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ABSTRACT Physical mechanisms and influencing factors on the effective stress coefficient for
rock/soil-like porous materials are investigated, based on which equivalent connectivity index is
proposed. The equivalent connectivity index, relying on the meso-scale structure of porous ma-
terial and the property of liquid, denotes the connectivity of pores in Representative Element
Area (REA). If the conductivity of the porous material is anisotropic, the equivalent connec-
tivity index is a second order tensor. Based on the basic theories of continuous mechanics and
tensor analysis, relationship between area porosity and volumetric porosity of porous materials
is deduced. Then a generalized expression, describing the relation between effective stress coeffi-
cient tensor and equivalent connectivity tensor of pores, is proposed, and the expression can be
applied to isotropic media and also to anisotropic materials. Furthermore, evolution of porosity
and equivalent connectivity index of the pore are studied in the strain space, and the method to
determine the corresponding functions in expressions above is proposed using genetic algorithm
and genetic programming. Two applications show that the results obtained by the method in this
paper perfectly agree with the test data. This paper provides an important theoretical support
to the coupled hydro-mechanical research.

KEY WORDS rock/soil-like porous materials, generalized model for effective stress coefficient
tensor, equivalent connectivity index of pore, genetic algorithm

I. INTRODUCTION
Based on the research on consolidation of saturated soil and the interaction between fluid and soil,

Terzaghi[1] brought forward the effective stress law, which can be expressed as

σe
ij = σt

ij − δijp (1)

where δij is the Kronecker delta, σe
ij the effective stress tensor, σt

ij the total stress tensor and p the
fluid pressure.

However,many experiments on the deformation of rock/soil-likeporous materials under pore pressure
have indicated that Terzaghi’s effective stress law is not suitable for many materials. Then modified
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effective stress law was promoted[2]:

σe
ij = σt

ij − δijαp (2)

where α is the effective stress coefficient which ranges from 0 to 1. Based on experiment, Walsh[3] proved
α = 0.9 for the rockmass containing polishing joint, and Kranz[4] pointed out α = 0.56 for the rockmass
containing tensive joint.

The effective stress coefficient plays an important role in the coupled hydro-mechanical analysis
because it denotes the influence of fluid pressure on the solid matrix of the porous media. Various
equations for effective stress coefficient have been promoted[5], but none of them is widely used. Nur
and Byerlee[6] proposed a theoretical model of effective stress coefficient with the assumption that
the solid matrix is elastic media. Many researchers have studied the evolution law of effective stress
coefficient with the deformation of the solid matrix based on the experiments and tried to find out
the physical mechanism. Shao and Lu etc.[7–10] obtained the relation between strain and fluid pressure
under different confined stress and deviatoric stress. Their results showed that the relation between
the strain and the fluid pressure is nonlinear and the traditional effective stress law should be modified
when the fluid pressure is high, and also with the fluid pressure increasing, the axial deformation of
the rock sample decreases while the lateral deformation increases. This is to say, the deformation of
rock due to the fluid pressure is obviously anisotropic. Bernabe[11], Sun[12,13] and Zhao[14] found that
the effective stress coefficient is not a constant and varies with the effective confined stress and the
fluid pressure. These results indicate that the effective stress coefficient has a close relation with the
structure of pore. With the elastic assumption, Zhao[15] studied the effective stress law for coal samples
under gas pressure, and the results showed that the effective stress coefficient varies bilinearly with
the hydrostatic stress and the gas pressure. Feng etc.[16] studied the relation between the volumetric
stress and the fluid pressure to the effective stress coefficient using numerical method and the results
are consistent with Ref.[15].

The effective stress coefficient is influenced by the microstructure of the pore and fissure, the defor-
mation of solid matrix and the stress conditions, so it is very difficult to obtain a strict theoretical model
for the coefficient. The former studies were mostly focused on special porous materials, and aimed to
obtain experiential equations of effective stress coefficient based on the test data. Although the results
are useful for those special porous materials, they are not applicable for other porous media. In order
to establish a generalized model for the effective stress coefficient, the physics mechanism of fluid-solid
interaction should be thoroughly analyzed.

The purpose of this paper is to bring forward a generalized theoretical model to study the effective
stress coefficient for rock/soil-like porous materials based on the basic theories of continuous mechanics
and tensor analysis. Then the case studies will be conducted to examine the validity of the model.

