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a b s t r a c t

Many types of rock masses behave in a strain-softening way in geotechnical engineering. Numerical

methods have to be used to study these kinds of media. But a limit to the rate of softening of the strain-

softening material exists within the framework of the classical theory of plasticity. Considering the salient

characteristic that the strength parameters decrease during the process of strain-softening, this paper

develops a procedure for modeling strain-softening behavior based on the methodology for analyzing

brittle-plastic rock mass. In the proposed procedure, strain-softening process is simplified as a series of

stress drops and plastic flow. Therefore, solving a strain-softening problem becomes finding a series of

brittle-plastic solutions. The proposed procedure is implemented in a finite element code based on the

classical theory of plasticity in which Mohr–Coulomb (M–C) criterion is employed. Numerical examples

are examined and the results validate the proposed implementation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Experimental research of mechanical properties of rock mass
shows that there are four types of post-failure curves from the
uniaxial or triaxial compression test of rock specimens [1]. The
classification of stress–strain curves constitutes the basis of establish-
ing four corresponding constitutive models phenomenologically.
They are elasto-perfectly brittle-plastic, elasto-plastic strain-soften-
ing, elasto-perfectly plastic and elasto-plastic strain-hardening mod-
els. The elasto-perfectly plastic model indicates that the strength
parameters keep constant after the material strength reaches its peak
value. Strain-hardening model indicates that the strength parameters
increase in plastic state as the deformation accrues. Elasto-perfectly
plastic and strain-hardening behavior only appears when confining
pressure is high in rock test. Strain-softening model displays that the
strength parameters decrease gradually from peak values to residual
ones with increasing deformation in post-failure region, and the
strain-softening behavior is often observed both in laboratory and in
the field of underground rock engineering [2,3]. Elastic-brittle-plastic
model implies that the strength parameters drop abruptly from peak
values to residual ones in post-failure region, and perfectly brittle-
plastic phenomenon can be considered to be a special case of strain-
softening behavior.

Elastic-brittle-plastic and strain-softening phenomena are
usually accompanied by strain localization in which irreversible
deformation is located in narrow zones of limited thickness. In geo-
materials such as rock and soil, fractures or shear bands will appear
in the narrow zones where the strength parameters decrease.
ll rights reserved.

:+86 27 87199560.
Perfectly brittle-plastic and strain-softening phenomena have been
studied from both micro-mechanical and macroscopic viewpoints.
The micro-mechanical approach analyses the interaction between
the granular particles [4,5] or the crystal grains of the material [6].
The onset and extension of the microcracks in the material are
described and strain-softening behaviors of specimens in labora-
tory tests are reproduced [7–10]. A complete review on micro-
mechanics was given by Kemeny and Cook [10].

Considering the strength parameter weakening in the processes
of strain-softening, the macroscopic approach models the overall
behavior of the strain-softening material on the basis of the results
of large scale (with respect to the size of the soil/rock particles) tests
and of field observations, without going into the details of the
interaction between its microscopic components.

If attention is paid to the process of the strain localization in
macroscopic methods, different techniques for modeling of localized
deformation are available, including the use of the Cosserat continuum
[11,12], the non-local theory [13,14], gradient-dependent formulations
[15–17], strong discontinuity approaches [18,19], weak discontinuity
approaches [20–21] and other approaches that the effect of the band is
smeared over the crossing element [22–24]. Most of the above techni-
ques are based on non-conventional definitions of the continuum and
they are used to overcome difficulties related to inception and
development of localization or to mesh dependence when numerical
analyses are performed. Bardet [25], Pietruszczak and Xu [26] and
Sterpi [27] presented comprehensive reviews, respectively, while they
studied localization and strain-softening behavior of materials such as
soil, concrete and similar cemented mixtures.

On the other hand, if concern is focussed on the failure zone’s
distribution and the degree of deformation in practice, some simpler
approaches based on the classical continuum theory, such as Lo and Lee
[28], Sterpi [27], Zhang and Subhash [29], Hajiabdolmajida et al. [30],
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Zheng et al. [1], as well as continuous damage models [31–35], are also
practical. Although these macroscopic approaches present some draw-
backs in catching the onset and extension of the narrow zone of the
strain localization and explaining the mechanism of the formation of
the localization with respect to the micro-mechanical approach, and
there might exist mesh dependency to a certain extent in using
numerical approaches, estimation of the plastic zone and the degree of
failure are quite accurate [1,36]. From practical engineering perspec-
tives, the extent of the plastic zone and the degree of failure are quite
useful for the design of reinforcement in the construction of slopes and
underground caverns. Therefore, the macroscopic approaches based on
the classical continuum theory have still been adopted in geotechnical
engineering and the obtained results are welcome for engineers.

