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Abstract In the present paper, a continuous–discontinuous cellular automaton method is developed to model
the discontinuous problems caused by regular frictional contact, in which level set method, discontinuous
enriched shape function, discontinuous cellular automaton method and contact friction theory are combined, by
which an analysis from continuity to discontinuity can be achieved, and no assembled stiffness matrix but only
cell stiffness is needed in the whole calculation, because of the use of discontinuous cellular automaton method.
In the present method, level set method is used to track the discontinuous surface, and discontinuous enriched
shape function is employed to describe the discontinuity of displacement and stress. Contact friction theory is
applied to construct the Coulomb frictional contact model of discontinuous surfaces; besides, combined with
discontinuous cellular automaton method, a new mixed iteration method is proposed to obtain the solution of
the problem, and no assembled stiffness matrix is constructed. And the frictional contact iterations are done
simultaneously with the updating of cellular automaton, in which the contact states and contact areas can
be previously obtained in the cellular automaton updating process, and the efficiency can get much higher.
Finally, some numerical examples are given to show that the present method is effective and accurate and can
be further extended into some practical engineering.

Keywords Continuous–discontinuous cellular automaton method · Frictional contact ·
Discontinuous cellular automaton · Mixed updating rule

1 Introduction

The numerical simulation of engineering frictional contact problems is one of the most difficult and demanding
tasks in computational mechanics, and friction along sliding interfaces is a common occurrence in many
engineering, such as rock crack propagation under compression-shear loading, metal forming operation, drilling
pile and so on. However, frictional contact problems are highly nonlinear and require significant computer
resources, which present two significant difficulties. Firstly, we generally do not know the contact regions of
the interfaces, which depend on the loads, interface geometry, material, boundary conditions and so on. The
interfacial surfaces can come into and go out of contact with each other, which are unpredictable. Besides,
frictional sliding always occurs in most of contact problems, which are nonlinear and chaotic, makes the
solution convergence difficult.

Frictional contact problems have been studied by a lot of experts in past few years, such as friction model,
numerical method for simulating frictional contact motion and so on. Recently, Wiercigroch and Wojewoda
[1–3] have done some important work about friction model, and they proposed a dry friction model and some
numerical methods for solving those problems. For this work, we focus on static rock mechanics, so we

F. Yan (B) · X.-T. Feng · P.-Z. Pan · Y.-P. Li
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics,
Chinese Academy of Science, 430071 Wuhan, China
E-mail: fyan@whrsm.ac.cn



1240 F. Yan et al.

use Coulomb model to reflect the contact motion of static rock crack interfaces; furthermore, some complex
models, such as dry friction model by Wiercigroch and Wojewoda, will be applied for next researches.

With the development of mechanical science and its engineering applications, in addition to the increasing
use of computer in mechanics, numerical methods like the finite element method (FEM) and more recently
the meshless methods [4–6] have been the subjects of intensive researches for contact problem analysis. The
frictional contact problems have been solved initially in the framework of FEM, and several contact searching
algorithms have been developed. Hallquist et al. [7] proposed the master–slave contact algorithm and the
single-surface contact algorithm; after that Zhong [8] developed the hierarchy territory contact algorithm, and
Belytschko et al. [9] proposed the pinball contact algorithm.

Boundary element method (BEM) has been also applied widely in frictional contact problems, which was
first applied to contact problems by Anderson [10] in 1980. After that, Mukherjee [11] and Kane [12] combined
vectorial and parallel processing with boundary element method and applied for frictional contact problems.
Then, elastoplasticity was combined with boundary element method and applied into contact problems [13].

In the framework of meshless method, the particle to particle contact algorithm and the penalty method
were combined to apply for contact problems by Vignievic and Campbell et al. [14,15], and Li et al. [16] and
Song et al. [17] proposed a meshfree contact detection algorithm, which was a completely meshfree contact-
searching algorithm. Besides, some other contact algorithms used in meshless methods were extensions of the
algorithms used in FEM [18].