II. EFFECTIVE STRESS COEFFICIENT
2.1. Some Factors Influencing on Effective Stress Coefficient and Physical Mechanism

The effective stress is averagely generalized to be an equivalent of the contact force among grains
in unit area[17]. The effective stress coefficient, in a cross section in the porous material, denotes the
ratio of the area occupied by the fluid to the total area[18]. For the granular soil (as shown in Fig.1), the
contact area among grains is very small, so any cross section can be replaced by a curved face, which is
almost occupied by the fluid. Therefore the corresponding effective stress coefficient α approximately
equals to 1. However, for rock/soil-like porous materials composed of crystallization or cementation as
shown in Fig.2, the curved face, similar to that in Fig.1, does not exist, so the effective stress coefficient
α is less than 1. The pore structure of porous materials composed of crystallization or cementation is
shown in Fig.2, and Fig.2(b) is the Representative Element Area (REA) in an arbitrary cross section
in Fig.2(a). Here the normal unit vector of the section is i.

In Fig.2(b), let Ai denote the area of REA, Avi and Asi denote respectively the area of the pore
and the solid in REA, then:

nAi =
Avi

Ai

(3)

where nAi is the area porosity of REA.
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Fig. 1. Sketch of the effective stress coefficient α = 1
for soil and soil-like materials[19].

Fig. 2. Sketch of pore structure in the rock or soil com-
posed of crystallization or cementation.

When the porous material is saturated, pores in the area Avi, as well as the initial cracks and the
cracks induced by deformation in the solid matrix, are full of fluid. Here let (Asi)p denote the area of
the cracks in Asi, which is full of fluid (not presented in Fig.2), then we can define a parameter γi,
called equivalent connectivity index in this study, as the following:

γi =
(Asi)p

Asi

(0 ≤ γi ≤ 1) (4)

From Eq.(4), we can find that γi represents the connectivity of pores in the REA, and depends on
the structure of cracks and pores and the property of the fluid in them.

For the REA as shown in Fig.2(b), let σt and σe denote respectively the total stress tensor and the
effective stress tensor, based on the definition of effective stress and the force equilibrium on the area,
then we can obtain the equation below on an average sense.

(σe · i)Ai = (σt · i)Ai − (I · i)(Avi + γiAsi)p (5)

where i is the normal unit vector of the REA, p is the fluid pressure, and I is the unit tensor.
Because Asi = Ai −Avi, Eq.(5) can be rewritten from Eq.(4) as

σe = σt − [nAi + (1− nAi)γi] p · I (6)

By comparing Eq.(6) with Eq.(2), we can obtain:

αi = nAi + (1 − nAi)γi (7)

where αi is the effective stress coefficient of the REA.
In Fig.2(a), let V and Vv denote the volume of the total porous material and the volume of pores,

respectively, and n denote the volumetric porosity, then:

n =
Vv

V
(8)

In the porous material as shown in Fig.2(a), select a column Representative Element Volume (REV)
with the height of L and the axis s parallel to i, then the volume of the REV is

V ′ =

∫
L

Ads (9)

where A is the area of the cross section of the column.
Let ni be the volumetric porosity of the REV, then we can obtain:

niV
′ =

∫
L

nAi(s) · Ads (10)
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where nAi(s) is the area porosity of the cross section along the axis s. As nAi(s) is independence of A,
Eq.(10) can be rewritten as

niV
′ = A ·

∫
L

nAi(s)ds (11)

In the REV, we define n̄Ai as the average area porosity of all cross sections perpendicular to the
axis s, then:

n̄Ai =
1

L

∫
L

nAi(s)ds (12)

As V ′ = A · L, we can obtain from Eqs.(11) and (12):

ni = n̄Ai (13)

Obviously, the volumetric porosity of the column equals to the average area porosity of the cross
section normal to the axis of the column.

