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Abstract

Seepage problems with complex drainage systems are commonly encountered in civil engineering, with strong non-linearity. A numer-
ical solution based on the Finite Element Method combining the substructure technique with a variational inequality formulation of
Signorini’s type is proposed to solve these problems. The aims of this work are to accurately characterize the boundary conditions of
the drainage systems, to reduce the difficulty in mesh generation resulting from the drainage holes with small radius and dense spacing,
and to eliminate the singularity at the seepage points and the resultant mesh dependency. Numerical stability and robustness of the pro-
posed method are guaranteed by an adaptive procedure for progressively relaxing the penalized Heaviside function associated with the
formulation of the discrete variational inequality. Two challenging numerical examples are presented to validate the effectiveness and
robustness of the proposed method.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In dam engineering, slope engineering and underground
engineering etc., the deformation and stability of geotech-
nical structures are significantly influenced by the seepage
flow within them. In order to control the seepage flow
and to eliminate its unfortunate effects, a complex drainage
system including drainage galleries, drainage tunnels,
draining wells and drainage hole arrays is commonly
designed and deployed. For the purposes of safety assess-
ment and optimization design of the drainage system,
numerical analysis has to be performed.

Although significant achievement has been made in the
analysis of seepage flow with the finite element method,
modeling the seepage problem with a complex drainage
system remains a challenging problem. Such a problem
usually involves two sources of difficulty: the first difficulty
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relates to the FE mesh generation with hundreds or even
thousands of drainage holes with small diameter and dense
spacing, while the other difficulty relates to the strong non-
linearity in the determination of the free surface. To avoid
the first difficulty, both the explicit method and the implicit
method are used. The explicit method [1] models the drain-
age hole curtain with an equivalent medium which may
produce the same flow rate. The implicit method models
the drainage hole array with a substructure technique
[2,3], a semi-analytical approach [4,5], a point well model
[6], or a composite element method [7]. Most of the existing
models (except the substructure technique), however, fail
more or less to precisely describe the details of the bound-
ary conditions of the drainage facilities, and thus, sacrifice
to some degree the theoretical strictness of solutions.

In addition to adaptive mesh methods, two categories of
fixed mesh methods, i.e. the intuitive methods and the var-
iational inequality methods, are widely used to determine
the free surface and the seepage points. In the literature,
the residual flow method [8], the initial flow method [9],
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Fig. 1. Illustration of seepage flow through a soil dam (after [11]).
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and the adjusting permeability method [10] etc., fall into
the intuitive methods, and they usually involve an iterative
procedure to ensure that the flow in the dry domain is
much lower than that in the wet domain. With the support
of a rigorous mathematical theory, on the other hand, the
variational inequality methods always transform the free
surface and its condition to an inner boundary condition
by defining a new boundary value problem on a fixed
domain. Before Zheng et al. [11] proposed the formulation
of Signorini’s type, the existing variational inequality meth-
ods, including an expanded pressure formulation by Brezis
et al. [12], did not theoretically overcome the singularity at
the seepage points and thus led to an undesirable mesh
dependency.

For solving seepage problems with a complex drainage
system, the drainage galleries or tunnels with relatively
large sizes and regular shapes and extensions can generally
be explicitly modeled in the FEM and be properly
addressed as long as their boundary conditions are prop-
erly prescribed. Special attention, however, has to be given
to the large number of drainage holes. In this study, a sub-
structure technique has been developed to model the effects
of a drainage hole array, with a capability in simplifying
the generation of a FE mesh and characterizing the bound-
ary conditions of the drainage holes. This technique was
initially developed by Wang et al. [2] for modeling the
drainage holes not intersecting the free surfaces, and later
improved by Zhu and Zhang [3] in combination with the
initial flow method for modeling drainage holes intersect-
ing with any free surfaces. The presence of drainage holes
produces singular seepage points, and due to the reasons
described earlier, the accuracy of the above solution may
be unsatisfactory with numerical fluctuations in results.