The modeling of moving discontinuities with FEM is cumbersome, which is owing to the need to update
the mesh topology to match the geometry of the discontinuity. So, the extended finite element method (XFEM)
[19,20] developed rapidly, because this method circumvents these problems by enriching a standard mesh-based
approximation with additional discontinuous functions. An algorithm that coupled the level set method with
the extended finite element method was proposed by Stolarska et al. [21] and then applied for modeling linear
elastic fracture. Recently, a numerical technique was developed by Sukumar et al. [22] for three-dimensional
fatigue crack growth simulations. Besides, Xiao and Karihaloo [23] discussed the influence of quadrature rules
on the accuracy of XFEM.

The XFEM was first applied into frictional contact problems by Dolbow et al. [24]. Later, Khoei et al. [25],
Moes et al. [26] and Zi et al. [27] applied XFEM for cohesive crack growth, and Liu and Borja [28] proposed
a new contact algorithm for frictional crack propagation, and compared the Newton–Raphson iteration and
LATIN method. Elguedj et al. [29] developed a mixed augmented lagrangian XFEM for modeling elastoplastic
fatigue crack growth with unilateral contact. Recently, Liu and Borja [30] proposed stabilized low-order finite
elements for frictional contact with the extended finite element method.

Contact problems are always difficult to formulate and solve, because they usually involve inequality
constraints. In order to deal with those problems, Curnier and Alart [31] proposed the penalty methods to
circumvent the multivalued character. Furthermore, they introduced the augmented Lagrangian method to
solve nonlinear programming problems [32], in which a mixed penalty-duality formulation for frictional
contact problem was proposed, and then they also applied this method to solve discrete large-slip contact
problems [33,34]. Later, Alart and Lebon [35] developed a multilevel interpolation adapted to the coarse/fine
preconditioner and solved nonsymmetric and ill-conditioned linear systems.

Besides, a lot of numerical methods were developed to solve frictional contact problems. For example,
Klarbring and Bjorkman [36] developed a mathematical programming approach to simulate frictional contact
problems with varying contact surface, and Lebon and Raous [37] proposed a classical primal approach
for piezoelectric materials, in which an implicit variational inequality was developed. Then, Chabrand et al.
[38] developed finite elastoplastic strains to solve frictional contact problems. Later, two algorithms (FPM and
GNM) had been described by Lebon [39] in order to numerically solve the contact problems, and a comparison
between these two methods had been also given to illustrate the efficiency of those methods. In the present
method, the penalty method is employed.

In order to accurately describe dynamic change from continuity to discontinuity in crack propagation
process, Pan and Yan [40] combined level set method, enriched discontinuous shape functions and discontin-
uous cellular automaton method and proposed a new method, which was called as continuous–discontinuous
cellular automaton method (CDCA), in which the calculation is focused on the cell only, and no assembled
matrix is needed in the whole calculation.

Combining CDCA and the penalty method with Newton–Raphson method, CDCA can be extended into
the application of frictional contact problems. In the present method, contact friction theory is applied to
construct the contact friction model of discontinuous surfaces, in which the penalty method is combined with
the CDCA. Besides, combined with discontinuous cellular automaton method and Newton–Raphson method,
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Fig. 1 Model of frictional contact problem

a mixed iteration method is proposed to obtain the solution of the problems, and no assembled stiffness matrix
is constructed. With the help of updating rules of discontinuous cellular automaton method, the frictional
contact iterations are done simultaneously with the updating of cellular automaton, in which the contact states
and contact areas can be previously obtained in the cellular automaton updating, and the contact information
and cell information can be updated simultaneously and then the efficiency can get much higher.

2 Frictional contact model and variational formulation

Consider a body � with a surface of discontinuity S, which is shown in Fig. 1. The discontinuity S includes
two separate surfaces S+ and S−. According to contact theory, the surfaces S+ and S− are closed under the
compression, and then a normal traction and a tangential friction force arise.