If the rock/soil-like porous materials are homogeneous, we obtain:

ni = n, nAi = n̄Ai (14)

From Eqs.(13) and (14), the following equation can be obtained:

nAi = n (15)

Using Eqs.(15) and (7), the equation for the effective stress coefficient can be expressed as

αi = n + (1 − n)γi (16)

If the porous material is anisotropic, the effective stress coefficient and equivalent connectivity index
are both second-order tensor. Let α and γ denote respectively the stress coefficient tensor and equivalent
connectivity index tensors, then:

α = nI + (1− n)γ (17)

If the porous material is isotropic, α = αI and γ = γI, where α and γ are scalars, and I is the unit
second-order tensor. Then Eq.(17) can be simplified as

α = n + (1− n)γ (18)

From the analysis above, we can find that effective stress coefficient is the inherent property of both
the porous material and the fluid in the pores, and depends on the microstructure of pores or the fissure
and the property of the fluid.

Because the macroscopic deformation can reflect the microstructure of porous material directly,
we discuss the evolution of porosity and equivalent connectivity index in the strain space. Due to the
difficulty of the problem, present research only focuses on the material undergoing elastic deformation
and does not consider the influence of the property difference of the fluid.

2.2. Evolution of Parameters in Strain Space

Some rock/soil-like porous materials, such as marble and granite, are composed of crystallization
or cementation. According to the measured permeability and the character of pores, the porosity here
is defined to be high when the porosity is between 5% and 40%, and the porosity is defined to be
low when the porosity is less than 5%. If the porosity is low, the main factor influencing the effective
stress coefficient is the equivalent connectivity index and the porosity can be considered to be invariable
during the deformation under the elastic condition. If the porosity is high, the grain can be assumed to
be incompressible with the consideration that the compressibility of the grain is very small comparing
with that of the skeleton. Under the elastic condition, the deformation of the material is caused by
the rearrangement of the pore structure. If the material is considered to be equivalent continuum, the
volume of cracks and its variety can be neglected although there are new stress-induced cracks during the
deformation. But cracks change the connectivity of the pore and influence the equivalent connectivity
index.
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For the porous materials with high porosity as defined above, the grain can be assumed to be
incompressible and the volume of cracks and its variety can be neglected. Then letting the compressive
stress be positive, we obtain:

V = V0(1− εv), V (1− n) = V0(1− n0) (19)

where V0 and n0 are the volume and porosity of the material before deformation, respectively; V and
n are the volume and porosity of the material after deformation, respectively.

Then we obtain evolution of porosity n:

n =
n0 − εv

1− εv

(20)

From the definition of equivalent connectivity index γ, we can find that γ mainly depends on the
size and distribution of pores and microcracks and can be generally expressed as:

γ = f(γ0, ε) (21)

where γ0 is the initial equivalent connectivity index, and ε is a strain parameter of the porous material
and here we define it as the volumetric strain for isotropic and elastic materials.

Then, we can use the Eqs.(18), (20) and (21) to study the evolution of effective stress coefficient,
and summarize them as

n =
n0 − εv

1− εv

, γ = f(γ0, ε), α = n + (1− n)γ (22)

However, due to the complexity of the micro-structure of rock/soil-like material and its evolution
induced by stresses, it is impossible to obtain a theoretical form for equivalent connectivity index γ in
the strain space. The function f in Eq.(22) can be determined using the method below.

2.3. Identifying Structure and Parameters of Function Using Genetic Programming and Genetic
Algorithm

An intelligent method is introduced to determine the form of the function f in Eq.(22). We only
give a simple introduction for this method in the following paragraphs, and the detailed can be referred
to Ref.[20].

Genetic algorithm (GA) is an optimizing method to simulate biology evolving processes. The algo-
rithm applies the Darwinian principle of natural selection (‘survival of the fittest’) to a set of tentative
solutions, generally coded in binary or real number strings, of the discussed solution. It is one of the
random search algorithms. It has a fast search function in the optimum space and a strong ability
of error tolerance. It is attractive to the problem that is without or with few heuristic solutions. A
fitness function is used to evaluate the fitness of the tentative solution. Some genetic operations such as
reproduction, crossover, and mutation, etc. are performed on the old tentative solutions , for creating
a set of new tentative solutions. The fitness function is used again to evaluate the applicability of the
new tentative solution. The evolving process does not finish until the fittest solution is found.

Genetic programming (GP) is a new structure descriptionmethod. Its nature is a generalizedhierarchy
computer program description. It does not need to determine in advance or restrict the form of the
structure and its size. The description can automatically modify the size of the structure according
to its environment change. Therefore, it is attractive in the recognition of the structure of non-linear
constitutive material model.

By coupling the GA and GP, we can identify the structure and parameters of the function f

simultaneously, and the procedure is shown in Fig.3.