In this study, we address the seepage problems with
complex drainage systems using a method combining the
substructure technique with the variational inequality for-
mulation of Signorini’s type by Zheng et al. [11]. An adap-
tive procedure is proposed to guarantee numerical stability
and robustness of the proposed method, through progres-
sively relaxing the penalized Heaviside function associated
with the formulation of the discrete variational inequality.
The remainder of this paper is arranged as follows: Section
2 describes seepage problems with free surfaces based on
the variational inequality formulation of Signorini’s type.
In Section 3, the boundary conditions of such drainage sys-
tems are summarized, the substructure method is intro-
duced to model the drainage hole array, and a numerical
algorithm is presented to address seepage problems with
drainage systems. In Section 4, two challenging numerical
examples are given to demonstrate the effectiveness of the
proposed method, which is followed by concluding
remarks presented in Section 5.

2. Formulation of seepage problems with free surfaces [11]

As shown in Fig. 1, the seepage flow through domain X
is actually the flow through the wet domain Xw below the
free surface Cf. The wet domain Xw will be determined as
long as the free surface Cf is located, which, in many engi-
neering cases is unknown in advance. To define a new
boundary value problem on the entire domain X, as a var-
iational inequality formulation requires, Darcy’s law is
redefined as follows:

v ¼ �kr/þ v0 ð1Þ
where v is the flow velocity, v0 the initial flow velocity, k the
second-order hydraulic conductivity tensor, $ the gradient
operator, / = z + p/cw the total water head, z the vertical
coordinate, p the pore water pressure, cw the unit weight
of water. Here, v0 is introduced to eliminate the virtual flow
velocity on the dry domain Xd, in the form of

v0 ¼ Hð/� zÞkr/ ð2Þ
in which H(/�z) is a Heaviside function

Hð/� zÞ ¼
0 if / P z ðin XwÞ
1 if / < z ðin XdÞ

�
ð3Þ

The seepage flow through domain X (X = Xw [ Xd) is
then governed by the following equation of continuity:

r � v ¼ 0 ðin XÞ ð4Þ
subjected to the following boundary conditions:

(1) The water head boundary condition
/ ¼ �/ ðon C/ ¼ ABþ CDÞ ð5Þ
in which �/ is the prescribed water head on C/.
(2) The flux boundary condition
qn � �nTv ¼ �qðon Cq ¼ BCÞ ð6Þ
where �q is the prescribed flux on Cq, n the outward
unit normal vector to the boundary. For an imperme-
able boundary, �q ¼ 0.
(3) The boundary condition of Signorini’s type on the
seepage surface
/ 6 z; qnð/Þ 6 0

ð/� zÞqnð/Þ ¼ 0

�
ðon Cs ¼ DEFGAÞ ð7Þ

in which Cs is the potential seepage boundary. Obvi-
ously, on section DE, / = z and qn 6 0; while on sec-
tion EFGA, / < z and qn = 0. / = z and qn = 0 are
satisfied at the seepage point E.
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(4) The boundary condition on the free surface
qnjXw
¼ qnjXd

¼ 0 ðon Cf ¼ AEÞ ð8Þ

in which Cf ” {(x,y,z)j/ = z} is the free surface, an
interface between Xw and Xd.
Based on the above PDE formulation, Zheng et al. [11]
developed an equivalent variational inequality formulation
for the problem. The mathematical statement for a discrete
version of the iterative formulation is given as: Find a vec-
tor /kþ1 2 Uh

VI , such that for 8w 2 Uh
VI, the following

inequality holds:

ðw� /kþ1ÞTK/kþ1 P ðw� /kþ1ÞTqk ð9Þ
with

K ¼
X

e

ke; ke ¼
Z Z Z

Xe

BTkB dX ð10Þ

qk ¼
X

e

Z Z Z
Xe

BTvk
0 dX ¼ K e/

k; K e ¼
X

e

ke
e ;

ke
e ¼

X
e

Z Z Z
Xe

H kð/k � zÞBTkB dX ð11Þ

Uh
VI ¼ f/j/ 2 Rn; /i ¼ �/i; for i 2 C/; /i 6 zi; for i 2 Csg

ð12Þ

where k is the iterative step, n the total number of nodal
points in the FE mesh, B the geometrical matrix of the fi-
nite element model, and Hk the penalized Heaviside func-
tion introduced to evade numerical instability and mesh
dependency, given by