According to contact theory, the governing equations can be written as follows:

div(σ) + f = 0 in � (1)

n · σ = t on �t (2)

where σ is the stress tensor, f is the body force, t is traction vector acting on external surface �t , n is normal
vector of external surface. Besides, a discontinuous surface arises in the internal of the calculation domain, so
the following conditions must be added:

n · σ = tS− on S− (3)

−n · σ = tS+ on S+ (4)

According to the continuous–discontinuous cellular automaton theory [40] and XFEM theory [24,25], the
displacement field u can be divided into continuous part ū and discontinuous part ũ, which can be written as

u = u + ũ (5)

The same as Eq. (5), we assume a weighting function, and its form is [24]

η = η + η̃ (6)

Then the standard variational formulation can be expressed as
∫

�

∇Sη : σd� =
∫

�

η · fd� +
∫

�

η · td� (7)

Substituting the weighting function Eq. (6) into Eq. (10) yields
∫

�

∇S(η + η̃): σd� +
∫

S

η̃ · tS−d� =
∫

�

(η + η̃) · fd� +
∫

�

(η + η̃) · td� (8)
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Fig. 2 Level set model

Since two weighting variables η̄ and η̃ are independent, we can obtain two independent variational equations
[24] ∫

�

∇Sη : σd� =
∫

�

η · fd� +
∫

�

η · td� (9)

∫

�

∇Sη̃ : σd� +
∫

S

η̃ · tS−d� =
∫

�

η̃ · fd� +
∫

�

η̃ · td� (10)

in which T = ∫
S
η̃ · tS−d� is a surface integral arising from contact on the surface of discontinuity. It can be

seen that Eq. (9) is the standard FEM variational equation without a discontinuity, but Eq. (10) is the variational
equation associated with the discontinuity, and it is noted that the region of integral for Eq. (10) is only carried
out on the elements which are penetrated by the discontinuity.

3 Continuous–discontinuous cellular automaton method

3.1 Contact interface tracking

A powerful tool for tracking moving interface is the level set method, which is first introduced by Osher et al.
[41], and the present method can benefit greatly by this method, which is based on the idea of representing the
moving interface as a zero level set curve of a higher-dimensional function ϕ(x, t). Then, the evolution of the
moving interface can be expressed as an evolution of equation ϕ(x, t).

In general, a discontinuous surface γ (t) ⊂ R2 can be expressed as the level set curve of a function
ϕ(x, t) = 0 [42,43], which is shown in Fig. 2, and the expression can be given as

γ (t) = {
x ∈ R2 : ϕ(x, t) = 0

}
(11)

Then the level set function ϕ(x, t) would be the signed distance function, which is

ϕ(x, t) = ξ(x, t) = min
x�∈�(t)

‖x − x�‖ · sign(n+ · (x − x�)) (12)

in which x is the point outside of the crack surface and x� is any point nearest to point x on the crack surface;
n+ is a unit normal to the crack surface.

Discretization of level set allows for the evaluation of the level set function at the element level based on
the nodal level set values ϕ j = ϕ j (x j , t) and known classical finite element shape functions N j (x) [42,43],

ϕ(x, t) =
n∑

j=1

N j (x, t)ϕ j (13)
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This is practically an important concept for implicitly defining the level set function for describing a general
moving interface. This simple procedure of defining the level set function can be widely used in some other
methods. Another major advantage of this approximation is that the derivatives of the level set function can be
obtained by the classical finite element shape functions,

ϕ,i (x, t) =
n∑

j=1

N j,i (x, t)ϕ j (14)

Only level set function of ϕ(x, t) is not generally sufficient to describe a moving crack, so another level
set function at the crack tip φi (x, t) is defined. The crack tip is represented as the intersection of the zero-level
set function of ϕ(x, t) with another zero-level set function of φi (x, t), where i is the number of tips on a given
crack. So the crack tip level set function φi (x, t) is generally assumed to be orthogonal to ϕ(x, t) [42,43]

