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Abstract: A new method integrating support vector machine (SVM), particle swarm optimization (PSO) and chaotic mapping 
(CPSO-SVM) was proposed to predict the deformation of tunnel surrounding rock mass. Since chaotic mapping was featured by 
certainty, ergodicity and stochastic property, it was employed to improve the convergence rate and resulting precision of PSO. The 
chaotic PSO was adopted in the optimization of the appropriate SVM parameters, such as kernel function and training parameters, 
improving substantially the generalization ability of SVM. And finally, the integrating method was applied to predict the convergence 
deformation of the Xiakeng tunnel in China. The results indicate that the proposed method can describe the relationship of 
deformation time series well and is proved to be more efficient. 
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1 Introduction 
 

The excavation of tunnels and other underground 
openings causes the deformation in the surrounding rock 
mass. Evaluation of the deformation behavior of 
surrounding rock mass is an important aspect of the 
safety assessment for underground engineering in 
complex conditions, contributing to the design of tunnel 
excavation and support. Large deformation may 
significantly reduce tunnel diameter and damage the 
existed supports, leading to re-construction and dramatic 
increase of the engineering costs [1−2]. For this reason, 
deformation of surrounding rock mass is required to be 
estimated before tunnel excavation and be measured 
continuously during and after the excavation. A complete 
deformation analysis of surrounding rock mass can be 
computed based on numerical simulation by means of 
finite element, finite difference, discrete element method 
[3], etc. Other methods such as the calculation of the 
‘characteristic line’ have been used to obtain a 
preliminary estimation of the expected tunnel 
deformation [4]. On the basis of the field measurements 
of rock mass deformation by some special instruments, 
such as extensometer, and sliding micrometer, it is 
important to compare the predicted and observed 

deformations to understand the stability of tunnel 
surrounding rock mass and take measures to guarantee 
the tunnel construction safer and under control. A key 
problem in this process is to extract the relationship 
between the time series of deformation based on the 
observed data, which shows great complexity and 
non-linearity and is difficult to model by traditional 
mathematical methods. 

The method of time series analysis is a good 
approach to address this kind of problems in 
geotechnical engineering. For example, gray method and 
fuzzy set theory have been applied to build the model of 
the deformation time series [5−6]. But, it is difficult to 
present the complex, nonlinear relationship between 
deformations. The predicted results are not satisfactory. 
In addition, neural networks (NN) are capable of learning 
non-linear functional mapping and are suitable for 
adapting to complex functions. It has been used for the 
analysis of ground surface settlements due to tunnel 
excavation [7−10]. NN model has some inherent 
drawbacks such as slow convergence speed, local 
minimization and over-fitting. Support vector machine 
(SVM) has shown a comparable generalization 
performance to NN. They were applied to model 
non-linear displacement time series of the high 
slope of the permanent shiplock of the Three Gorges 
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Project and a large scale landslide in China [11−12]. 
More applications of SVM in geotechnical engineering 
were also reported by ZHAO et al [13], ANTHONY and 
GOH [14], LI et al [15], etc. 

However, one disadvantage of the SVM is that its 
performance is strongly dependent on the selection of its 
internal parameters. To overcome this problem, recently, 
particle swarm optimization (PSO) has been used to 
search the optimal SVM and proved to be effective. 
Since chaotic mapping is featured by certainty, ergodicity 
and stochastic property, in this work, we introduce chaos 
mapping into the PSO algorithm. And finally, the new 
model integrating the chaotic system, PSO and SVM 
(CPSO-SVM) is presented and an example of predicting 
the deformation of surrounding rock masses of a tunnel 
is given. 

 
2 Chaotic particle swarm optimization 
 
2.1 Simple particle swarm optimization 

The particle swarm optimization (PSO) was 
originally designed by KENNEDY and EBERHART [16] 
and has been compared to genetic algorithms for 
efficiently seeking optimal or near-optimal solutions in 
large search spaces. The technique involves simulating 
social behavior among individuals (particles) “flying” 
through a multidimensional search space, with each 
particle representing a single intersection of all search 
dimensions. The particles evaluate their positions relative 
to a goal (fitness) at each iteration. Particles in a local 
neighborhood share memories of their “best” positions, 
and then use those memories to adjust their own 
velocities and thus subsequent positions. The original 
formula developed by KENNEDY and EBERHART [16] 
was improved by SHI and EBERHART [17] with the 
introduction of an inertia parameter, which increases the 
overall performance of PSO. 