In this paper, a new procedure for modeling the strain-softening
process is developed and a finite element implementation is
presented under the framework of the classical theory of plasticity.
Numerical results validate the proposed methodology. The paper
is organized in the following way. In Section 2, the types of
post-failure behaviors in rock mechanics tests are discussed and
the implementation of the corresponding constitutive model in
numerical methods is briefly reviewed. Section 3 presents the
simplification of the stress–strain curve in the softening stage based
on the brittle–plastic model and modeling of strain-softening
relation. The main steps of the implementation of solving the
strain-softening problems in finite element method (FEM) are
presented in Section 4. Numerical examples are examined and the
results show the effectiveness of the proposed methods, and
analysis of the excavation of an underground cavern is also carried
out in Section 5. Conclusions are given in Section 6.
2. Types of stress–strain curves of rock mass and their
modeling

2.1. Types of stress–strain curves of rock mass and consideration on

numerical modeling

Fig. 1(a) schematically gives a set of stress–strain curves observed
in laboratory test of rock and soil specimen. For simplicity, they are
typically classified as four types, i.e. perfectly brittle-plastic (curve I),
strain-softening (curve II), perfectly plastic (curve III) and strain-
hardening (curve IV) relationship as shown in Fig. 1(b).

The modes of treating the perfectly plastic and strain-hardening
relationship in numerical methods are mature within the frame-
work of classical theory of plasticity and they can be easily
implemented in FEM, etc. For perfectly brittle-plastic and strain-
softening constitutive model, Lo and Lee [28] were the pioneers
who described the abrupt decrement of strength from the peak to
the residue, implemented the model in finite element code and
performed the stability analysis of a slope. While studying brittle
rock mass, Zheng et al. [1] proposed a detailed procedure for
calculating the abrupt change in stresses from the peak strength
Fig. 1. (a) Stress–strain curves observed in laboratory test of rock and soil specimen,

(b) idealized stress–strain curve for different models.
surface to the residual strength surface and presented the analy-
tical method for brittle-plastic model and numerical implementa-
tion in FEM. In the analysis, the stresses are dropped from the peak
strength surface to the residual strength surface and then plastic
flow will continue in the post peak regime.

In the same way as deriving the stress–strain relationship of
strain-hardening material, the stress–strain relationship in strain-
softening model can be obtained by subdividing the plastic
modulus into the plastic modulus of the perfectly plastic behavior
and the softening modulus. It seems that the strain-softening
constitutive relationship can be implemented in numerical meth-
ods like strain-hardening model. However, ill-posed problems may
arise in the post peak regime, and the stress–strain relationship
becomes meaningless when the rate of softening is high [1].
Therefore, care must be taken in dealing with strain-softening
constitutive model.
2.2. Incremental stress–strain relationship under the classical theory

of plasticity

For elasto-plastic media, suppose that the yield function is

Fðs,kÞ ¼ 0 ð1Þ

where s represents the stress tensor, and k is a growth (hardening,
softening, etc) function that defines the size of the yield surface. The
parameter k also represents the plastic loading history of the
material, and can be written as k¼k(Z), in which Z is a parameter
indicating the change of strength parameters. For example, Z is the
softening parameter when strain-softening behavior is considered.

If the loading condition

@F

@s

� �T

Dde40 ð2Þ

is satisfied, the stress–strain relationship in an infinitesimal incre-
ments is given by [37]

ds¼Depde ð3Þ

at a given stress state and plastic deformation history, where

Dep ¼D�Dp,Dp ¼
1

M
D
@Q

@s
@F

@s

� �T

D ð4Þ

Dep, D and Dp are the matrices in plasticity constitutive theory, de
represents incremental strain components, and Q(s) is the poten-
tial function. The real number M is defined as

M¼ Aþ
@F

@s

� �T

D
@Q

@s

� �
ð5Þ

and the real number A is

A¼�
@F

@k
dk
dl

ð6Þ

For hardening materials, the real number A40, for perfectly
plastic materials A¼0, and for strain-softening materials Ao0.