H kð/� zÞ ¼
1 if / 6 z� k1

zþk2�/
k1þk2

if z� k1 < / < zþ k2

0 if / P zþ k2

8><
>: ð13Þ

in which k1 and k2 are two parameters associated with each
element. The parameter k1 is defined as the vertical distance
between the lowest integration point to the lowest node,
and k2 as the vertical distance between the highest integra-
tion point to the highest node, in the FEM model
concerned.
Fig. 2. Boundary conditio
It is to be noted that in Eq. (11), the flux boundaries are
assumed to be impermeable. If non-zero flux boundaries
are involved, their contribution has to be added to the right
hand vector, qk.

Without losing generality, the nodal set N may be
divided into the following three subsets:

N/ ¼ fi 2 N ji 2 C/g; N s ¼ fi 2 N ji 2 Csg;
N i ¼ N �N/ �N s

Eq. (9) can then be solved by the following two steps of
iteration:

Step 1: solve
P

jKij/
kþ1
j � qk

i ¼ 0, for "i 2 Ni.
Step 2: solve ð/kþ1

i � ziÞhkþ1
i ¼ 0, for "i 2 Ns, where

hkþ1
i ¼

P
jKij/

kþ1
j � qk

i . With the algorithm pro-
posed by Zheng et al. [13], usually a precise solution
of Step 2 can be achieved in a very few iterations.

3. A substructure method for drainage hole array

In this section, we first characterize the possible bound-
ary conditions of the drainage facilities, and then a sub-
structure method is presented to model densely-deployed
drainage holes of small diameter.
3.1. Boundary conditions of drainage system

To assess the effects of the drainage system, the bound-
ary conditions of the drainage facilities involved have to be
properly represented in the numerical analysis. The possi-
ble boundary conditions of the drainage holes and draining
wells are illustrated in Fig. 2.

The first type of boundary condition is the Signorini’s
type, such as the vertical drainage holes deployed between
two horizontal drainage galleries in a dam, in which the
drainage flow is always discharged into the lower drainage
gallery. As shown in Fig. 2a, on section AB of the drainage
hole, the boundary condition satisfies / < z and qn = 0,
while on section BC, it satisfies / = z and qn 6 0.
ns of drainage holes.
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Fig. 3. Construction of a drainage substructure.
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The second type is the water head boundary condition,
as depicted in Fig. 2b. The drainage holes deployed in a
rock foundation generally possess this type of boundary
condition. The prescribed water head is usually determined
by the floor elevation of the drainage gallery connected
with the holes.

Associated with a draining well or a drainage hole in
deficiency, the third type of boundary condition is actually
a condition with known drainage flow rate out of the facil-
ity. As shown in Fig. 2c, part of the boundary, i.e. section
AD, satisfies the complementary condition of Signorini’s
type, while the other part, i.e. section DC, satisfies the
water head boundary condition (the 2nd type as defined
above). The water head in the draining well or drainage
hole is generally unknown a priori, and has to be deter-
mined by the flowrate, Q, through an iterative procedure
as described below.

First, assume the whole boundary, i.e. section AC in
Fig. 2c, to be a Signorini’s type, and compute the drainage
flow Qc. In this circumstance, the computed drainage flow
rate, Qc, may exceeds the actual water yield, Q (i.e.
Qc > Q). Then, one needs to assign a proper counteracting
increment of water head for the draining well or drainage
hole according to the height of hydraulic jump and the
ratio of Q/Qc, and re-compute the value of Qc. If the differ-
ence between Q and Qc becomes smaller than a given toler-
ance, the procedure will be terminated. Otherwise, repeat
the procedure by gradually increasing or decreasing the
water head according to the magnitudes of Q and Qc.

Compared with the drainage holes or draining wells, the
boundary conditions of the drainage galleries or tunnels
are easier to be identified. Generally, Signorini’s type of
boundary condition is satisfied on the boundaries of the
galleries or tunnels. If, however, the drainage galleries or
tunnels are submerged, then part or full of the boundary
will satisfy the water head condition.