III. CASE STUDIES
3.1. Effective Stress Coefficient of Coal under Elastic and Isotropic Condition

In Ref.[15], Zhao etc. studied the deformation of coal under gas pressure by experiments. The
preconditions of the experiment are: (1) the coal is homogeneous and isotropic; (2) the deformation of
the coal matrix is elastic and reversible. Although these assumptions do not perfectly fit the material,
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Fig. 3. Procedure to identify the structure and parame-
ters of the function f .

Fig. 4. Procedure to identify the function f .

the authors argued that they have good approximation. According to the experiment, the initial porosity
is 6.07%, Young’s modulus is 2.174 GPa and Poisson’s ratio is 0.313.

Under the assumption of isotropy and elasticity, the volumetric strain εv can represent the deformation
of the coal, and is selected as an internal variable in this study. If εv is the volumetric strain induced by
exterior force and δεv is the volumetric strain caused by the fluid pressure, we obtain εv ≥ 0, δεv ≤ 0
and the total volumetric strain is εv + δεv. Then according to Eq.(22), we have

n =
n0 − (εv + δεv)

1− (εv + δεv)
, γ = f (γ0, εv, δεv), α = n + (1− n) γ (23)

The structure and parameters of function f in Eq.(23) can be identified using the method described
in §2.3, and details are shown in Fig.4. In order to validate the method proposed in this study, we divide
the experimental data into two groups, one group
is used to determine the structure and parameters
of the functionf in Eq.(23), and the other group
is used to verify the results. The second group in-
cludes the datawithhydrostatic pressure of 8MPa,
and the other data belongs to the first group. In
order to simplify the structure of the function f ,
only two operators, add and multiply, are set in
the structure, and the maximum depth of the tree
of the structure is 5. Both GA and GP terminate
when the number of iteration reaches 10. The evo- Fig. 5 Evolution of the best and average fitness.
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lutions of the best fitness and the average fitness are shown in Fig.5, from which we can find that the
structure of the function f is improved step by step.

F =

√√√√√
N∑

i=1

(σt
cal − σt)

2

N
(24)

where N is the total load steps, σt and σt
cal are the total stresses of experiment and calculation,

respectively.
The structure with the best fitness is:

f1 = γ0 + c1εv + c2δεv (25)

where γ0, c1 and c2 are parameters and depend on the size and distribution of pores and the property
of the gas. Here, the values of the parameters are: γ0 = 0.60, c1 = −120.5 and c2 = −351.2. We can
find that the function f (equivalent connectivity index) is more sensitive to δεv, i.e., it is more sensitive
to the fluid pressure than the exterior force.

From Eqs.(23) and (25), the strain at different hydrostatic stress and fluid pressure can be deduced,
and then the effective stress coefficient can be calculated. Therefore, the change of the strain of the
coal under the gas pressure can be estimated using Eq.(26), and the estimated results, together with
experiment results, are shown in Fig.6. We can find that the estimated results perfectly agree with the
experimental data.

δε1 = δε2 = δε3 =
− (1− 2μ)

E
αp (26)

From Fig.6, we can find out that when the hydrostatic pressure increases, the strain induced by the
constant fluid pressure decreases. Under the same hydrostatic stress, the strain increases nonlinearly

Fig. 6. Relationship between strain increment and fluid pressure under different hydrostatic stress.
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Fig. 7. Relationship between strain increment and fluid pressure under hydrostatic stress of 8 MPa.

with the fluid pressure. The same method above is used to predict the response of the coal to the
gas pressure under 8 MPa hydrostatic stress, and the result is shown in Fig.7. We can find that the
experiment and predicted results are also consistent.

3.2. Effective Stress Coefficient of Sandstone under Elastic and Anisotropic Condition

In Ref.[21], Lu experimentally studied the mechanical property and effective stress of the sandstone
based on experiments. These experiments are performed under four confining pressures: 10 MPa, 20
MPa, 30 MPa and 40 MPa. We here just list the results under the confining pressure of 40 MPa in
Figs.8 and 9 in which Pw is the pore pressure. We can find that when the deviatoric stress (σ1 − σ3) is
less than 100 MPa, the deformation of the sandstone is elastic and the relation between the strain and
the fluid pressure is linear. But when the fluid pressure increases, the first principle strain ε1 and the
third principle strain ε3 decrease with different rate, that is to say, the deformation of the sandstone
under fluid pressure is anisotropic. Then, the effective stress coefficient and the equivalent connectivity
index are both second-order tensors. Considering the symmetry, two of the three principal components
of effective stress coefficient tensor and the equivalent connectivity index tensor are equal to each other.