In numerical analysis, the external forces are applied in load steps
with finite sizes. The resulting displacements and stresses with
incremental form have finite size, too. Then Eq. (3) is replaced by

Ds¼
Z De

0
Depde ð7Þ

The incremental constitutive relationship has to be integrated
numerically to compute incremental stress (Ds) from incremental
strain (De). This means that Dep should be an integrable matrix
function at a given stress state.
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2.3. Limitation of classical theory of plasticity for softening material

In an elasto-perfectly plastic or elasto-plastic strain-hardening
material, it is well known that Dep is always integrable and that
numerical integration in Eq. (7) can be carried out without
question. But in the case of softening, Ao0. In order for the
constitutive matrix (Dep) to be meaningful, the following condition
must be met:

9A9o
@F

@s

� �T

D
@Q

@s , Ao0 ð8Þ

In fact, if 9A9¼(qF/qs)TD(qQ/qs), then M¼0. This makes Dep

indeterminant. If 9A94(qF/qs)TD(qQ/qs) and Ao0, then Mo0. Hence,
Dep can be written as Dep ¼Dþ9M9�1

dQ dT
F with dQ¼D(qQ/qs) and

dF¼D(qF/qs). Then Eq. (3) can be written as

ds¼ Dþ
1

9M9
dQ dT

F

 !
de ð9Þ

Pre-multiplying Eq. (9) with deT(a0) leads to

deT ds¼ deT Ddeþ 1

9M9
deT dQ dT

F de: ð10Þ

If the associated flow rule is used, Q¼F, and then dQ¼dF. The
above equation can be further written as

deT ds¼ deT Ddeþ 1

9M9
ðdeT dF Þ

2
ð10:1Þ

The elasticity matrix D is positive definite, hence deTDde40.
Furthermore, 9M9�1

ðdeT dF Þ
2 is not negative. This leads to deTds40.

However, deTdso0 in the process of strain-softening. Eq. (10.1)
contradicts the definition of strain-softening for the associated flow
rule. If non-associated flow rule is used, dQadF. Eq. (10) can then be
written as

deT ds¼ deT Ddeþ 1

9M9
@Q

@s

� �T

dse

 !
@F

@s

� �T

dse

 !
ð10:2Þ

where dse
¼Dde. Assume that the potential function is in the

similar form as failure function and that it is convex. Both
ð@Q=@sÞT dse40 and ð@F=@sÞT dse40 in loading condition. This
also leads to deTds40, which is inconsistent with the definition of
strain-softening. Therefore, for softening material, a constitutive
relationship can be determined only if its softening rate satisfies
inequality (8). In other words, there will be a limit of softening rate
when Dep is computed by Eqs. (4)–(6).
Fig. 2. (a) Illustration of simplification of strain-softening process, (b) elastic and

plastic strains in the strain-softening curve.
3. Simplification of strain-softening process and modeling of
strain-softening relation

Since numerical solution process will be in trouble when a rock
with high strain-softening rate is dealt within the same way as in
elasto-plastic strain-hardening model, a new approach must be
developed in order to remove the aforementioned drawbacks
during the constitutive integration. After studying the principle
of analyzing brittle-plastic rock mass and considering the similar
features that the stress decreases as the plastic strain increases for
brittle-plastic and strain-softening material, we think that the
methodology of solving brittle-plastic problem is heuristic.
3.1. Simplification of strain-softening process

In Fig. 2(a), the idealized stress–strain curve for strain-softening
rock consists of part ‘OP’, ‘PB’ and ‘BC’. The relationship of stress and
strain in part ‘OP’ is considered as linear. Part ‘PB’ is in the process of
strain-softening and part ‘BC’ is in the residual stage. During the
strain-softening stage, strength parameters decrease as the soft-
ening parameter, which can be defined as a function of plastic
strain, increases, and they reach their residual values when the
softening parameter is greater than a limit. Fig. 2(b) shows that the
limit of the softening parameter can be determined from the plastic
strains corresponding to point ‘B’ in the strain-softening curve.

For the stress–strain curve of strain-softening rock, the relationship
of stress and strain in strain-softening stage is normally nonlinear. The
piecewise linear approximation is made when numerical analysis is
performed under the framework of the classical theory of plasticity.
Fig. 2(a) shows that curve ‘PB’ is replaced by piecewise linear segments
‘PA2’, ‘A2A4’, ‘ A4A6’ and ‘A6B’ and each segment usually has different
negative slope. Here, the piecewise linear segments are further
simplified and they are treated in a stepwise manner.

For example, the strain-softening segment ‘PA2’ is simplified to
be stress drop part ‘PA1’ and plastic flow part ‘A1A2’. Strain-
softening process from ‘P’ to ‘A2’ becomes brittle-plastic one from
‘P’ to ‘A1’ and then from ‘A1’ to ‘A2’. The simplification can be made
for the other segments in the same way. Thereby, the strain-
softening process can be regarded as a series of brittle-plastic steps
as shown in Fig. 2(a). Solving directly the strain-softening problem
comes down to finding a series of brittle-plastic solutions.
3.2. Incremental stress–strain relationship for brittle-plastic model

After the strain-softening process is simplified to be a series of
brittle-plastic steps, the key element of solving the strain-softening
problem is to find the solution to brittle-plastic problem. According
to the approach proposed in [1] under the framework of classical
plastic theory, the stresses reach a certain point ‘P’ on the peak
strength surface(PSS) by loading from a certain initial state and will
fall on a point ‘A’ on the residual strength surface (RSS) with a sudden
change if the loading condition is satisfied, and then stresses will
change on RSS, as shown in Fig. 3. Therefore, the incremental stresses
consist of two parts after the stresses reach PSS.