3.2. The substructure method

The basic idea of the substructure technique is to dis-
cretize the domain space disregarding the presence of
drainage holes. The elements that contain one or multiple
drainage holes are subdivided and the internal variables
as well as the boundary properties of the drainage holes
are eliminated, thus giving a considerable saving in the
mesh-generating and equation-solving efforts.

Suppose that a drainage hole is embedded in a set of ele-
ments of eight nodes, as shown in Fig. 3. Each element is
subdivided into two or three layers of sub-elements in the
radial direction of the drainage hole, in which the circular
cross section of the hole is replaced by a square one of the
same perimeter length. As a result, a substructure is formed
by all the sub-elements in the associated element set.

From the element faces to the boundaries of the drain-
age hole in the radial direction, three sets of nodes are iden-
tified: the outer set o, the median set m and the inner set i.
The nodes in the outer set o are composed of the nodal
points on the associated elements, and are ordered from
one end of the hole to the other, e.g. o ¼ fo1

1; o
1
2; o

1
3;

o1
4; . . . ; oi

1; o
i
2; o

i
3; o

i
4; . . . ; on

1; o
n
2; o

n
3; o

n
4g in Fig. 3. The nodes

in the inner set i represent the boundary of the drainage
hole, and their positions are determined by the location
of the hole. The nodes in the median set m are interpolated
between the nodes in set o and those in set i to ensure good
shape of the sub-elements. If the original elements are large
in size, then two or more layers of median nodes may be
interpolated in order to create well shaped sub-elements.
Note that the nodes in set i and set m are ordered in the
same way as the nodes in set o.

In the formulation of the substructure algorithm, special
consideration is required for the following two cases. First,
if a drainage hole is vertically (or obliquely) deployed
between two horizontal drainage galleries, as the case
shown in Fig. 2a, the nodes in the median set m attached
to the gallery surfaces share the same boundary conditions
with the nodes in set i. These nodes should be removed
from set m and added to set i. Second, if a drainage hole
or a draining well is vertically (or obliquely) deployed in
a rock foundation, as shown in Fig. 2b and c, the coarse
element attached to the lower end of the hole or well should
also be included in the substructure, but subdivided into
several wedge-shaped sub-elements and a brick-shaped
one, as depicted in Fig. 4. The problem with this scheme
is that the sub-elements are poorly shaped and numerical
difficulties may be caused. A better alternative, however,
is to include all the elements intersected by the extending
line of the drainage facility from the lower end in the



Fig. 5. Various forms of the drainage substructure: (a) one hole, two
layers of sub-elements, consistent with Fig. 3; (b) one hole, three layers of
sub-elements; (c) one hole, three layers of high-order sub-elements and (d)
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Fig. 4. A transition element at the end of a drainage substructure.
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substructure to form a larger one. In this scheme, all the
interpolated nodes (except those on the bottom of the hole)
in these elements should be recorded in set m. To save com-
putational cost, these elements can also be arranged to
form another substructure, but the nodes on the adjacent
surface of the two substructures should be moved from
set m to set o.

From Section 3.1, it is clear that at the iterative step
k + 1, one of the following two conditions should be satis-
fied for "i 2 i:

(1) /i ¼ �/i (the water head boundary condition), or
(2) ð/kþ1

i � ziÞhkþ1
i ¼ 0 with hkþ1

i ¼
P

j2i[mKij/
kþ1
j � qk

i

(the complementary condition of Signorini’s type).

For the nodes in sets o and m, the flow equilibrium equa-
tions at the iterative step k+1 are written as

Koo Kom

Kmo Kmm

� �
/kþ1

o

/kþ1
m

( )
¼ qk

o � Koi/
k
i

qk
m � Kmi/

k
i

( )
ð14Þ

where Krs is the stiffness sub-matrix between node set r and
set s (r, s=o, m, i), respectively, and /r and qr are the water
head vector and the right hand side vector of the nodes in r.

By eliminating the internal degrees of freedom, /kþ1
m , Eq.

