner loop of the algorithm
can be expressed in a small C code, rather than invoking
an entire quadratic programming library routine. Even
though more optimization sub-problems are needed in
the solving algorithm, the overall CPU time expense is
much reduced due to the quick solution of each sub-
problem. In addition, SMO requires no extra matrix
storage. Thus, very large SVM training problems can fit
inside the memory of an ordinary personal computer or
workstation. Because no matrix algorithm is involved in
SMO, it is less susceptible to numerical precision
problems [17].

The algorithm can be summarized as follows:
(1)
 Construct the corresponding quadratic optimization
model based on the SVM principle.
(2)
 Assign initial values to the Lagrange multipliers
ai; a�i and form the Lagrange multipliers set.
Calculate the b value.
(3)
 Verify whether all the Lagrange multipliers satisfy
the Karush–Kuhn–Tucker (KKT) conditions. If all
of them are satisfied, then the current values of
Lagrange multipliers and b are the solution of the
quadratic optimum problem. Otherwise go to
step 4).
(4)
 Select another pair of Lagrange multipliers ai; a�i
and verify if it satisfies the KKT conditions. If they
are satisfied, then they are selected as the final
Lagrange multipliers ai; a�i : Otherwise the current
selected pair of Lagrange multipliers ai; a�i is the first
multipliers pair.
(5)
 Use the same procedure to select the second
multipliers pair.
(6)
 Solve the quadratic optimum problem using the
above-derived two multipliers pairs. Obtain the new
values of the two pairs of Lagrange multipliers and
compute b:
(7)
 Substitute the original values of the two pairs of
Lagrange multipliers with their new values and form
a new Lagrange multipliers set, then go to
step 3).
3. Application of SVMs for non-linear displacement time

series

3.1. SVM representation of non-linear displacement time

series

A non-linear displacement time-dependent series
fxtg ¼ ðx1; x2;y;xnÞ can be obtained by monitoring in
geo-materials. Modeling the non-linear displacement
series means finding the relation between the displace-
ment xiþp at time i þ p and its displacements
xi;xiþ1;y;xiþp�1 at the previous p time steps, i.e. xiþp ¼
f ðxi; xiþ1;y;xiþp�1Þ: As a non-linear function, f( � )
expresses the non-linear relations of the displacement
time series.

According to the theory of SVMs, the above-
mentioned non-linear relation can be obtained by
learning the measured displacements using the
SVMs. That is to say the non-linear relation of the
displacement time series can be obtained by learn-
ing the displacement behaviour at n–p time steps
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Xi;Xiþ1;y;Xiþp�1ði ¼ 1;y; n � pÞ; i.e.:

#Xnþm

¼
Xn�p

i¼1

ðai � a�i ÞKðXnþm;XiÞ þ b m ¼ 1;y;w; ð9Þ

where, #Xnþm is the displacement at time n þ m

Xn+m is a displacement series Xnþm ¼ ðxnþm�p; xnþm�pþ1;
y; xnþm�1Þ; m=1,2,y,wXi is the displacement !series
used as the training samples, Xi ¼ ðxi; xiþ1;y;
xiþp�1Þði ¼ 1; 2;y; n � pÞ: K( � ) is the kernel func-
tion and w is the number of the future time steps.
p is the number of historical points. a, a� and b are
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Fig. 9. Monitored displacement values from (a) 01-8-3 to 01-9-2, (b) 01-9-14

02-3-31 for inclinometer borehole cx9 at No.2 Bachimen landslide, Funing ex

1m depth intervals were used to build the corresponding SVMs.
obtained by solving the following quadratic program-
ming problem:

W ða; a�Þ ¼ �
1

2

Xn�p

i;j¼1

ðai � a�i Þðaj � a�j ÞKðXi � XjÞ

þ
Xn�p

i¼1

Xiðai � a�i Þ � e
Xn�p

i¼1

ðai þ a�i Þ

Subject to
Xn�p

i¼1

ðai � a�i Þ ¼ 0;

0pai; a�i pC; i ¼ 1; 2;y; n � p: ð10Þ
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Fig. 9 (continued).
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3.2. Evolutionary SVMs

An evolutionary SVM uses a genetic algorithm to
search the kernel function and its training parameters
with the input of the training sample set. The tentative
SVMs are tested by the testing sample set. The training
process of the SVMs will be completed when the
identified SVMs can give good generalized predictions
for testing samples. The algorithm can be summarized as
follows:

Step 1: Collect a set of a monitored displacement time
series to construct a training SVM sample set. A testing
sample set is built by selecting randomly from the
monitored displacement time series, which may not be
included in the training sample set.