In each step, denote PSS by Fp(s,k)¼0 and RSS by Fr(s,k)¼0,
wheres represents stress tensor andk is a parameter indicating the
change of strength parameters.

During the brittle-plastic process, the stress increments can be
written as

Ds¼DsdþDsf ð11Þ

whereDs is the total stress increment,Dsd the stress increment by
stress drop and Dsf the stress increment caused by stress flow



Fig. 4. Mohr’s diagram, (a) principle stress components on PSS; (b) principle stress

components on RSS.

Fig. 3. Diagram of stress drop in stress space.

Fig. 5. Evolution of strength parameters.
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on RSS. The term Dsf can be computed from Eq. (3) and it is
written as

Dsf ¼DepDe ð12Þ

The stress drop (Dsd) is determined by the stress change from
PSS to RSS, and the computation of it will be discussed in detail in
the next subsection. The incremental stress–strain relationship
with the form of finite sizes is

Ds¼Dsdþ

Z De

0
Depde ð13Þ

3.3. Computation of stress drop

In the last subsections, it is illustrated that the strain-softening
process is replaced by a series of brittle-plastic steps, and the stress
increment in each brittle-plastic step is divided into stress incre-
ment by stress drop and the stress increment by plastic flow.

As to the computation of stress drop in numerical procedure,
three hypotheses on stress-dropping are discussed in [1]. Based on
our numerical experiences, different hypotheses will influence the
computation time and the accuracy. The convergent results will be
trivially altered because the stresses in the media will be adjusted
to meet the equilibrium during the iteration.

Here, the assumption of the constant minor principal stress is
made and M–C criterion is employed to illustrate how the incre-
mental stresses caused by stress drop are computed.

Denote Cartesian stress tensors by sij and the three principal
stresses bysi(i¼1,3). Suppose thatsip(i¼1, 3) is on PSS andsir(i¼1, 3)
on RSS and that the directions of the principal stresses are unchanged
after the stress drop. The variations of the magnitude of the three
principal stresses are

Dsi ¼ sir�sipði¼ 1,3Þ ð14Þ

If the M–C yield criterion is used, it is written in principal stress
space as

Fðs1,s3,ZÞ ¼ s1�as3�Y ¼ 0 ð15Þ

in which a¼ ð1þsinjÞ=ð1�sinjÞ, Y ¼ 2ccosj=ð1�sinjÞ, c and j
are cohesion and the internal friction angle, respectively, s1 is the
major principal stress, and s3 the minor principal stress.

When stresses reach the peak strength,

Fpðs1p, s3p,ZÞ ¼ s1p�ap s3p�Yp ¼ 0 ð15aÞ

In Eq. (15a),ap ¼ ð1þsinjpÞ=ð1�sinjpÞ, Yp ¼ 2cp cosjp= ð1�sinjpÞ.
After the stresses drop to the RSS,

Frðs1r , s3r ,ZÞ ¼ s1r�ars3r�Yr ¼ 0 ð15bÞ
where ar and Yr have the same meaning as those in Eq. (15a).
Subscripts ‘p’ and ‘r’ indicate that the parameters are in their peak
and residual values in Eqs. (15a) and (15b), respectively.

As a constant minor principal stress is assumed, we have

Ds3 ¼ s3r�s3p ¼ 0 ð16Þ

Substracting Eq. (15a) from Eq. (15b), the difference of the major
principal stress before and after the stress drop is

Ds1 ¼ s1r�s1p ¼ ðar�apÞs3rþYr�Yp ð17Þ

Fig. 4 indicates the state of stress at a point which is represented
by the Mohr diagram. Assume that the ratio of the difference of the
principal stresses is constant before and after the stress drop, i.e.
(s2r�s3r)/(s1r�s3r)¼(s2p�s3p)/(s1p�s3p), then.