(14) is rewritten as

K 0oo/
kþ1
o ¼ q0ko ð15Þ

with

K 0oo ¼ Koo � KomK�1
mmKmo ð16Þ

q0ko ¼ qk
o � KomK�1

mmðqk
m � Kmi/

k
i Þ ð17Þ

After substitution of Eq. (15) into Eq. (14), /kþ1
m can be

computed by

/kþ1
m ¼ K�1

mmðqk
m � Kmo/

kþ1
o � Kmi/

k
i Þ ð18Þ

In Eq. (15), the condensed stiffness matrix, K 0oo, can be
determined by Eq. (16). The condensed right hand side vec-
tor, q0ko , can also be determined by Eq. (17) because qk

o and
qk

m can be computed by Eq. (11) over the relevant sub-ele-
ments, while /k

i can be computed by the iterative procedure
described in Section 2. It is easy to see that Eq. (14), and
thus Eqs. (15) and (17) hold valid only if the whole element
set associated with the drainage hole is taken into account.
If, however, only one of the elements is considered, the
right hand side of Eq. (14) will become unknown.

The computational complexity of Eq. (15) is mainly
determined by the inverse manipulation of the matrix,
Kmm. With the arrangement of the nodes in set m, Kmm is
a block tridiagonal symmetric matrix with block size of
four for one layer of interpolated nodes and eight for
two layers. As a result, the inverse of Kmm can be efficiently
computed with the LDLT decomposition of the block tridi-
agonal symmetric matrix [14]. Besides, in most of the prac-
tical engineering problems, the drainage holes are limited in
length to, e.g. 15–30 m. Thus, not many elements will be
associated with each of the drainage holes, resulting in
small order and efficient inverse of Kmm.

For practical purposes, especially for design optimiza-
tion of drainage systems, the substructure can be used in
a very flexible fashion [3], as shown in Fig. 5. As long as
an additional computational cost can be afforded, multiple
layers of linear sub-elements or high-order sub-elements
can be inserted to form a substructure with improved accu-
racy. Also, multiple drainage holes densely deployed in one
or even multiple rows can be embedded in substructure ele-
ments, although a considerable loss of accuracy may be
incurred due to distorted element shapes and large element
sizes.

3.3. Numerical implementation

The above substructure technique is implemented into a
FEM code. First, for each drainage hole, find the elements
intersecting with it and form the drainage substructures.
The condensed stiffness matrices of the drainage substruc-
tures are computed by using Eq. (16) and assembled into
the global stiffness matrix. Then, add the nodes on bound-
aries of the drainage holes (i.e. nodes in set i for each sub-
structure) into Ns (see Section 2), call the procedure given
elements).
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in Section 2 to determine the seepage points and to locate
the seepage surface. If draining wells are involved in the
problem, then an outer iterative procedure, as described
in Section 3.1, has to be invoked to achieve the flow equi-
librium of the draining wells.

The convergence criterion is defined as

kuiþ1 � uik1 < e1kuik1 and kuiþ1 � uik1 < e2kuik1
ð19Þ

in which e1 and e2 denote the user-specified error tolerances
and take values of e1 = 10�5 and e2 = 10�3 in this study.
According to the extremum principle of elliptical functions,
/ reaches its maximum only on the boundary. Thus, it is
obvious that i/ii1 is equal to the prescribed water head
on the upstream surface.

The above algorithm can run rather efficiently in compu-
tation, since the global stiffness matrix remains constant
during iterations and need only be decomposed once. It
should be noted, however, that when drastic water depres-
sion occurs around the drainage system, mesh dependency
and numerical instability may not be completely eliminated
by the penalized Heaviside function given in Eq. (13), and a
strongly converged solution may be hard to obtain. This is
especially the case when a complex drainage system is
involved and a coarse finite element mesh is used. The main
reason is that the definition of the penalized Heaviside func-
tion, Hk (with a requirement to approximate the Heaviside
function, H, as the mesh being refined) is so strict that only
a very few number of nodes close to the free surface are
assigned with penalized weights, thus resulting in numerical
jumps at the seepage points on the potential seepage surfaces
between successive iterations in locating the free surface.