∇ϕ(x, t)∇φ(x, t) = 0 (15)

The same as Eq. (13), the level set function φi (x, t) can also be interpolated over the mesh by the same finite
element shape functions,

φi (x, t) =
n∑

j=1

N j (x)φi
j (x j , t) (16)

The values of level set functions are stored only at nodes, and the values of all other points can be interpolated
from their node values. For memory saving, only values of related part of nodes are calculated and stored.
Moving crack is modeled by appropriately updating the functions of φi (x, t) and ϕ(x, t), and the calculation
grid is not changed in all over the calculation.

3.2 Self-contact constitutive model

Considering the contact motion of static rock interfaces, we use a simple contact model to describe according
to reference [1,3], so the Coulomb friction model is employed, such as

Fc(PN, u) = ‖PT‖ − μC (PN, u) ‖PN‖ − Cc

{= 0 slip
< 0 stick (17)

In the present method, the discontinuous surface S could cut through the interior of the finite element, so the
contact model in this method is actually a self-contact kinematics. In self-contact model, the constitutive law
on discontinuous surface should be formulated in the interior of the element rather than the nodes and sides of
different elements of the classical FEM. The gap function of discontinuous surface is given as

gN (x) = [u+(x) − u−(x)] · n(x) = ũ(x) · n(x) (18)

where u+(x) and u−(x) are the displacements at x interpreted to lie on the �+ and �− sides of discontinuous
surface S, respectively. And the relative tangential displacement vector can be given as

gT (x) = [u+(x) − u−(x)] · m(x) = ũ(x) · m(x) (19)

In the normal direction, contact condition on the discontinuous surface S can be expressed as

gN ≥ 0, tN ≤ 0, gN tN = 0 (20)

in which the component of traction tN = tS− · n represents the contact pressure, which satisfies the gap
condition if gN > 0, then tN = 0, and the contact condition if gN = 0, then tN < 0.

In the tangential direction, we distinguish between stick and slip conditions, which are governed by a
frictional constitutive law; then, the tangential traction tT on the S can be written as

tT = tS− · m f = tT + μtN ≤ 0 (21)
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In this paper, we impose a contact condition through the penalty method. For the normal component, we
replace tN by the constitutive expression

tN = εN gN (22)

where εN is a normal penalty parameter analogous to a normal spring that allows the contact surfaces to slightly
overlap. For the tangential component, a predictor–corrector scheme which mimics the classical plasticity
theory is constructed. Assume that (tT)n is the tangential friction of n iteration step and 	gT is the increment
in relative displacement of discontinuous surface in tangential direction. So the traction predictor can be written
as [24]

ttr
T = (tT)n + εT 	gT (23)

Check whether ttr
T + μεN gN ≤ 0, if so, we accept the predictor as the final value, in which contact condition

is stick; otherwise, we use the backward implicit algorithm to correct for plastic sliding, in which the contact
condition is slip. So we can get the tangential traction by a return mapping algorithm, which is given as [24]

{
(tT)n+1 = (tT)n + εT 	gT ttr

T + μεN gN ≤ 0

(tT)n+1 = −μεN gN
ttr
T‖ttr
T ‖ ttr

T + μεN gN > 0
(24)

The iteration finishes when unbalanced force is equal to zero.

3.3 Discontinuous cellular automaton model

It is known to us that the displacements of the nodes of upper and bottom surface of crack are different; in
order to model the strong discontinuity caused by the crack, the signed function is chosen as the Heaviside
enrichment function; besides, a high-gradient stress field exists around the crack tip. So as to accurately model
the crack tip stress field without element refinement, shape functions enriched by the exact near-tip asymptotic
field functions are applied.