Ds2 ¼ s2r�s2p ¼ s3rþ
s2p�s3p

s1p�s3p
ðs1r�s3rÞ�s2p ð18Þ

From Eqs. (16)–(18), the principal stress increments caused by
stress drop can be calculated after the strength parameters corre-
sponding to the peak and residual ones are determined. The
incremental principal stresses are transformed back into the Carte-
sian coordinate system under the assumption that the directions of
the three principal stresses are unchanged during the stress drop, and
the incremental stress vector (Dsd) in Eq. (13) is then obtained.

3.4. Evolution of strength parameters

During the strain-softening stage, strength parameters decrease
while the softening parameter increases. Here the softening
parameter is defined as the plastic shear strain (Z¼ ep

1�e
p
3), which

is the difference between the major and minor principal plastic
strains.

For simplicity, the parameters are described by bilinear func-
tions of plastic shear strain

oðZÞ ¼
op�ðop�orÞðZ=Z�Þ 0oZoZ�

or ZZZ�

(
ð19Þ
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whereo represents any one of the strength parameters, such as c,j
and c, etc. Zn is the critical plastic shear strain from which the
residual behavior starts and should be identified by experiments.
Fig. 5 shows the rule of evolution of strength parameters. If Zn is
small, the softening slope is steep, and the slope is gentle if Zn

is large.
4. Numerical procedure in solving strain-softening problem

4.1. Algorithm for constitutive integration

The crux of the finite element implementation of the proposed
method is constitutive integration, namely, how to calculate the
stress increments from the given strain increments. The algorithm
for constitutive integration is stated below.

For the rth iteration of each load increment, comply with the
following steps:
(1)
Ex
ca

va
tio

n 
lo

op
Compute Dsr
e ¼DDer and the try stress sr

e ¼ sr�1þDsr
e, where

the subscript e denotes that elastic behavior is assumed;

(2)
 Check if sr

e is beyond the PSS. If the answer is negative, the
response is elastic andsr is set equal tosr

e. Or else brittle-plastic
process is considered.
Start

Input data defining geometry, boundary
conditions, material properties and
external loads

Carry out excavation computation and
calculate the excavation forces

Apply the incremental loads according
to specified load factor

Solve the simultaneous equation system

Perform constitutive integration

Calculate the residual forces

Check to see if the iteration process has
converged

Update residual strength parameters

Check to see if the solution process has
converged between 2 update steps

Output the results for this load
increment

End

Lo
ad

 in
cr

em
en

t l
oo

p

St
re

ng
th

 u
pd

at
e 

lo
op

Ite
ra

tio
n 

lo
op

Yes

Yes

No

No

Fig. 6. Numerical flow chart for the proposed method.
(3)
Tabl
Geom

M–

Ra

Ini

Yo

Po

Zn

cp

cr

jp

jr

cp

cr
Compute Dsd , Dsf ¼
RDe

0 Depde and Dsr ¼DsdþDsf . Firstly,
compute the principal stress increment Dsi (i¼1, 3) from
Eqs. (16)–(18) based on the peak and residual strength para-
meters at the current load step. Then, Dsd is obtained by
transformation. Dsf is calculated on the condition that the
stresses should meet Eq. (15b).
(4)
 Accumulate the stresses as sr ¼ sr�1þDsr .

(5)
 Check to see if the iteration process has converged. If yes,

compute the plastic strains and the plastic shear strain
(Z¼ ep

1�e
p
3), and update strength parameters by Eq. (19). Go

to the next iteration if no.
In step 3, if the Gauss point has not previously yielded and it has
yielded during the application of load corresponding to the current
iteration (i.e. rth iteration), Dsr ¼ bDDeþDsdþ

R ð1�bÞDe
0 Depde. The

parameter b is determined by Fp(sr�1+bDDe)¼0.
In the above main steps, the PSS and RSS are generally different

at each Gauss point in each load step. The peak strength parameters
of each Gauss point are updated at the end of each load step.
The residual strength parameters will be updated at the end of the
iteration process in a new load step. The computation of Dsd and
Dsf should be carried out carefully at each iteration.

4.2. Numerical procedure in solving strain-softening problem

Because the presented method is based on the framework of the
classical theory of plasticity, the numerical procedures for the finite
element implementation of strain-softening behavior are similar to
those discussed in [37]. However, the procedures are complicated
with the consideration of strain-softening model.

A general flow chart that summarizes the implementation of the
proposed method is shown in Fig. 6. In the flow chart, the strength
update loop is added when strain-softening model is dealt with by
the proposed method. In each strength update step, iterations are
carried out until convergence is achieved. Then the residual
strength parameters are updated. And then a new strength update
step begins. For geotechnical engineering, excavation is the routine
work. The excavation loop is also included in the program.
5. Analysis of numerical examples

5.1. Example 1. A circular tunnel excavated in a strain-softening rock

mass

A circular tunnel excavated in isotropic rock mass under
hydrostatic stress field is considered firstly. Body force is ignored.
Geometric and mechanical parameters are presented in Table 1
where two kinds of M–C rock mass with #1 and #2 are considered.
During the softening stage, the cohesion c and friction angle j are
e 1
etric and mechanical parameters.