Step 2: Initialize parameters for evolution such as the
number of evolutionary generations, population size,
creep mutation probability, jump mutation probability,
range of the kernel function and its parameters
including b, C and s:

Step 3: Select randomly a kernel function from
common examples of kernel functions such as poly-
nomials, Gaussian radial base, and Sigmoid. Produce
randomly a set of C, b and s in the given ranges. Every
created kernel function and its parameters such as C, b

and s is regarded as an individual of the tentative SVMs.
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Fig. 9 (continued).
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Fig. 10. Comparison of displacements monitored and predicted by the SVMs for each point with 1m interval along depth of borehole cx9 for No.2

landslide on 11 May 2002, the data were not used to build the SVMs.
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Step 4: Use the SMO algorithm to solve the quadratic
programming problems, including every tentative SVM
individual, to obtain their support vectors.

Step 5: The selected parameters and the obtained
support vectors represent a SVM model. Use the testing
samples to test the prediction ability of the SVM models.
The applicability of the model is indicated by fitness:
fitness ¼ max
xi � #xij j

xi

� �
; i ¼ 1; 2;y; q

	 

; ð11Þ
where xi; #xi are the measured and predicted displace-
ments for output of the ith testing sample series. q is the
number of the testing samples.

Step 6: If fitness is accepted then the training
procedure of the SVMs is completed. Otherwise, select
randomly two individuals i1; i2 whose fitnesses are less
than the average value to perform a crossover operation
to create two new SVM individuals.

Step 7: One of the new individual SVMs is mutated
using the creep mutation probability and jump mutation
probability to produce a new individual.
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Fig. 11. Comparison of displacements monitored and predicted by the SVMs for each point at 1m depth intervals of borehole cx9 for No.2 landslide

on 21 May 2002, the data were not used to build the SVMs.
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Fig. 12. Comparison of displacements monitored and predicted by the SVMs at each point for 1m depth intervals of borehole cx9 for No.2 landslide

on 31 May 2002, the data were not used to build the SVMs.
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Step 8: If all new individuals of population
size are generated, then go to Step 4; otherwise, go to
Step 6.

3.3. Prediction of generalization

If a SVM is established for a non-linear displacement
time series fxtg ¼ ðx1;x2;y;xnÞ; then it can be used to
predict the future displacements of the time series by
iteration. The basic idea is as follows. First, the
displacement #xnþ1 at time step n þ 1 is predicted by
using the SVM model for the input vector
ðxn�pþ1;y;xnÞ: Then, the predicted #xnþ1 can be added
to the input vector and the displacement at the previous
time step n–P+1 is deleted so that the input vector has
the same time steps as before. The updated input vector
is used to predict the displacement #xnþ2 for the next time
step n þ 2: In turn, the new predicted displacement #xnþ2
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Fig. 13. Comparison of displacements monitored and predicted by the SVMs for each point for 1 m depth intervals of borehole cx9 for no.2 landslide

on 10 June 2002, the data were not used to build the SVMs.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Measured

Predicted

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Measured

Predicted

A direction

B direction

D
ep

th
 f

ro
m

 s
ur

fa
ce

 (
m

)

D
ep

th
 f

ro
m

 s
ur

fa
ce

 (
m

)

Displacement (mm) Displacement (mm)

-8.0 -5.0 -2.0 1.0 4.0 7.0 10.0 -4.0 -1.0 2.0 5.0 8.0 11.0 14.0

Fig. 14. Comparison of displacements monitored and predicted by the SVMs for each point for 1 m depth intervals of borehole cx9 at No.2 landslide

on 21 June 2002, the data were not used to build the SVMs.
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is then used to update the input vector for predicting the
displacement at time step n þ 3: The loop is finished
when the displacement #xnþm at the expected time step
n þ m is appropriately predicted.

Normally, the accuracy of prediction decreases with
the increase of time steps. Therefore, a multi-stage
prediction model is necessary for longer time series in
prediction to obtain acceptable accuracy. For multi-
stage prediction modeling, continuous displacement
measurement is necessary. At each stage, the measured
displacement values are used to train the SVM model
and predict the behavior for multi-time steps.
4. Case studies

4.1. Study of non-linear displacement time series for the

slope at the permanent shiplock, Three Gorges Project,

China

The permanent shiplock of the Three Gorges Project
is located on the right bank of the Yangtze river in
China (Fig. 1). The normal height of the slope is 100–
160 m with a maximum height of 170 m. After comple-
tion of the slope excavation, its long-term deformation
will directly affect the function and operational safety of
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Fig. 15. Comparison of displacements monitored and predicted by the SVMs for each point for 1m depth intervals of borehole cx9 for No.2

landslide on 1 July 2002, the data were not used to build the SVMs.
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Fig. 16. Comparison of displacements monitored and predicted by the SVMs for each point for 1m depth intervals of borehole cx9 for No.2