Then we can get the shape function of the present method, which can be given as

uh(x) =
n∑

j=1

N j (x)d j +
m∑

k=1

Nk(x)H(ξ)ak

︸ ︷︷ ︸
k∈P

+
t∑

i=1

Ni (x)

nf∑
l=1

Fl(x)bl
i

︸ ︷︷ ︸
i∈T

(25)

in which n and m are the node numbers of element, P is the penetrated node set, d j is the regular displacement
vector, a jk is a vector of additional degrees of nodal freedoms for modeling strong discontinuity, t is node
number associated with crack tip, and T is crack tip node set, which can be seen in Fig. 1; nf is the number
of the exact near-tip asymptotic field functions; bl

i is a vector of additional degrees of nodal freedoms for
modeling crack tip stress field, and H(ξ) and Fl(x) are Heaviside function and the exact near-tip asymptotic
field functions, respectively, which are given as

{Fl(x), l = 1 − 4} =
{√

r sin

(
θ

2

)
,
√

r cos

(
θ

2

)
,
√

r sin(θ) sin

(
θ

2

)
,
√

r sin(θ) cos

(
θ

2

)}
(26)

H(ξ) = sign(ξ) =
{

1 ∀ξ > 0
−1 ∀ξ < 0 (27)

in which r, θ can be seen in Fig. 3.
According to Eq. (5), we can see that the continuous part of the displacement field is

ū(x) =
n∑

j=1

N j (x)d j (28)

The discontinuous part of the displacement field is only limited to the nodes which belong to the penetrated
elements and crack tip elements. Because H(ξ) = 1 and θ = π on discontinuous surface of S+, and H(ξ) = −1
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Fig. 3 Coordinate system of crack tip

and θ = −π on discontinuous surface of S−, substitute those values into Eq. (25); we can get the discontinuous
part of displacement field,

ũ(x) = 2
m∑

k=1

Nk(x)ak

︸ ︷︷ ︸
k∈P

+ 2
t∑

i=1

Ni (x)
√

rb0
i

︸ ︷︷ ︸
i∈T

= �

N{ a b } (29)

Substituting Eqs. (28) and (29) into Eqs. (9) and (10), we can get the residual equation [24]

r(D) =
{

FEXT − FINT
FEXT − FINT − TINT

}
(30)

where D = { d a b }T , FINT(d, a) = ∫
�

BTσ(d, a)d�, FEXT = ∫
�

NTfd� + ∫
�

NTtd�; FEXT(d, a, b) =∫
�h\S B̃Tσ(d, a)d�, FINT = ∫

�h ÑTfd� + ∫
�h ÑTtd�, TINT = ∫

S

�

N
T

tS−dS, in which Ñ is the shape
function matrix which is corresponding to Heaviside function enrichment and the exact near-tip asymptotic

field function enrichment in Eq. (25) and B̃ is derivative of shape function matrix.
�

N is the shape function
matrix corresponding to Eq. (29).

To solve this nonlinear problem, we iterate by Newton’s method and cellular automaton updating rules. So
we can get

Dn+1 = Dn + r(Dn)

−r ′(Dn)
(31)

in which the algorithmic tangent operator is

− r′(Dn) =
[

A11 A12
A21 A22 + C22

]
(32)

in which stiffness matrices A11, A12, A21, A22 are common stiffnesses and the same as common continuous-
discontinuous cellular automaton method, which can be seen in reference [40]. And C22 is the contact matrix,
which is

C22 =
∫

S

�

N
T

E
�

NdS (33)

in which E is friction tangent matrix, and the problem is decomposed into a pure contact in the normal direction
and frictional resistance in the tangential direction, which are linearized as

E = TT
[

G f 0
0 E f

]
T (34)
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Fig. 4 Subelement and Gauss quadrature point of interfacial integral

in which T is the transformation matrix from global coordinate system to crack tip local crack coordinate
system, G f is the stick shear modulus of contact surface, and E f is the normal stiffness, which can be chosen
as an arbitrary large number for numerical convenience. And for the nodes of the penetrated elements,

�

Ni =
[

0 0 2Ni 0
0 0 0 2Ni

]
(35)

And for the nodes which belong to crack tip elements,

�

Ni =
[

0 0 2Ni
√

r 0 0 0 0 0 0 0
0 0 0 2Ni

√
r 0 0 0 0 0 0

]
(36)

in which Ni is the common shape function of classical FEM.
TINT in Eq. (30) and C22 in Eq. (32) are line integral, and the integral elements and gauss points can be

seen in Fig. 4.