To overcome this problem, we propose an adaptive pro-
cedure through progressively relaxing the definition of the
penalized Heaviside function. Redefine the penalized Heav-
iside function in Eq. (13) as

H kð/� zÞ ¼
1 if / 6 z� fk1

zþfk2�/
fðk1þk2Þ

if z� fk1 < / < zþ fk2

0 if / P zþ fk2

8><
>: ð20Þ

in which a parameter, f, is introduced to scale values of
parameter k1 and k2 while keeping the form of Eq. (13)
and the definitions of k1 and k2. The value of f is suggested
to range from 1 to 10. Initially, f is set to 1. As the algo-
rithm proceeds, f is incrementally adjusted according to
convergence condition and mesh size. The incremental va-
lue of f can be fixed between 0.5 and 1. Generally, a larger
value of f is required for strongly non-linear problems with
coarse meshes and stronger convergence criteria. One can
observe that the introduction of f in the suggested range
does not significantly influence the behaviour of the penal-
ized Heaviside function, but results in very good numerical
convergence. For the challenging numerical examples given
in Section 4, it is easy to readily reach the converged solu-
tions with this adaptive procedure, but fails when the origi-
nal form of the function, Eq. (13), is directly applied.
4. Numerical examples

In this section, we give two challenging numerical exam-
ples to demonstrate the effectiveness and robustness of the
proposed method.

4.1. A rectangular dam with drainage tunnels

As a demonstrative example, a homogenous rectangular
dam with five drainage tunnels and an impermeable base is
firstly considered, as shown in Fig. 6. The size of the cross-
section of the dam is 10 m in width and 12 m in height. The
prescribed water head is 10 m on the upstream surface and
2 m on the downstream surface. Quadrilateral elements of
uniform size of 0.2 m · 0.2 m are used to discretize the
domain.

If no drainage tunnels are deployed in the dam, then the
following empirical solution is available to locate the free
surface [15]:

z ¼ ð100� 8xÞ1=2 ð21Þ
with z = 4.47 m at the seepage point, as plotted by curve 2
in Fig. 6. The corresponding numerical solution is shown
by curve 1, which matches well with the empirical solution.
The numerical solution, however, predicts a relatively more
obvious depression of free surface than the empirical one,
with z = 4.20 m at the seepage point.

As the drainage tunnels with size of cross-sections of
1 m · 1 m are deployed, the free surface is drastically
depressed, as illustrated by curve 3 in Fig. 6. The three tun-
nels close to the upstream dam surface play a deciding role
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in depressing the free surface, resulting in a loss of effect of
the other two in drainage.

4.2. A dam section with drainage galleries and drainage hole

array

As a more realistic example of engineering application
of the proposed method, we now investigate the effects of
a drainage system designed for the roller compacted con-
crete (RCC) gravity dam of the Guangzhao Hydropower
Project on the Beipanjiang River in Guizhou Province,
China. The geological conditions of the dam site and the
material properties of the RCC gravity dam are simplified
in this study, since the main focus is to verify the effective-
ness of the proposed method.

Fig. 7 illustrates a typical dam section with a drainage
system composed of seven drainage galleries and a drain-
age hole array. The size of the dam section is 170 m in
height and 30 m in width. Other dimensions of the dam
and rock foundation of concern are depicted in Fig. 7.
The drainage galleries are deployed close to the upstream
dam surface and in the rock foundation. For simplicity, a
rectangular cross-section is assumed for the galleries, with
a cross-sectional size of 2 m · 2 m. Drainage holes are ver-
tically deployed in the dam close to the upstream surface
and in the rock foundation immediately behind the grout-
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Fig. 7. Illustration of a concrete gravity dam section
ing curtain. The drainage galleries close to the upstream
dam surface are connected by the vertical drainage holes
to form a drainage system. The drainage holes are deployed
with 5 m in spacing, and the size of the cross-sections of the
holes is assumed to be 10 · 10 cm (i.e., 12.73 cm in diame-
ter for circular holes with the same perimeter length). The
drainage holes in the rock foundation are 40 m in depth,
and the grouting curtain is 2.5 m in thickness and 60 m
in depth. An anti-seepage layer is designed on the upstream
surface of the dam to reduce the seepage flow, with a thick-
ness of 0.8 m.