landslide on 11 July 2002, the data were not used to build the SVMs.
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the shiplock and other nearby facilities. The safety
monitoring has being conducted for better understand-
ing of the behavior of the high shiplock slope during
both excavation and operational periods. Deformations
at the four measuring points, namely TP/BM11GP01,
TP/BM26GP02, TP/BM27GP02, and TP/BM29GP02
of the third shiplock head (Section 17-17, the most
complex section, Fig. 2) were investigated by using the
evolutionary SVMs. In the SVM training, the kernel
function such as polynomials, Gaussian radial base, and
Sigmoid, is randomly selected; the range of the
parameter C is set to be 1–5000, s; b or d is set to be
1–300. The number of historical time steps p is taken to
be six and the time step is taken to be 1 month. After
evolution of 50 generations, the best SVM model with
best parameters C;s; b (shown in Table 1) and the best
support vectors (shown in Table 2) are found. With the
recognized SVMs, the displacements for the future 10
time steps (months) are predicted (Figs. 3–6). With
the accuracy of model generalization being considered,
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Table 3

Parameter values of SVM models for monitoring borehole cx9,

Bachimen landslide, Fujian, China

Depth

from

surface (m)

A direction B direction

C s b C s b

1 210 40 �3.54 272 30 2.18

2 111 34 �3.77 424 29 1.43

3 226 39 �2.88 907 26 1.14

4 484 34 �1.69 528 49 1.91

5 569 74 �1.23 252 12 2.82

6 752 33 0.47 790 48 2.79

7 64 9 1.19 766 37 1.21

8 439 6 0.06 84 48 �2.20

9 697 13 1.43 457 30 �0.34

10 868 9 0.93 142 14 1.77

11 733 31 �0.40 677 20 2.39

12 784 21 �1.48 491 46 3.08

13 1 26 �4.88 454 39 4.04

14 272 40 �2.96 886 11 5.04

15 210 38 �2.77 305 19 4.32

16 81 27 �3.14 194 8 2.51

17 106 27 �3.24 910 8 1.48

18 153 25 �1.54 379 30 �1.05

19 117 27 �0.85 109 34 �1.70

20 993 36 �0.22 565 49 �0.91

21 337 32 1.51 809 36 �1.05

22 500 31 0.90 369 50 �1.62

23 825 35 0.70 789 36 �1.33

24 387 22 0.33 275 14 �0.46
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two-stage modeling is adopted for the displacement
predictions of the monitoring points TP/BM11GP01,
TP/BM26GP02, and TP/BM27GP02 and three-stage
modeling for that of the point TP/BM29GP02.

4.2. Study of non-linear displacement time series for the

Bachimen landslide, Fujian, China

The Bachimen landslide is located in the area of
Maping and Guojing, Fujian province (Fig. 1). With the
acceleration of the Funing expressway construction, the
landslide hazard becomes more significant. In June
2000, due to a continuous storm, the underground water
table was elevated, the soil pore pressure on the sliding
face was increased, the soil strength was decreased, and
the sliding resistance was decreased with the pipe
surging effect in soil strengthened while the sliding force
was increased. In addition, because of the route change
in the lower part of an ancient landslide, the engineering
construction damaged the natural slope of the ancient
landslide and destroyed the natural stress balance in the
slope. This caused a change in the expressway route
locally. There occurred sliding and cracking in the
mountain slope between BCK0+400B450. The max-
imum crack opening was 1.6 m with expressway surface
subsidence of 1.5 m.

4.2.1. Geological and hydro-geological conditions

The Bachimen landslide strata are mainly clastic soil,
rubbishy tuff, and locally tuff. The hydro-geological
conditions in the landslide are complex. The surface is
not abundant in water, while the underground is rich in
water, and there are two underground aquifers. The first
aquifer is comprised of loose clay with high porosity and
permeability. According to the pumping tests at bore-
holes ZK22, ZK26 and ZK35, the water flow is 24, 5.2
and 1.3 m3/day, respectively. The supplementary source
is atmospheric precipitation, with the overland flow
direction controlled by surface topography. Drainage is
mainly due to surface evaporation. The second aquifer is
also clay and its lower layers contain underground water
at low pressure. Its supplementary source is the
perpendicular infiltration of atmospheric precipitation.
Drainage is in the form of spring mouths with the water
flow of the spring mouths being 0.01–2.2 l/s.

4.2.2. Monitoring of landslide

We have conducted sliding slope monitoring, includ-
ing ground surface displacement monitoring, sliding
body displacement monitoring at depth, monitoring of
water table and cable force, monitoring of anti-sliding
pile resistance and displacement. The layout of the
measuring points is shown in Fig. 7. There are 50
monitoring boreholes in total with measuring pipes to
monitor the slope sliding deformation at the depth. At
1.0 m intervals of borehole depth, measured evolution-
ary displacement series in two directions were obtained.
For instance, the measured results of displacement
evolutions in the two directions of A and B (their
azimuths are NE13 and SW103 respectively) of cx9
borehole on the landslide are shown in Fig. 8.