3.4 Updating rules of cellular automaton

Used discontinuous cellular automaton (DCA), the equilibrium state of the object can be obtained through the
self-organization phenomenon formed by the one-another information transfer between cells. So the localiza-
tion property of object can be easily treated, and the behavior of the cell is thought to be essentially local. There
are three advantages for this theory. One is no need to assemble the overall matrix, especially for the enriched
nodes, the degrees for some nodes may be different, which may bring some difficulties for the assembling
operation. The second is that it is easy to consider the local properties of the cell, because the updating rule is
only applying on the local cell. The third one is the easy implementation of parallel algorithm.

The DCA model is composed of cell, cell space, cell state, crack, neighborhood and updating rules and so
on. Besides, DCA model includes the continuous cell and discontinuous cell. The updating rules are the most
important part of the DCA model, because the updating rules will determine the stress state of a cell element
[40,44].

According to Eq. (31), we can get

− r ′(Dn)	Dn+1 = r(Dn) (37)

In one iteration step, we can assume that K = −r ′(Dn), 	u = 	Dn+1 and 	f = r(Dn); based on this
assumption, the discontinuous cellular automaton can be easily applied to solve this nonlinear system in this
iteration step.

Considering a cellular node Ni for a plane elastic problem, the displacement of this node can be obtained due
to the effect of nodal force vector fi = {fu

i , fa
i , fb

i } and restrict all degrees of the nodal freedom on its neighbor
cell nodes N k

i , which can be shown in Fig. 5. The relation between the incremental force and incremental
deformation can be reflected into two steps. Firstly, the nodal force increment 	fi = {	fu

i , 	fa
i , 	fb

i } will
lead the cell node Ni to produce the displacement increment 	uh

i = {	ui , 	ai , 	bi }. Then, the displacement
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Fig. 5 Cell states and its updating model

increment 	uh
i on the cell node Ni will lead its neighboring cell nodes to produce the nodal force increment

	fk
i .
Therefore, the process of the DCA updating rules is as follows: increment of nodal force leads to the

increment of nodal displacement, and the increment of nodal displacement leads to the increment of nodal force
of its neighboring nodes, until the system static equilibrium is achieved, in other words the self-organization
phenomenon of 	uh

i → 0 and 	fk
i → 0 appears. So the updating steps can be given as:

(1) The equilibrium equation of the cell node Ni can be described as

Ki	uh
i = 	fi (38)

in which Ki is the stiffness of cell node Ni , 	uh
i = {	ui , 	ai , 	bi }, 	fi = {	fu

i , 	fa
i , 	fb

i } are
increment of degrees of nodal freedom and nodal force, respectively, of cell node Ni .
Calculate the increment of degrees of nodal freedom 	uh

i via the increment of nodal force 	fi .
(2) Restrict all degrees of nodal freedom on all neighboring cell N k

i , which can be seen in Fig. 5.
(3) Obtain the nodal force increment 	fk

i of the neighboring cell N k
i via 	uh

i from the following equation

	fk
i = Kk

i 	uh
i (39)

where Kk
i is the stiffness of neighboring cell N k

i .
(4) Finish the calculation of steps (1)–(3) on all cell nodes, until 	uh

i → 0 and 	fk
i → 0 appear.

4 Mixed iteration method

It can be seen that there are two iterations present in this method and they are Netwon–Raphson iteration for
contact state iteration and information updating for discontinuous cellular automaton. In the present method,
combined these two methods, a mixed iteration scheme is proposed, which may improve the calculation
efficiency.