Fig. 8. Experimental data of sandstone with the con-
fining stress of 40 MPa.

Fig. 9. Experimental strain responses to pore pressure
change under the deviatoric stress (indicated by the
numbers) with the confining stress of 40 MPa.

From Eq.(17), the unit principle axis vector of the effective stress coefficient tensor and the equivalent
connectivity index tensor are the same. Assuming that the principle axes of effective stress coefficient
tensor correspondingly coincide with those of the strain, similarly to the discussion for the isotropy in
§2.2, the effective stress coefficient tensor can be expressed as

n =
n0 − εv

1− εv

, γ = f (ε), α = nI + (1− n)γ (27)

where n0 is the initial porosity and equals to 19%, γ the equivalent connectivity index tensor and I

the second-order unit tensor.
Then the last two equations in Eq.(27) can be expressed by principle values:

γ1 = f (ε1), γ2 = f (ε2), α1 = n + (1− n) γ1, α2 = n + (1− n) γ2 (28)
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Fig. 10. Evolution of the best and average fitness.

where γ1 and γ2 are the principle values of tensor γ, α1 and α2 are the principle values of tensor α.
In order to validate the method proposed in this paper, we also divide the experimental data into

two groups, one group is used to determine the structure and parameters of the functionf in Eq.(28),
and the other group is used to verify the results. The second group includes the data under the confining
stress of 20MPa, deviatoric stress (σ1 − σ3) = 50 MPa and the confining stress of 40 MPa, deviatoric
stress (σ1−σ3) = 81 MPa. And the other data belong to the first group. The structure and parameters
of the function f in Eq.(28) are identified using the method stated in §3.1. The number of operators
in the structure is restricted to 4, i.e., add, multiply, natural logarithm and exponent. The maximum
depth of the tree is restricted to 4. Both GA and GP terminate when the number of iteration reaches
10. The evolution of the best fitness and average fitness are shown in Fig.10, from which we can find
that the structure of the function f is improved step by step.

The structure of f with the best fitness and simplest form is:

f = c1 ln (ε) + c2 (29)

where c1 and c2 are parameters and depend on the size and the distribution of the grains and the property
of the fluid. Here, the value of parameters are: c1 = −0.278 and c2 = −1.33. As 0 ≤ γi ≤ 1 (i = 1, 2),
when εi ≤ 2.3 × 10−4, γi = 1. That is to say, before the sandstone is loaded, the principle value of
equivalent connectivity index tensor is 1. Then, at the initial state, Terzaghi’s effective stress law can
be used for the sandstone.

From Eqs.(28) and (29), the effective stress coefficient tensor at different strain state can be deduced.
Then the change of the strain of the sandstone under fluid pressure can be estimated using Eq.(30).
The data in the second group is used to check the method (as shown in Fig.11). The analyzed results
perfectly agree with the test data.

δε1 = − (α1 − 2μα2)
δP

E
, δε3 = − (α2 − μα2 − μα1)

δP

E
(30)

where α1 and α2 are the principle values of tensor α, E and μ are Young’s modulus and Poisson’s ratio,
respectively.

Fig. 11. Strain responses to pore pressure (Pw) change under different confining stress and deviatoric stress.
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IV. CONCLUSIONS
The effective stress law is studied based on achievements of the former researchers. A generalized

method is proposed to analyze the effective stress coefficient for rock/soil like materials based on basic
theories of continuous mechanics and the tensor analysis. Using the equivalent connectivity index, a
generalized model is set up for effective stress coefficient tensor as shown in Eq.(17).

The effective stress coefficient model is simplified under the elastic and isotropic conditions. In the
strain space, the evolution of porosity and equivalent connectivity index is investigated, then a method
coupling GA and GP is proposed to identify the structure and parameters of the function, which is
used to calculate the equivalent connectivity index.

In order to validate the method proposed, the deformation of the coal and the sandstone induced by
the fluid pressure are studied. The results show that the present method can be used both for isotropic
and anisotropic materials.
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