The measured in situ displacement time series is used
to establish the SVMs and to predict the future
displacement behaviour. This paper presents the results
of the displacement prediction results at inclinometer
borehole cx9, instrumented for monitoring the No.2
landslide. The borehole is 25 m in depth (Fig. 8). Fourty
eight non-linear displacement time series SVMs in total
were obtained, one for the displacement time series of
the directions A or B at each monitoring point arranged
at depth intervals of one meter from ground surface.
The SVM models were established by using the
monitored displacement in the period from 3 August,
2001 to 31 March 2002 (Fig. 9) and were used to predict
displacements for the period from April 11 to July 11
2002. The results are shown in Figs. 10–16. The time
step interval is set to about 10 days. The SVM model
shown in Tables 3 and 4 is trained at ranges of 1–1000,
1–100, 1–100 for the parameters C, s and b, historical
time point p (= 5), population size ( 50), kernel
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Table 4

Values of Lagrange multipliers of SVMs for monitoring borehole cx9, Bachimen landslide, Fujian, China

Depth (m) Direction No. of learning samples

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 A a 210.00 0.00 0.00 0.00 0.00 0.00 152.81 0.00 0.00 0.00 0.00 3.19 0.00 0.00 0.00 0.00 0.00 0.00 17.36 210.00

a� 0.00 130.16 20.31 32.83 44.06 0.00 0.00 152.81 0.00 0.00 0.00 0.00 3.19 0.00 0.00 210.00 0.00 0.00 0.00 0.00

B a 0.00 0.00 59.25 0.00 123.54 272.00 0.00 0.00 0.00 272.00 0.00 272.00 0.00 0.00 0.00 0.00 0.00 138.07 5.15 0.00

a� 45.38 30.21 0.00 130.60 0.00 0.00 189.36 59.25 272.00 0.00 0.00 0.00 0.00 0.00 0.00 272.00 143.21 0.00 0.00 0.00

2 A a 111.00 0.00 13.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 111.00

a� 0.00 48.44 0.00 62.56 13.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 111.00 0.00 0.00 0.00 0.00

B a 34.11 0.00 241.97 0.00 140.62 141.10 348.68 130.05 0.00 156.68 83.07 368.60 0.00 0.00 0.00 0.00 0.00 424.00 232.71 424.00

a� 0.00 376.04 0.00 216.62 0.00 0.00 0.00 0.00 424.00 0.00 0.00 0.00 424.00 12.93 424.00 424.00 424.00 0.00 0.00 0.00

3 A a 226.00 0.00 0.00 0.00 0.00 0.00 201.21 0.00 0.00 0.00 0.00 62.19 0.00 0.00 0.00 0.00 0.00 0.00 24.82 226.00

a� 0.00 92.56 74.75 4.39 79.21 0.00 0.00 201.21 0.00 0.00 0.00 0.00 62.19 0.00 0.00 226.00 0.00 0.00 0.00 0.00

B a 179.81 0.00 708.39 0.00 369.15 218.79 334.47 143.42 0.00 907.00 608.53 310.33 0.00 157.44 0.00 0.00 0.00 795.84 907.00 265.28

a� 0.00 876.17 0.00 494.29 0.00 0.00 0.00 0.00 907.00 0.00 0.00 0.00 907.00 0.00 907.00 907.00 907.00 0.00 0.00 0.00

4 A a 484.00 0.00 0.00 237.49 0.00 0.00 427.23 0.00 254.44 0.00 0.00 484.00 0.00 0.00 0.00 0.00 347.85 0.00 228.84 169.59

a� 0.00 223.50 2.74 0.00 439.88 453.96 0.00 81.60 0.00 27.81 17.73 0.00 376.09 362.29 14.55 446.65 0.00 186.63 0.00 0.00

B a 0.00 0.00 267.41 0.00 345.44 37.78 506.58 374.36 0.00 0.00 0.00 528.00 0.00 327.17 0.00 0.00 0.00 528.00 378.08 528.00

a� 138.73 343.26 0.00 353.57 0.00 0.00 0.00 0.00 528.00 308.52 89.29 0.00 528.00 0.00 475.46 528.00 528.00 0.00 0.00 0.00

5 A a 569.00 569.00 0.00 0.00 0.00 0.00 569.00 569.00 0.00 363.36 94.96 0.00 0.00 351.10 78.92 0.00 258.88 0.00 0.00 569.00

a� 0.00 0.00 569.00 9.23 569.00 569.00 0.00 0.00 569.00 0.00 0.00 0.00 569.00 0.00 0.00 569.00 0.00 569.00 0.00 0.00