The original PSO formula defines each particle as a 
potential solution to a problem in D-dimensional space, 
with particle i represented by Xi = (xi1, xi2, …, xiD). Each 
particle also maintains a memory of its previous best 
position, Pi=(pi1, pi2, …, piD), and a velocity along each 
dimension, represented by Vi=(vi1, vi2, …, viD). At each 
iteration, the P vector of the particle with the best fitness 
in the local neighborhood, designated g, and the P vector 
of the current particle are combined to adjust the velocity 
along each dimension, and that velocity is then used to 
compute a new position for the particle. The portion of 
the adjustment to the velocity influenced by the 
individual’s previous best position (P) is considered as 
the cognition component, and the portion influenced by 
the best position in the neighborhood is the social 
component. 

As to minimum problem, f(X) is supposed to be the 
objection function, Xi=(xi1, xi2, …, xin) is the current 
position of particle, Vi=(vi1, vi2, …, vin) is the current 
speed of particle, and Pi=(pi1, pi2, …, pin) is the best 
position which particle flied, then the best position of 
particle i can be computed based on the following 
formula: 
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If the population is s, and Pg(t) is global best 

position which all particles flied, then 
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According to the theory of particle swarm 
optimization, the following equations represent the 
evolutionary process: 
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where vi, the velocity for particle i, represents the 
distance to be traveled by this particle from its current 
position; xij represents the position of particle i; pij is the 
best previous position of particle i; pg represents the best 
position among all particles in the population; r1 and r2 
are two independent uniformly distributed random 
variables within the range of [0, 1]; c1 and c2 are positive 
constant parameters called acceleration coefficients 
which control the maximum step size; w is called the 
inertia weight that controls the impact of previous 
velocity of particle on its current one. In the standard 
PSO, Eq. (3) is used to calculate the new velocity based 
on its previous velocity and the distances from both its 
own best historical position and its neighbors’ best 
position to its current position. Generally, the value of 
each component in vi can be clamped to the range of 
[−vmax, vmax] to control excessive roaming of particles 
outside the search space. Then, the particle flies toward a 
new position based on Eq. (4). This process is repeated 
until a user-defined stop criterion is reached. 
 
2.2 Chaotic particle swarm optimization 

In simple PSO, parameters of PSO (inertia weight 
factor, etc) are crucial in searching the optimum solution 
efficiently. The performance of PSO depends greatly on 
its parameters. Many scholars think that the parameters w, 
r1 and r2 (in Eq. (3)) are the key factors that affect the 
convergence of the PSO. The inertia weight w is the 
modulus that controls the impact of previous velocity on 
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the current one. The larger scale contributes to searching 
for the global optimal solution in an expansive area, but 
its precision is not good because of the rough search. The 
smaller scale improves the precision of the optimal 
solution, but the algorithm may be trapped in a local 
optimization. So, the balance between exploration and 
exploitation in PSO is dictated by w. Thus, proper 
control of the inertia weight is very important to search 
the optimal solution accurately and efficiently. In simple 
PSO, inertia weight cannot ensure optimization 
ergodicity entirely in phase space, because it is random. 
Parameters r1 and r2 cannot ensure the optimization 
ergodicity entirely in search space. 

In order to overcome this problem, the well-known 
logistic equation is incorporated into the simple PSO. 
The logistic equation is defined as 
 

10 ),1( 01  xxxx nnn                     (5) 
 
where μ is the control parameter, x is a variable and n=0, 
1, 2, …. Although the logistic equation is deterministic, 
it exhibits chaotic dynamics when μ=4 and x0 is not 0, 
0.25, 0.5, 0.75 and 1. The track of chaotic variable can 
travel ergodically over the whole search space. In general, 
the chaotic variable has special characteristics, i.e. 
ergodicity, pseudo-randomness and irregularity. 