Corresponding to an exceptional flood level, the pre-
scribed water head is 168.0 m on the upstream dam surface,
and 28.5 m on the downstream dam surface. The bottom
and the lateral boundaries in the x- and y-directions of
the rock foundation, as well as the lateral boundaries in
the y-direction, are assumed to be impermeable. The drain-
age holes deployed in the rock foundation are prescribed
with a water head equal to the floor elevation of the con-
nected drainage gallery. The remaining boundaries, includ-
ing the galleries and the drainage holes deployed in the dam
body, are taken as the potential seepage surfaces. All the
materials are assumed to be hydraulically isotropic, and
the following values of hydraulic conductivity are taken:
k = 1.62 · 10�6 m/d for the anti-seepage layer, k = 4.09 ·
10�6 m/d for the concrete dam body, k = 7.18 · 10�3 m/d
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Fig. 8. The element mesh for the dam section. (elements: 19,032; nodes: 23,275).
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for the grouting curtain, and k = 2.30 · 10�2 m/d for the
rock foundation. A FEM element mesh was generated, as
shown in Fig. 8, with 19,032 brick elements and 23,275
nodes. Substructures with three layers of sub-elements in
the radial direction (see Fig. 5b) are used to model the
drainage holes.

Fig. 9 shows the water head contours at a cross-section
parallel to the x-axis and intersecting one set of drainage
Fig. 9. The water head contours in unit of m at a cross-section parallel to
x-axis across one set of drainage holes.
holes. Fig. 10 plots the water head contours at the same
cross-section under the condition that no drainage holes
are installed but the drainage galleries and the grouting
curtain are deployed in the same way. A comparison
between these two figures demonstrates that the drainage
hole array has a dramatic impact on the seepage flow
and can sharply depress the free surface, resulting in a
remarkable fall of uplift pressure on the dam base, as
Fig. 10. The water head contours in unit of m at the same cross-section
with Fig. 9 under the condition that no drainage holes are installed.
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shown in Fig. 11. In addition, it can be inferred from Figs.
9–11 that the drainage galleries with moderate size and
large distance have only a local influence on the distribu-
tion of the seepage field around, while the drainage hole
array with small radius and dense spacing exerts a global
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Fig. 11. Comparison of uplift pressure at the dam base with and without
deployment of the drainage holes.

Fig. 12. The water head contours and pore water pressure contours in unit of
water head contours for z P 80 m; (b) pressure contours for z P 80 m; (c) wa
effect. This indicates that numerical modeling of drainage
holes is indispensable for engineering safety assessment
and design optimization.

Fig. 12 shows the water head and the pore water pres-
sure contours at the cross-section parallel to the y-axis
and intersecting the drainage hole array. From Fig. 12,
one observes that the drainage system composed of the
connected drainage hole array and galleries leads to a sig-
nificant reduction in the pore water pressure around the
drainage facilities.

To further validate the effectiveness of the proposed
method, a sensitivity analysis is performed to investigate
the effects of the deployment pattern of the drainage hole
array on the seepage behavior within the dam. First, we
maintain the diameter of the drainage holes to be a con-
stant (12.73 cm in this study), but vary the spacing of the
holes, s, from 2 to 6 m, with an increment of 1 m. The loca-
tions of the free surfaces in the dam with different hole
spacing are depicted in Fig. 13, and the flow rates per unit
width out of the drainage system composed of the drainage
galleries and the drainage hole array are shown in Table 1.
One may observe from Fig. 13 that with the decrease of the
hole spacing, the free surface in the dam is remarkably
depressed and the pore water pressure is effectively
reduced, especially for the case that the hole spacing is
m at the cross section parallel to y-axis across the drainage hole array: (a)
ter head contours for z 6 78 m and (d) pressure contours for z 6 78 m).
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Fig. 13. Locations of the free surfaces at a cross-section parallel to x-axis
across one set of drainage holes as the hole spacing, s, varies from 2 to 6 m.

cm5d =

cm02d =

Fig. 14. Locations of the free surfaces at a cross-section parallel to x-axis
across one set of drainage holes as the hole diameter, d, varies from 5 to
20 cm.