B a 0.00 5.40 19.73 0.00 0.00 0.00 15.98 0.00 0.00 3.39 5.59 252.00 0.00 27.18 0.00 0.00 0.00 25.42 0.00 0.00

a� 15.54 0.00 0.00 4.59 18.96 17.14 0.00 7.00 12.09 0.00 0.00 0.00 29.71 0.00 9.07 186.42 50.98 0.00 0.81 2.39

6 A a 752.00 0.00 178.54 0.00 0.00 0.00 752.00 0.00 49.13 29.55 2.20 126.15 0.00 0.00 0.00 38.87 73.85 0.00 67.22 51.85

a� 0.00 199.49 0.00 79.22 345.90 735.84 0.00 203.66 0.00 0.00 0.00 0.00 213.12 250.15 85.82 0.00 0.00 8.16 0.00 0.00

B a 0.00 64.85 700.89 0.00 0.00 0.00 164.93 0.00 0.00 33.53 57.63 790.00 0.00 161.44 0.00 0.00 90.70 256.98 27.48 15.41

a� 350.00 0.00 0.00 308.79 95.28 218.11 0.00 117.30 89.53 0.00 0.00 0.00 250.19 0.00 144.64 790.00 0.00 0.00 0.00 0.00

7 A a 64.00 0.00 8.64 21.56 0.00 0.00 64.00 0.00 0.00 0.46 22.40 54.94 42.91 0.00 5.35 13.29 17.37 0.00 34.79 0.26

a� 0.00 23.57 0.00 0.00 6.37 64.00 0.00 64.00 64.00 0.00 0.00 0.00 0.00 64.00 0.00 0.00 0.00 64.00 0.00 0.00

B a 0.00 179.80 443.25 0.00 766.00 0.00 740.98 576.87 0.00 0.00 0.00 337.84 49.19 0.00 148.51 0.00 195.77 0.00 471.95 61.44

a� 187.31 0.00 0.00 766.00 0.00 766.00 0.00 0.00 766.00 0.00 0.00 0.00 0.00 87.57 0.00 666.25 0.00 732.47 0.00 0.00

8 A a 30.99 0.00 0.00 97.03 32.43 0.00 77.14 0.00 28.31 0.00 0.00 439.00 0.00 67.04 107.79 0.00 249.44 439.00 87.28 71.55

a� 0.00 145.58 205.71 0.00 0.00 74.84 0.00 388.12 0.00 224.24 87.00 0.00 358.81 0.00 0.00 242.72 0.00 0.00 0.00 0.00

B a 74.33 84.00 0.00 0.00 84.00 9.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a� 0.00 0.00 84.00 84.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 84.00 0.00 0.00 0.00 0.00

9 A a 0.00 99.12 0.00 0.00 103.41 0.00 605.86 0.00 0.00 0.00 29.96 610.01 0.00 60.32 90.72 0.00 0.00 697.00 89.28 0.00

a� 19.09 0.00 224.21 123.34 0.00 249.46 0.00 148.10 159.38 601.46 0.00 0.00 577.31 0.00 0.00 222.91 0.00 0.00 0.00 60.42

B a 0.00 95.59 0.00 0.00 0.00 0.00 284.64 402.54 0.00 457.00 457.00 457.00 0.00 457.00 0.00 0.00 0.00 0.00 0.00 0.00

a� 0.00 0.00 5.94 23.58 40.59 457.00 0.00 0.00 457.00 0.00 0.00 0.00 457.00 0.00 404.70 457.00 307.97 0.00 0.00 0.00

10 A a 198.34 0.00 0.00 108.63 284.05 0.00 225.69 0.00 0.00 133.24 0.00 844.49 0.00 0.00 0.00 0.00 560.74 868.00 868.00 512.91

a� 0.00 868.00 641.05 0.00 0.00 584.00 0.00 868.00 103.58 0.00 306.73 0.00 868.00 25.86 73.09 274.55 0.00 0.00 0.00 0.00

B a 0.00 13.39 15.68 7.47 25.22 0.00 99.56 0.00 0.00 2.82 142.00 104.12 0.00 56.10 0.00 0.00 25.64 30.23 49.01 5.52

a� 34.95 0.00 0.00 0.00 0.00 142.00 0.00 74.83 34.73 0.00 0.00 0.00 104.08 0.00 44.19 142.00 0.00 0.00 0.00 0.00

11 A a 733.00 80.29 0.00 709.68 0.00 0.00 605.55 75.80 0.00 733.00 733.00 584.97 0.00 0.00 0.00 0.00 711.25 0.00 733.00 733.00

a� 0.00 0.00 733.00 0.00 568.55 733.00 0.00 0.00 733.00 0.00 0.00 0.00 733.00 733.00 733.00 733.00 0.00 733.00 0.00 0.00