Furthermore, we incorporate chaotic mapping with 
certainty, ergodicity and stochastic property into the 
simple PSO so as to improve the global convergence. 
The parameters w, r1 and r2 in Eq. (3) are controlled by 
the following equations: 
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3 CPSO based support vector machine 
 

The SVM was proposed by VAPNIK [18] and is 
illustrated in Fig. 1 [19]. It is used to train nonlinear 
relationships based on the structural risk minimization 
principle that seeks to minimize an upper bound of the 
generalization error rather than to minimize the empirical 
error implemented in neural networks. Merit of the SVM 
is that training is a uniquely solvable quadratic 
optimization problem. 

The SVM uses nonlinear mapping based on an 
internal integral function to transform an input space to a 
high dimension space and then seeks a nonlinear 
relationship between inputs and outputs in that space. 
The SVM not only has theoretical support but also can 
find global optimum solutions for those problems with 
small training samples, high dimensions, nonlinear and 
local optima. A wide variety of applications such as 
pattern recognition and nonlinear regression, have 
empirically shown the SVM’s ability to be generalized. 
But performances of SVM are controlled by its 
parameters. The integrating method of CPSO-SVM uses 
chaotic particle swarm optimization to search the kernel 
function and its training parameters with the input of the 
training sample set. The tentative SVMs are tested by the 
testing sample set. The training process of the SVM will 
be completed when the identified SVM can give good 
generalized predictions for testing samples. 

The algorithm can be summarized as follows: 
Step 1: Collect a set of monitored deformation time 

series to construct a training SVM sample set. A 
calibration sample set is built by selecting randomly  

 

 
Fig. 1 Support vector machine for classification and regression 
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from the monitored deformation time series, which may 
not be included in the training sample set. 

Step 2: Initialize parameters for PSO such as the 
number of population size, range of the kernel function 
and its parameters including C and σ. 

Step 3: Select randomly a kernel function from 
common examples of kernel functions such as 
polynomials, Gaussian radial base, and Sigmoid. Produce 
randomly a set of C, and σ in the given ranges. Every 
created kernel function and its parameters such as C and 
σ are regarded as an individual of the tentative SVM. 

Step 4: Solve the quadratic programming problems, 
including every tentative SVM individual, to obtain their 
support vectors. 

Step 5: The selected parameters and the obtained 
support vectors represent a SVM model. Use the 
calibration samples to test the prediction ability of the 
SVM models. The applicability of the model is identified 
by fitness: 
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where xi and x′i are the monitored and predicted 
deformations for the i-th calibration sample series. n is 
the number of the calibration samples. 

Step 6: If the fitness is accepted, then the training 
procedure of the SVM is completed. Otherwise, use   
Eq. (4) to create a new SVM individual. 

Step 7: If all new individuals of population size are 
generated, then return to Step 4; otherwise, return to 
Step 6. 
 
4 Deformation prediction of surrounding 

rock mass by CPSO-SVM methods 
 
4.1 SVM representation of deformation time series 

The deformation of surrounding rock mass can be 
regarded as a nonlinear displacement time series, and 
deformation time-dependent series {xi}={x1, x2, …, xN} 
can be obtained by in situ monitoring. Modeling the 
nonlinear deformation series means finding the 
relationship between the deformation xi+p  at time i+p 
and its deformation xi, xi+1, …, xi+p−1 at the next p time 
steps, i.e. xi+p=f(xi, xi+1, … , xi+p−1). As a nonlinear 
function, f(·) expresses the nonlinear relationship of the 
deformation time series. 

According to the theory of SVM, the nonlinear 
relationship mentioned above can be obtained by 
learning the measured deformation. For example, the 
nonlinear relationship of the deformation time series can 
be obtained by learning the deformation behavior at n−p 

time steps xi, xi+1, …, xi+p−1, i=1, …, n−p, and it can be 
expressed as 
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where )( mnxf  is the deformation at time (n+m); Xn+m 
is the vector of deformation at the next p time steps,  
Xn+m=(xn+m−p, xn+m−p+1, …, xn+m−1); Xi is the deformation 
vector of training samples, Xi=(xi, xi+1, …, xi+p−1); K(·) is 
the kernel function; p is the number of historical points; 
α, α* and b are obtained by solving the following 
quadratic programming problem: 
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4.2 In situ monitored data 

Xiakeng Tunnel in Wan-Gan Railway is taken here 
as an example [20] for the verification of the proposed 
method. The tunnel has the length of 65 m and is 
excavated in seriously weathered phyllite strata. The 
horizontal convergence deformation of surrounding rock 
mass in one section DK2946+07 were perfectly 
monitored from July to September, as listed in Table 1. 
 