In last section, we can see that if the discontinuous cellular automaton updating is carried out separately in
each Netwon–Raphson iteration, the calculation is time-consuming, therefore, a mixed iteration method, which
the discontinuous cellular automaton updating and Netwon–Raphson iteration are conducted simultaneously.
The present method needs no assembled global matrix, and the discontinuous cellular automaton updating is
integrated into the nonlinear iteration, which can greatly improve the calculation efficiency. Combined with
discontinuous cellular automaton updating, the mixed iteration can be given as

(1) Firstly, assuming that no contact is existed, get the nonlinear system function according to Eq. (37).
(2) Applying the boundary condition, do the discontinuous cellular automaton updating once; in other words,

carry out updating scheme of Sect. 3.4 once.
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Fig. 6 Iteration steps of mixed iteration method

(3) Do step (2) for all cells one after another, updating the cell information, such as the stress, displacement
and so on, until 	uh

i ≤ εc.
(4) According to the preliminary results of step (3), calculate gN (x) and determine whether the contact state

changes. If gN (x) ≤ 0, the contact occurs, and modify the cell stiffness matrix according to Eq. (33);
otherwise, no contact occurs, and remove the contact stiffness from Eq. (33).

(5) According to the contact state analysis of step (4), get the contact force, update residual force according
to Eq. (30) and get the nonlinear system of Eq. (37).

(6) Continue to do the discontinuous cellular automaton updating and Netwon–Raphson iteration of Step (2)
to step (5), until 	f = r(Dn) < εn appear, otherwise continue to do step (2) to step (5).

(7) Finish mixed iteration steps, and get the cell stresses, displacements and contact states and contact forces.

5 Numerical examples

In order to illustrate the accuracy and versatility of the present method in frictional contact problems, some
numerical examples about contact frictional contact problems are investigated in this section.

5.1 Convergence study

A 0.1 × 0.1 thick plate is studied in this section, in which a horizontal uniform shear and a vertical uniform
pressure are imposed on the top edge of the plate, and the bottom edge of the plate is constrained. Besides, a
crack is located at the center of the plate, its starting coordinate is (−0.02,−0.005), and its end coordinate is
(0.02, 0.005). And the Netwon–Raphson iteration residual is given as ‖r(Dn)‖2 < εn < 1.0e−4.

The iteration steps are shown in Fig. 6, which plots the iteration steps vary with the decrease in the iteration
error εc of cellular automaton method. It can be seen in this figure that with a smaller iteration error, the global
iteration steps decrease, but when εc <= 1.0e−15, this phenomenon is not very clear.

The CPU times with different iteration error εc are shown in Fig. 7, in which we can see that much larger
or much less εc can cause much longer calculation time, and much appropriate value of εc is 1.0e−14.

5.2 Contact friction behavior of two elastic bodies

In this section, the continuous–discontinuous cellular automaton is employed to simulate the contact friction
behavior between two slipping surfaces, which is shown in Fig. 8 [45]. The block is constrained at the bottom,
while the uniform horizontal and vertical loadings of px = 2.5×103 N/m and py = 1×104 N/m are imposed
at the top, and the Young’s modulus and Poisson’s coefficient are E = 2 × 1010 Pa and ν = 0.3, respectively.
The frictional coefficient of two elastic blocks is μf = 0.3.
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Fig. 7 CPU time of mixed iteration method

Fig. 8 Model of two sliding elastic bodies

In Figs. 9a, b, the distribution of shear stress of τxy contours at different shear modulus, i.e., Gf = 1.0e11
and Gf = 1.0e8 are presented. It can be seen that the results by the present method is very close to those of
[45].

Besides, the normal compressive stress and tangential fiction with different coordinates are shown in
Fig. 10; it is shown that if x ≤ 0.59, sliding occurs, but x > 0.59, two elastic block are stick and no relative
sliding occurs.