B a 0.00 16.18 0.00 0.00 341.70 0.00 677.00 0.00 0.00 443.68 0.00 677.00 0.00 138.46 0.00 0.00 55.91 677.00 472.05 440.75

a� 37.39 0.00 52.30 310.90 0.00 566.96 0.00 422.28 677.00 0.00 2.82 0.00 677.00 0.00 677.00 516.07 0.00 0.00 0.00 0.00

12 A a 784.00 0.00 389.79 0.00 0.00 0.00 784.00 0.00 400.45 113.50 384.53 784.00 0.00 0.00 0.00 0.00 555.90 0.00 398.33 421.58

a� 0.00 631.43 0.00 170.97 126.71 638.24 0.00 784.00 0.00 0.00 0.00 0.00 651.59 477.61 571.56 784.00 0.00 179.98 0.00 0.00

B a 0.00 47.45 69.78 5.71 491.00 0.00 491.00 0.00 0.00 44.80 84.26 491.00 353.72 376.93 0.00 0.00 491.00 491.00 0.00 0.00

a� 208.03 0.00 0.00 0.00 0.00 491.00 0.00 491.00 491.00 0.00 0.00 0.00 0.00 0.00 491.00 491.00 0.00 0.00 283.62 491.00
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Table 4 (continued)

Depth (m) Direction No. of learning samples

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

13 A a 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a� 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

B a 99.88 0.00 0.00 58.49 454.00 0.00 454.00 0.00 0.00 326.58 454.00 454.00 0.00 454.00 0.00 0.00 454.00 454.00 0.00 0.00

a� 0.00 313.76 205.72 0.00 0.00 304.90 0.00 282.05 454.00 0.00 0.00 0.00 454.00 0.00 454.00 454.00 0.00 0.00 286.52 454.00

14 A a 272.00 0.00 215.75 0.00 0.00 0.00 67.54 0.00 21.11 1.74 6.76 13.34 0.00 11.21 0.00 3.21 0.00 14.78 26.71 258.75

a� 0.00 197.91 0.00 253.09 73.95 68.18 0.00 10.31 0.00 0.00 0.00 0.00 25.43 0.00 12.04 0.00 272.00 0.00 0.00 0.00

B a 0.00 0.00 0.00 22.09 90.00 44.40 90.00 0.00 0.00 33.76 41.57 66.86 0.00 90.00 0.00 0.00 79.37 41.40 0.00 0.00

a� 0.00 90.00 60.21 0.00 0.00 0.00 0.00 90.00 40.84 0.00 0.00 0.00 90.00 0.00 37.95 10.45 0.00 0.00 90.00 90.00

15 A a 210.00 0.00 205.14 0.00 0.00 0.00 36.51 11.46 0.00 1.36 6.39 10.42 0.00 6.34 0.00 1.13 5.56 6.90 0.00 48.30

a� 0.00 158.83 0.00 35.77 91.13 210.00 0.00 0.00 2.75 0.00 0.00 0.00 19.40 0.00 6.91 0.00 0.00 0.00 24.72 0.00

B a 0.00 0.00 0.00 18.60 63.59 43.15 67.03 0.00 0.00 32.33 0.00 305.00 0.00 79.65 305.00 0.00 74.41 48.91 0.00 0.00

a� 0.00 63.27 24.61 0.00 0.00 0.00 0.00 157.88 13.07 0.00 32.09 0.00 305.00 0.00 0.00 58.51 0.00 0.00 90.14 293.10

16 A a 81.00 0.00 66.79 0.00 0.00 0.00 7.01 2.25 1.94 0.63 1.05 0.00 0.00 1.73 0.00 0.53 2.32 1.05 8.65 13.85

a� 0.00 60.91 0.00 75.91 26.73 0.00 0.00 0.00 0.00 0.00 0.00 20.85 2.83 0.00 1.55 0.00 0.00 0.00 0.00 0.00

B a 15.94 0.00 0.00 20.56 160.36 0.00 194.00 0.00 0.00 12.13 7.40 194.00 0.00 194.00 0.00 0.00 102.43 194.00 102.23 0.00

a� 0.00 54.76 61.06 0.00 0.00 61.47 0.00 49.76 194.00 0.00 0.00 0.00 194.00 0.00 194.00 194.00 0.00 0.00 0.00 194.00

17 A a 106.00 0.00 89.64 0.00 0.00 0.00 20.53 0.00 9.31 0.23 2.84 7.08 0.00 2.24 0.00 0.00 5.51 2.20 17.02 86.84

a� 0.00 93.68 0.00 89.12 29.60 14.03 0.00 1.29 0.00 0.00 0.00 0.00 12.88 0.00 2.84 106.00 0.00 0.00 0.00 0.00

B a 0.00 619.68 762.82 0.00 13.76 0.00 488.75 618.97 0.00 219.74 0.00 390.77 0.00 192.15 0.00 0.00 476.28 656.60 0.00 0.00

a� 321.39 0.00 0.00 296.79 0.00 910.00 0.00 0.00 504.44 0.00 477.78 0.00 417.47 0.00 910.00 303.94 0.00 0.00 271.66 26.05