C rock mass #1 #2

dius of tunnel, r0 (m) 3 3

tial stress, s0 (MPa) 5 5

ung’s modulus, E (GPa) 10 10

isson’s ratio (n) 0.25 0.25

0.008 0.008

(MPa) 1.0 1.0

(MPa) 0.7 0.7

(deg) 30 30

(deg.) 22 22

(deg.) 3.75 15.0

(deg.) 3.75 0.0



S. Wang et al. / International Journal of Rock Mechanics & Mining Sciences 48 (2011) 67–7672
decreased except the dilatancy anglec in rock mass #1, but c,j and
c all are decreased in rock mass #2.

Although there is no analytical symmetric solution available for
this problem, approximate solutions can be obtained by some
r0=3m

50 m

50
 m

r0 =3m

Fig. 7. (a) Geometry of the model, (b) finite element mesh,(c) finite element mesh

around the tunnel, (d) finite element mesh after the excavation.

Fig. 8. Three different meshes employed, (a) mesh size in tunnel wall: r0/10

Fig. 9. Approximate solution and results by FEM with different mesh sizes, (a)
numerical methods developed by [38–40], according to which the
plastic zone appears around the tunnel when internal pressure pi is
lower than pc¼0.3268s0. The excavation force around the tunnel
surface is simulated in ‘n’(¼5) load steps when the elastic-plastic
transition is started. It means that the internal pressure pi on
the tunnel surface decreases from pc to complete unloading
in five steps with each load step Dp¼(pc�0)/5 during the excava-
tion, whereas elastic deformation happens when pi changes
from the initial state with pi¼s0 to the state with pi¼pc and
the elastic reaction can be easily dealt with and it is not
described here.

Varas et al. [36] studied the bifurcation in the problem of
unloading a circular excavation in a strain-softening material by
FLAC, and they revealed that the solutions are basically equivalent
for the full meshes and the quarter meshes. Hereupon, only one
quarter of the circular tunnel model is used for computer efficiency
as far as the aims of this study are concerned. The model area is
50 m�50 m (Fig. 7a) and it is sufficiently large to avoid undesirable
boundary effects. Fig. 7(b) shows the finite element mesh with
11172 three-node elements and 5708 nodes, which corresponds to
tunnel wall mesh sizes of r0/40. A local area around the tunnel is
displayed in Fig. 7(c) to show the fineness of the mesh, and Fig. 7(d)
illustrates the mesh after the tunnel is excavated.

Three different meshes (see Fig. 8) corresponding to tunnel wall
mesh sizes of r0/10, r0/20 and r0/40 are considered to demonstrate
the influence of the mesh fineness on the computation accuracy. By
means of the proposed numerical procedure, ground response
curves and evolution of plastic radii are obtained as shown in Fig. 9
for rock mass #1 and Fig. 10 for rock mass #2. The comparisons of
the results by FEM and those by approximate methods indicate that
different grids result in different numerical accuracy. The finer the
mesh is, the higher the accuracy is. This is what is expected in FEM.
Therefore, the mesh corresponding to tunnel wall mesh sizes of r0/
40 is employed in the following analysis.
, (b) mesh size in tunnel wall: r0/20,(c) mesh size in tunnel wall: r0/40.

ground reaction curve and (b) evolution of plastic radii for rock mass #1.



Fig. 10. Approximate solution and results by FEM with different mesh sizes, (a) ground reaction curve and (b) evolution of plastic radii for rock mass #2.

Fig. 11. Approximate solution and results by FEM with different softening parameters, (a) ground reaction curve and (b) evolution of plastic radii for rock mass #1.

Fig. 12. Approximate solution and results by FEM with different softening parameters, (a) ground reaction curve and (b) evolution of plastic radii for rock mass #2.
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This numerical example is used to validate the finite element
implementation of the proposed method and check the effective-
ness of handling any softening slopes by employing different
softening parameters (Zn). Therefore, the following analyses are
carried out below:
(i)
 Parameters of M–C rock mass with #1 and #2 are used, and
dimensionless forms of the displacement (uE/s0r0) and the
radius of the plastic region (rp/r0) are displayed when the
internal pressure (pi) change from pi¼pc to pi¼0. Meanwhile,
different softening parameters (Zn) are analyzed and the
corresponding numerical results are presented.
(ii)
 Numerical results are compared with those obtained by the
methods [38–39].
The numerical results are displayed in ground response curves
and evolution of plastic radii. All of the results by FEM and those



Table 2
Numerical results for rock mass #1 when the internal pressure pi¼0 (Data in

parenthesis are solutions by the methods of Lee and Pietruszczak [38] and Wang

et al. [39]).