4.3 Parameters of model 

The surrounding rock mass deformation of this 
tunnel has been predicted using the proposed model. The 
history time step is important for prediction efficiency 
and affects the performance of SVM. In this work, the 
deformation of surrounding mass was predicted using 
different history time steps, and the history time steps 
were set to be 3, 4, 5, 6 and 7. The parameters of chaotic 
particle swarm optimization are: population size of 50, 
and c1=c2=2.0. The searching range of SVM parameters 
is 0.000 1−10 000. 
 
4.4 Comparison of predicting results 

Based on the CPSO-SVM method described above, 
the prediction on deformation time series was carried out. 
The final results are shown in Figs. 2−6. According to 
these results, it can be seen the CPSO-SVM model 
performs acceptable prediction. When history time step 
is 6, the performance of CPSO-SVM is the best. The 
values of Lagrange multipliers of SVM (history time step 
of 6) are listed in Table 2. 
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Table 1 Monitored value of convergence deformation 

Monitored date (mm−dd) Deformation value/mm 

07−31 0 
08−01 1.33 
08−02 3.1 
08−03 4.72 
08−04 6.5 
08−05 7.88 
08−06 9.25 
08−07 11.01 
08−08 12.76 
08−09 14.52 
08−10 15.77 
08−11 17.6 
08−12 19.48 
08−13 21.76 
08−14 22.55 
08−15 24.08 
08−16 24.84 
08−17 25.45 
08−18 26.12 
08−19 26.77 
08−20 27.42 
08−21 27.45 
08−22 28.32 
08−23 29.22 
08−24 28.62 
08−25 28.82 
08−26 29.02 
08−27 29.55 
08−28 29.38 
08−29 29.21 
08−30 29.72 
08−31 30.03 
09−01 30.72 
09−02 29.83 
09−03 30.08 
09−04 30.41 
09−05 30.74 
09−06 30.96 
09−07 30.38 

 

 
Fig. 2 Prediction of surrounding rock mass deformation using 
CPSO-SVM (History time step of 3) 

 

  
Fig. 3 Prediction of surrounding rock mass deformation using 

CPSO-SVM (History time step of 4) 

 

  
Fig. 4 Prediction of surrounding rock mass deformation using 

CPSO-SVM (History time step of 5) 

 

  
Fig. 5 Prediction of surrounding rock mass deformation using 

CPSO-SVM (History time step of 6) 
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Fig. 6 Prediction of surrounding rock mass deformation using 

CPSO-SVM (History time step of 7) 

 
Table 2 Values of Lagrange multipliers of SVM 

Number of learning sample α α* 

1 0.000 0 752.642 3 

2 2 074.834 8 0.000 0 

3 0.000 0 2 368.574 8 

4 0.000 0 26.285 0 

5 3 230.030 6 0.000 0 

6 0.000 0 1 603.219 8 

7 0.000 0 1 182.834 2 

8 529.481 5 0.000 0 

9 0.000 0 3 089.980 7 

10 4 912.686 5 0.000 0 

11 0.000 0 1 586.499 9 

12 1 611.596 0 0.000 0 

13 19.643 1 0.000 0 

14 0.000 0 4 442.608 6 

15 2 699.395 5 0.000 0 

16 0.000 0 4 912.686 5 

17 4 912.686 5 0.000 0 

18 0.000 0 4 912.686 5 

19 4 912.686 5 0.000 0 

20 4 912.686 5 0.000 0 

21 0.000 0 1 102.723 1 

22 0.000 0 789.741 2 

23 0.000 0 4 912.686 5 

24 0.000 0 2 895.108 4 

25 3 110.208 8 0.000 0 

26 0.000 0 4 912.686 5 

27 4 037.823 5 0.000 0 

28 545.574 3 0.000 0 

29 4 912.686 5 0.000 0 

30 0.000 0 2 931.056 6 

 

5 Discussions 
 

To evaluate predicted results, some evaluation 
criteria are defined in the following formula: 
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where xi and ix are the monitored and predicted 
deformations of the surrounding rock mass of a tunnel, 
respectively; n is the number of formation time series. 