Table 1
The drainage flow rate per unit width out of the drainage system with
different hole spacing

Hole spacing (m) 2 3 4 5 6
Flow rate per unit width (m3/d) 6.937 6.970 6.946 6.918 6.892
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smaller than 4 m. It can be further observed from Table 1
that the variation of the hole spacing in the specified range
does not significantly affect the flow rate out of the drain-
age system. This is because that as the hole spacing
decreases, the pore water pressure surrounding the drain-
age system also reduces. As a result, the increase in drain-
age flow rate due to increase of the number of the drainage
holes is basically counteracted by the decrease in drainage
flow rate due to reduction of the pore water pressure. This
does not mean, however, that the drainage flow rate plays a
secondary role in the optimization design of the drainage
system. As the permeability of the dam and the rock foun-
dation or the water head prescribed on the upstream and
downstream surfaces changes, change in the flow rate out
of the drainage system will inevitably occur.

Second, we maintain the spacing of the drainage holes to
be a constant (5 m is this study), but vary the diameter of
the holes, d, from 5 to 20 cm, with an increment of 5 cm.
The locations of the free surfaces in the dam corresponding
to different hole diameter are illustrated in Fig. 14, and the
flow rates out of the drainage system are listed in Table 2.
One may observe that with the increase of the hole diame-
ter, the free surface is slightly depressed and the drainage
Table 2
The drainage flow rate per unit width out of the drainage system with
different hole diameter

Hole diameter (cm) 5 10 12.73 15 20
Flow rate per unit width (m3/d) 6.863 6.899 6.918 6.933 6.966
flow rate per unit width is slightly reduced, but both of
the changes are not significant. This indicates that the com-
monly-used hole diameter between 5 and 15 cm is suitable
in engineering.

The numerical results achieved in this challenging exam-
ple demonstrate, on the one hand the effectiveness and
robustness of the proposed method, and on the other hand
the importance of predictive modeling of the drainage sys-
tem for performance and safety assessments and optimiza-
tion of designs. Other methods, such as the semi-analytical
method [5] or the composite element method [7], may be
valid for modeling the drainage holes in rock foundation
with prescribed water pressures, but very likely fail to
model a complex drainage system due to their simplified
characterization of the boundary conditions of the drain-
age facilities.

5. Conclusions

Seepage problems with complex drainage systems are
commonly faced in dam engineering, slope engineering
and underground engineering, and are typically non-lin-
ear. Combined with the substructure technique and the
variational inequality formulation of Signorini’s type, a
numerical solution with the FE method is suggested in
this study. The effectiveness and robustness of the pro-
posed method are validated by two challenging numerical
examples. The main contributions in this study are sum-
marized below:

(1) The boundary conditions of the drainage system
composed of drainage holes, drainage tunnels (galler-
ies), and drainage wells are characterized by using a
water head condition, the complementary condition
of Signorini’s type, or the combined boundary condi-
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tion of both. For drainage facilities satisfying the
combined boundary conditions, an iterative proce-
dure is suggested to determine the water head of the
free surface that has to be prescribed by ensuring flow
equilibrium.

(2) A substructure technique is introduced to model the
drainage hole array with small radius and dense spac-
ing. As a result, the difficulties in mesh-generating
and equation-solving tasks are avoided.

(3) Combined with an adaptive procedure for progres-
sively relaxing the penalized Heaviside function, the
variational inequality formulation of Signorini’s type
is used to determine the seepage points and to locate
the seepage free surfaces. With this method, not only
the singularity at the seepage points and the resultant
mesh dependency are completely eliminated, but also
the numerical stability and robustness of the algo-
rithm are satisfactorily achieved.

(4) The focus of this paper is the effects of drainage sys-
tems in different engineering practices. The total
assessment of performance and safety of such engi-
neering facilities, such as those considering coupled
hydro-mechanical effects on seepage behaviour and
safety, is outside the scope of the current investigation.
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