Zn rp/r0 uE/s0r0

1e�05 1.71 (1.74) 3.17 (3.42)

1e�03 1.60 (1.68) 3.09 (3.14)

2e�03 1.53 (1.58) 2.65 (2.67)

8e�03 1.41 (1.42) 1.97 (1.99)

8e�02 1.39 (1.40) 1.88 (1.89)

8e�01 1.39 (1.39) 1.88 (1.89)

Table 3
Numerical results for rock mass #2 when the internal pressure pi¼0 (Data in

parenthesis are solutions by the methods of Lee and Pietruszczak [38] and Wang

et al. [39]).

Zn rp/r0 uE/s0r0

1e�05 1.76 (1.74) 3.02 (3.20)

1e�03 1.71 (1.68) 2.91 (3.19)

2e�03 1.56 (1.58) 2.76 (2.98)

8e�03 1.43 (1.42) 2.21 (2.27)

8e�02 1.40 (1.40) 2.12 (2.12)

8e�01 1.40 (1.39) 2.12 (2.12)
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by approximate methods corresponding to different softening
parameters (Zn) are shown in Fig. 11 for rock mass #1 and
Fig. 12 for rock mass #2. The comparison of the results by the
proposed method with those by approximate approach [38,39]
is made.

When the magnitude of the critical plastic shear strain (Zn)
changes from big to small, for example, from Zn

¼8e�1 to
Zn
¼1e�5, it means that the softening slope changes from gentle

to steep and that the geo-material behaves from elastic-perfectly
plasticity to elastic-brittle-plasticity. Accordingly, the plastic zone
and the deformation increase in the surrounding rock mass as the
critical plastic shear strain (Zn) decreases. This phenomenon is
observed in both Figs. 11 and 12. In fact, when Zn

¼1e�05, the
softening slope is so steep that the problem becomes the brittle-
plastic one, and when Zn

¼8e�01, the softening slope is so gentle
that it can be regarded as an elasto-perfectly plastic one. The results
in Figs. 11 and 12 show that strain-softening solution converges to
the brittle-plastic solution when Zn decreases and it converges to
the elasto-perfectly plastic one when Zn increases.

From Figs. 11 and 12, the numerical results demonstrate that the
solutions by FEM is generally in agreements with those by
approximate methods whether the softening parameter (Zn) is
big or small. This indicates that the proposed method can deal with
different softening slope whether it is steep or gentle. Figs. 11 and
12 also shows that the relative error between the results by the
proposed finite element implementation and those by approximate
solutions will increase as Zn becomes small (i.e. the softening slope
becomes steep). The differences may be caused by the assumption
made in FEM and in the approximate methods.

In the method of [38,39], the axisymmetric condition is enforced,
and no bifurcation or localization phenomena will appear in the
axisymmetric solutions, whereas no axisymmetric conditions are
assumed when the presented numerical method is used to study the
deformation and plastic zone in strain-softening material.

The localization phenomena appear in the plastic zone as the
steep softening slope is modeled. Fig. 13(a) and (b) shows the plastic
regions around the tunnel surface for the softening parameter
Zn
¼1e�05 and Zn

¼8e�01 for rock mass #1, respectively. In
Fig. 13(a), the interface between the elastic and the plastic zone is
not smooth because of the localization phenomena. The radius of the
plastic annulus presented in Fig. 11 (and Fig. 12) is determined by the
area of plastic region in this case. It means that the equivalent area of
the plastic annulus is equal to that of the computed plastic region.
Numerical analysis shows that the area of the plastic region is
generally the same with different mesh sizes although the shape of
the region may be mesh dependent for strain-softening rock mass. In
regard to the displacement presented in Figs. 11 and 12, it should be
rp = 5.14

Plastic region

Fig. 13. Plastic regions and the equivalent plastic radius around the
noted that the radial displacement is the average of the radial
displacements of all the nodes around the tunnel face.

For the clearness of the magnitude of equivalent plastic radius
and displacement at the tunnel wall shown in Figs. 11 and 12,
Tables 2 and 3 present their numerical values when the internal
pressure pi¼0.