18 A a 153.00 0.00 68.28 0.00 0.00 0.00 21.67 6.88 0.00 4.89 2.04 14.16 0.00 4.82 0.00 0.76 0.00 12.69 17.99 19.25

a� 0.00 128.30 0.00 81.54 41.80 13.29 0.00 0.00 2.88 0.00 0.00 0.00 23.66 0.00 3.39 0.00 31.55 0.00 0.00 0.00

B a 379.00 0.00 0.00 142.97 379.00 0.00 0.00 0.00 366.82 356.10 0.00 379.00 0.00 136.90 0.00 0.00 379.00 0.00 130.65 66.08

a� 0.00 241.31 76.56 0.00 0.00 379.00 379.00 192.31 0.00 0.00 242.23 0.00 379.00 0.00 379.00 379.00 0.00 68.11 0.00 0.00

19 A a 117.00 0.00 43.64 0.00 0.00 0.00 9.25 0.00 0.00 9.79 11.14 21.23 0.00 0.00 0.00 0.00 25.53 13.70 0.95 34.03

a� 0.00 102.05 0.00 19.66 23.98 0.00 0.00 2.30 6.95 0.00 0.00 0.00 42.16 0.00 89.17 0.00 0.00 0.00 0.00 0.00

B a 109.00 109.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.00 0.00

a� 0.00 0.00 65.80 58.20 0.00 0.00 0.00 109.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 A a 0.00 0.00 0.00 698.48 993.00 659.14 993.00 219.94 0.00 112.50 712.04 311.14 0.00 0.00 0.00 0.00 993.00 819.44 993.00 0.00

a� 993.00 993.00 948.49 0.00 0.00 0.00 0.00 0.00 993.00 0.00 0.00 0.00 993.00 10.80 993.00 993.00 0.00 0.00 0.00 587.40

B a 565.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.39 38.17 11.96 0.00 0.00 0.00 0.00 17.65 27.18 235.74 0.00

a� 0.00 28.83 0.00 0.00 0.00 235.74 0.00 0.00 536.17 0.00 0.00 0.00 1.70 0.00 4.18 2.32 0.00 0.00 0.00 119.15

21 A a 0.00 228.71 0.00 50.77 173.23 93.14 0.00 0.00 0.00 0.80 7.99 0.00 337.00 4.15 0.00 4.11 6.25 0.00 0.00 0.00

a� 337.00 0.00 89.46 0.00 0.00 0.00 33.97 24.73 32.13 0.00 0.00 2.34 0.00 0.00 9.70 0.00 0.00 2.31 53.07 321.42

B a 809.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.82 5.88 0.00 0.15 0.00 0.00 22.85 25.53 158.77

a� 0.00 86.46 0.00 0.00 0.00 809.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.05 0.00 1.03 131.47 0.00 0.00 0.00

22 A a 0.00 408.92 0.00 54.19 180.80 57.39 0.00 0.00 0.00 0.00 1.62 0.00 500.00 1.67 0.00 0.00 1.29 0.00 0.00 0.00

a� 500.00 0.00 134.19 0.00 0.00 0.00 40.45 24.46 27.85 0.87 0.00 5.42 0.00 0.00 3.84 0.08 0.00 3.06 36.42 429.23

B a 369.00 369.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.49 0.00

a� 0.00 0.00 321.40 51.09 0.00 369.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

23 A a 0.00 350.86 0.00 85.93 194.90 128.20 825.00 0.00 0.00 0.00 0.00 0.00 0.00 19.67 0.00 0.00 26.38 0.00 0.00 0.00

a� 825.00 0.00 200.69 0.00 0.00 0.00 0.00 104.54 47.97 4.64 3.76 20.63 43.35 0.00 16.92 6.45 0.00 11.18 266.38 79.44

B a 789.00 0.00 789.00 0.00 199.26 0.00 442.47 32.01 40.96 1.49 13.58 704.68 0.00 0.94 0.18 1.49 0.00 0.00 789.00 789.00

a� 0.00 648.05 0.00 789.00 0.00 789.00 0.00 0.00 0.00 0.00 0.00 0.00 789.00 0.00 0.00 0.00 789.00 789.00 0.00 0.00

24 A a 275.00 0.00 275.00 0.00 0.00 0.00 0.00 0.00 5.64 5.45 5.08 3.86 1.26 2.43 0.93 1.68 0.00 0.81 22.80 0.00

a� 0.00 245.24 0.00 267.06 56.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.70 0.00 0.00 29.76