The performance of CPSO-SVM using different 
history time step was studied. The results are shown in 
Table 3 and Table 4. It is indicated that the history time 
step has great influence on the performance of the model, 
resulting in the different prediction results. In this case 
study, when history time step is 6, the performance of 
model is better than others. From Table 4, it can be seen 
that the proposed method is reliable (EMB=−0.084 3 mm 
and EMR=1.54%). 

In order to verify the performance of CPSO-SVM, 
further study based on EASVM is carried out to solve the 
same problem. The method EASVM is proposed by the 
authors before [11], in which genetic algorithm is 
adopted to determine the optimal SVM parameters. The 
predicted results are shown in Fig. 7 and Fig. 8. The 
performance comparison between CPSO-SVM and 
EASVM method is listed in Table 5. It can be seen that 
the maximum relative errors of CPSO-SVM are less than 
those of EASVM under the same computing conditions, 
thus the performance of CPSO-SVM is better than 
EASVM. The efficiency of algorithm is important to 
deformation prediction. The converge processes of 
CPSO-SVM and EASVM are shown in Fig. 9 and Fig. 
10, respectively. Obviously, the convergence speed of 
CPSO-SVM is faster, which proves that the method of 
CPSO-SVM has the higher efficiency. 
 
6 Conclusions 
 

1) The method of CPSO-SVM for deformation 
prediction of tunnel surrounding rock mass is proposed.  
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Table 3 Performance of CPSO-SVM using different history time step in learning data 

Number of historical time steps 
Performance index 

3 4 5 6 7 

Mean bias error (MBE) 0.166 967 0.073 183 −0.206 24 0.073 356 0.342 07 

Root-mean-square error (RMSE) 0.571 998 0.345 895 0.459 797 0.347 104 0.941 724 

 

Table 4 Performance of CPSO-SVM using different history time step in testing data 

Number of historical time steps 
Performance index 

3 4 5 6 7 

Mean bias error (MBE) 0.349 3 0.371 6 0.495 8 −0.084 3 0.079 6 

Root-mean-square error (RMSE) 0.509 4 0.636 7 0.567 5 0.284 1 0.305 2 

Maximum relative error (MRE)/% 2.31 4.25 2.47 1.54 1.21 

 
Table 5 Performance comparison between CPSO-SVM and EASVM 

Calibration  Validation 
Method Performance index 

n=4 n=6  n=4 n=6 

Mean bias error (MBE) 0.073 2 0.073 4  0.371 6 −0.084 3 

Root-mean-square error (RMSE) 0.345 9 0.347 1  0.636 7 0.284 1 CPSO-SVM 

Maximum relative error (MRE)/% 5.39 3.27  4.25 1.54 

Mean bias error (MBE) −0.715 0 −0.524 5  −4.407 2 0.949 8 

Root-mean-square error (RMSE) 1.228 6 0.765 3  3.629 6 1.121 4 EASVM 

Maximum relative error (MRE) 7.50% 11.82%  1.66% 5.73% 

 

 
Fig. 7 Prediction of surrounding rock mass deformation using 

EASVM (History time step of 4) 

 

It can also be applied to some other underground 
openings. The monitored deformation is regarded as a 
time series and used as the learning samples of SVM. 
The relationship among deformation time series is built 
by SVM, and the parameters of SVM are searched by 
CPSO. 

2) The results obtained from the practical   
example show that the proposed method can predict the 

 
Fig. 8 Prediction of surrounding rock mass deformation using 

EASVM (History time step of 6) 

 

deformation of tunnel surrounding rock mass efficiently. 
It has a good generalization performance. 

3) It should be also noted that the capability of the 
method in making accurate predictions depends on the 
quantity of data used for SVM training to some degree. If 
the data are not representative or sample training is 
inadequate, the proposed method should be treated with 
cautions. Therefore, the arrangement, collection and  
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Fig. 10 Convergence process using EASVM at different history time: (a) Step of 4; (b) Step of 6 

Fig. 9 Convergence process using CPSO-SVM 

at different history time: (a) Step of 3; (b) Step 

of 4; (c) Step of 5; (d) Step of 6; (e) Step of 7 
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analysis of the monitored data should be carefully carried 
out. 
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