Figure 11 plots the computer memory comparison between CDCA and XFEM. It can be seen that much less
computer memory is needed in CDCA than that of XFEM, which is very obvious when the element number
gets much larger. Figure 12 shows the comparison of CPU time requirement between CDCA and XFEM,
which is shown that the CPU time of XFEM decreases with the increasing of εn , and the smallest CPU time
of CDCA is when εc is equal to 1.0e−14, and at this case, the CPU times of those two methods are almost the
same. But with CDCA, much less computer memory is needed, so the present method is much more efficient
in all.
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Fig. 13 Model and meshing of contact degradation problem

5.3 Contact degradation problem

A contact degradation problem is investigated in this section, in which the contact width becomes shorter when
the loading is applied. It is shown in Fig. 13 that a lamellated plate is laid on a background; on the virtue of
symmetry, only a half of the model is considered. In order to compare to the results of Keer [46], the parameters
are given the same as Keer’s. For lamellated plate, the elastic modulus E1 = 4 GPa, ν1 = 0.35; for foundation
basis, the elastic modulus E2 = 7.41228 GPa, ν2 = 0.35, and different loadings p are applied on the center
of the lamellated plate.

The convergence process of present example is plotted in Fig. 14, which is shown that it can converge
quickly and smoothly by the present mixed iteration method. Besides, the contact pressures of contact surface
between two blocks at p = 5 kN/m are shown in Fig. 15; it can be seen that the contact only occurs in
x < 12 mm after the loading is imposed. In order to get much more results, different loadings are applied in
this example, and the results are shown in Fig. 16, in which we can see that the contact areas are almost the
same with different loadings, and those are very close to the results of Khoei [46] and Wang [47].
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Fig. 15 Contact pressures at contact surface
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5.4 Pullout of pile

Pile foundations are widely used in highway construction, buildings and some other structures, so this example
demonstrates the accuracy of the present method in pile foundation simulation. The model is shown in Fig. 17,
and the results by Lei [48] are also given for compassion. The material properties of the concrete pile are as
follows: Ec = 2 × 109 Pa, νc = 0.3 and density ρc = 2.5 × 103 kg/m3. The material properties of clay soil
are given as: Es = 2 × 108 Pa, νc = 0.25 and density ρc = 2 × 103 kg/m3. The contact friction behavior
between pile and soil is modeled by the Mohr–Coulomb law with cf = 5 kPa, μf = 0.58 and the maximum
tensile stress of σs = 300 kPa. The soil is restrained at the bottom and right-hand edges, and a tension force
of q = 50 kN/m is imposed on the upper nodes of the pile. On the virtue of symmetry, the pile is analyzed for
half of space, as shown in Fig. 15.

The shear stress along the contact surface due to the pullout force is presented in Fig. 18, which is compared
with those obtained by Lei [48] and Khoei [45] using XFEM. It can be seen that a great agreement can be
achieved between those three methods.
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6 Conclusion

In the present paper, a method of continuous–discontinuous cellular automaton method (CDCA), which is based
on level set method, the discontinuous enriched shape function, discontinuous cellular automaton method and
contact friction theory, was developed for modeling frictional contact problems. Firstly, contact friction theory
is applied to construct the contact friction model of discontinuous surfaces, in which the penalty method is
combined with the CDCA. Besides, combined with discontinuous cellular automaton method and Newton–
Raphson method, a mixed iteration method is proposed to obtain the solution of the problems, and no assembled
stiffness matrix is constructed. And the frictional contact iterations are done simultaneously with the updating
of cellular automaton, in which the contact states and contact areas can be previously obtained in the cellular
automaton updating, and the contact information and cell information can be updated simultaneously and then
the efficiency can get much higher.

Finally, numerical examples were presented to demonstrate the accuracy and capability of CDCA in
modeling the frictional contact behavior. It is shown that the CDCA technology can be effectively used to
modeling frictional contact problems.
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