5.2. Example 2. Engineering application—a large cavern excavated in

hard rock masses

Fig. 14(a) and (b) shows a geological cross-section at the middle
of the generator room in an underground power station. The rock
mass is slightly weathered and fresh granite gneiss. A thick seam
mainly consisting of mylonite runs parallel to the longitudinal axis
of the generator room which has the maximum width of 27 m and
height of 71 m. The generator room is excavated in 5 steps. Plane
strain condition is assumed. The finite element mesh is shown
in Fig. 14(c) and (d).

The initial stress in rock mass is computed through the self-
weight in the vertical direction and sx¼1.53gh, where g is the
rp = 4.18
Plastic 

region

tunnel for (a) Z*¼1e�05, (b) Z*¼8e�01 for rock masses #1.



Material 1:granite gneiss

DownstreamUpsream

Material 2:mylonite seam

x

y

Fig. 14. (a) geometry of the geological cross-section, (b) the generator room,(c) finite element mesh with 3745 elements and 1899 nodes, (d) finite element mesh around the

generator room.

Table 4
Mechanical parameters.

M–C rock mass Material 1 Material 2

Young’s modulus, E (GPa) 20 3.5

Poisson’s ratio (n) 0.25 0.25

Density (KN/m3) 27 26.7

Zn 0.002 0.004

cp (MPa) 1.2 0.3

cr (MPa) 0.8 0.1

jp (deg.) 47.3 35.5

jr (deg.) 40.3 20.5

cp (deg.) 47.3 35.5

cr (deg.) 40.3 20.5

stp (MPa) 1.0 0.3

str (MPa) 0.5 0.1

fence line

track line

zigzag line

Fig. 15. Plastic zones of elasto-perfectly plastic, elasto-plastic strain-softening and

elasto-perfectly brittle-plastic models(fence line for elasto-perfectly plastic model,

track line for strain-softening model and zigzag line for brittle-plastic model).
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unit weight and h is the depth from the ground surface. Two kinds
of rock masses are included in the model and their mechanical
parameters are presented in Table 4.

Elasto-perfectly plastic, elasto-plastic strain-softening and elas-
tic-brittle-plastic analyses are carried out for the problem, and the
plastic zones are shown in Fig. 15 after the completion of excava-
tion. The plastic zones are formed in the surrounding rock masses.
It is indicated in fence lines for elasto-perfectly plastic model, in
track symbols for elasto-plastic strain-softening model and in
zigzag lines for elasto-perfectly brittle-plastic analysis. The max-
imum depth of the plastic zone for the analyses is 16.2, 19.1 and
27.2 m, respectively.
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It is obvious that the plastic area for elasto-perfectly plastic
model is the smallest among the analyses, so is the maximum depth
of the plastic zone. The magnitude of the plastic area and the
maximum depth of plastic zone is in the middle for elasto-plastic
strain-softening model, and it is the biggest for elastic-brittle-plastic
analysis.

Considering that the peak and residual strengths of the rock are
observed in laboratory test, we think that the elasto-plastic strain-
softening and elastic-brittle-plastic analyses are appropriate.
Probably the design of support is a little conservative if the results
of the elastic-brittle-plastic analysis are used. But it is risky that
the results of the elasto-perfectly plastic model are utilized for the
design of support because there are about 3 m difference in the
maximum depth of the plastic zone between strain-softening
and elasto-perfectly plastic analyses. In practice, anchorage cables
had to be added in the upper and middle part of the generator room
and numerical analysis provides the basic data for the support
design. With the consideration of the strain-softening behavior
common in geo-material, elasto-plastic strain-softening analysis
should be paid attention to when the plastic region and deforma-
tion are concerned in the excavation of tunnels and in geotechnical
engineering such as cut-slopes.
6. Conclusions

This paper proposed a new finite element implementation for
strain-softening constitutive model. In the proposed implementa-
tion, strain-softening process is simplified as a series of stress drop
and plastic flow, and solving a strain-softening problem becomes
finding a series of brittle-plastic solutions. Thereby, the limitation
to the rate of softening, as well as numerical instability, is overcome
when strain-softening problem is analyzed by means of numerical
methods within the framework of the classical theory of plasticity.

The presented analytical and numerical procedure for strain-
softening material is validated by a simple example in which plastic
zone and deformation of rock mass are obtained with different rate
of softening. Comparison of results indicates that the macroscopic
response of the tunnel excavation in plastic region and displace-
ments does not differ significantly from that expected by approx-
imate approaches [38,39] even if localization phenomena occurs in
the plastic zone.

The engineering application case shows that differences in both
plastic area and the depth of plastic zone are pronounced between
elasto-perfectly plastic and strain-softening (and brittle-plastic)
analyses. The differences will influence the design of support and
the stability of the underground caverns. Therefore, it is important to
consider the strain-softening behavior in geotechnical engineering.
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