B a 275.00 0.00 275.00 0.00 0.00 0.00 0.00 0.00 5.64 5.45 5.08 3.86 1.26 2.43 0.93 1.68 0.00 0.81 2280 0.00

a� 0.00 245.24 0.00 267.06 56.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.70 0.00 0.00 29.76
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Fig. 17. Comparison of displacements monitored and predicted by the SVMs for each point for 1m depth intervals of borehole bcx18 for landslide

No.2 landslide on 30 April 2002, the SVMs were obtained using the data measured from September 13, 2001 to April 20, 2002.
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Fig. 18. Comparison of displacements monitored and predicted by the SVMs for each point for 1 m depth intervals of borehole bcx18 for landslide

No.2 landslide on 10 May 2002, the SVMs were obtained using the data measured from September 13, 2001 to April 20, 2002.
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function of polynomials, Gaussian radial base, and
Sigmoid.

In the same way, 40 SVMs were established for
non-linear displacement series at the A and B direc-
tions of the inclinometer borehole bcx18 for Landslide
No.2. Figs. 17–23 show the displacement measured
and predicted by the SVMs for the period of
September 13, 2001 to April 20, 2002. All predic-
tions are in good agreement with the measured
results.
5. Discussions on the generalization ability of the SVMs

Using the measured displacement at previous time
steps of a time series to train the tentative SVM with
searching of the kernel function and its parameters in
global space, the best SVM can be recognized through
evolution in global space (see change of fitness of the
tentative SVMs shown in Fig. 24).

The generalization ability of SVMs is related to
the number of time steps for prediction (Figs. 3–6 and
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Fig. 19. Comparison of displacements monitored and predicted by the SVMs for each point for 1m depth intervals of borehole bcx18 for landslide

No.2 landslide on 20 May 2002, the SVMs were obtained using the data measured from September 13, 2001 to April 20, 2002.
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Fig. 20. Comparison of displacements monitored and predicted by the SVMs for each point for 1m depth intervals of borehole bcx18 for landslide

No.2 landslide on 30 May 2002, the SVMs were obtained using the data measured from September 13, 2001 to April 20, 2002.
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10–23). When the number of time steps for prediction is
small, the accuracy of prediction is high. With an
increase in the number of time steps for prediction, the
generalization ability of the SVMs decreases. This
indicates that a suitable size of time steps needs to be
established for a given problem.

However, the generalization ability of the SVMs is
also controlled by the type of kernel function and its
parameters. The parameter C is an important factor
because the fitness of the tentative SVMs changes the
value of C. There exist best SVMs having a C value with
minimum fitness in all evolutionary generations for a
given problem (Fig. 25). The parameter s and d affect
also generalization ability of the SVMs and the fitness of
the tentative SVM changes value of s or d. Again, there
exist best SVMs having s or d value with minimum
fitness in all evolutionary generations for a given
problem (Fig. 26). Therefore, a suitable algorithm is
needed to recognize the best kernel function and its
parameters in the global space for a given problem;
otherwise, it would obtain local minimum solutions.
This indicates that use of a genetic algorithm is



ARTICLE IN PRESS

0
1
2
3
4
5

6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21

-10 0 10 20 30

Displacement (mm)

D
ep

th
 (m

)

Measured

Predicted

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

-5 0 5 10 15

Displacement (mm)

D
ep

th
 (m

)

Measured

Predicted

Fig. 21. Comparison of displacements monitored and predicted by the SVMs for each point for 1m depth intervals of borehole bcx18 for landslide

No.2 landslide on 9 June 2002, the SVMs were obtained using the data measured from September 13, 2001 to April 20, 2002.
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Fig. 22. Comparison of displacements monitored and predicted by the SVMs for each point for 1m depth intervals of borehole bcx18 for landslide

No.2 landslide on 19 June 2002, the SVMs were obtained using the data measured from September 13, 2001 to April 20, 2002.
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attractive to obtain the global optimum SVMs for non-
linear displacement time series.
6. Conclusions

The SVM is a newly developed machine learning
method based on strict theoretical fundamentals. It has
good adaptive capacity for solving non-linear problems
with high dimensions and small samples, and has
attracted attention from various research fields [18,19].
A combination of SVM and genetic algorithm is
reported in this paper to formulate an evolutionary
SVM algorithm for generating the time series analysis of
non-linear slope deformation. Good results have been
achieved also by applying the method to rock and soil
engineering. Because of the complexity and high non-
linearity of geo-material behavior the application of the
SVM method in the geotechnical engineering field has
significant potenetial.
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Fig. 23. Comparison of displacements monitored and predicted by the SVMs for each point for 1m depth intervals of borehole bcx18 for landslide

No.2 landslide on 7 July 2002, the SVMs were obtained using the data measured from September 13, 2001 to April 20, 2002.
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Fig. 24. Trend of the minimum fitness of tentative SVMs versus the

number of evolutionary generation.
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machines and minimum fitness of the tentative SVMs.
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