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ABSTRACT

The construction design and control of energy storage salt caverns is the key to ensure their long-term
storage capacity and operational safety. Current experimental and numerical design/optimizing methods
are time-consuming and rely heavily on engineering experience. This paper proposes a machine-
learning-based method for the rapid capacity prediction and construction parameter optimization of
energy storage salt caverns. We propose a data generation method that uses 1253 sets of random con-
struction parameters as input. The resulting capacity/efficiency-concerned effective volume (V) and
maximum radius (rmax) obtained by our numerical program are the output. A back-propagation artificial
neural network model for salt cavern construction prediction (BPANN-SCCP) is trained on the dataset.
The cross-validated mean absolute percentage error (MAPE) of the BPANN-SCCP predicted V is 1.838%,
that of the predicted rmax is 3.144%. This accuracy meets the engineering design requirements, and the
prediction efficiency is improved by about 6 x 107 times. Using this model, a design parameter opti-
mization method is devised to optimize 3 sets of design parameters from a million random ones. The
resulting caverns are regular in shape with larger capacity ratio than 3 field caverns in Jintan Salt Cavern
Gas Storage, verifying the reliability of the proposed optimization method.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Global energy consumption has nearly doubled in the last three
decades, increasing the need for underground energy storage [1].
Salt caverns are widely used for underground storage of energy
materials [2], e.g. oil, natural gas, hydrogen or compressed air, since
the host rock has very good confinement and mechanical proper-
ties. In 2020, more than 90% of the strategic oil reserves in the
United States were stored in five salt caverns in Texas and Louisiana,
with a total capacity of 119 million tons [3,4]. The worldwide daily
gas extraction volume of the salt cavern natural gas storages is
about 1.56 billion cubic meters, accounting for nearly a quarter of all
gas storage reservoirs [5]. Recently, along with the promotion of
carbon reduction and renewable energy [6], the studies concerning
the storage of hydrogen [7], CO, [8] and compressed air [9,10] in salt
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caverns are emerging as well.

The salt cavern is constructed by solution mining [11]. Fresh-
water or unsaturated brine is injected into the deep salt rock for-
mation through tubes to dissolve the salt rock and to discharge the
highly saturated brines. After years of the injection-dissolution-
discharge cycle, a void cavern is gradually formed, with a volume
ranging from thousands to millions of cubic meters. The con-
struction design and control of a salt cavern is very important for its
safety and economic benefits. Usually the following three re-
quirements should be satisfied.

a) Safety: the construction process should be well controlled to
form a reasonable and stable form and to ensure the thickness of
the salt roof [12].

b) Capacity: the salt formation should be fully utilized to obtain a
larger cavern capacity in a fixed salt formation [13].

c) Efficiency: a higher construction efficiency should be achieved
[13].
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Abbreviations

SSCLS Single-well Salt Cavern Leaching Simulation

BPANN-SCCP Back Propagation Artificial-Neural-Network
Salt Cavern Construction Prediction

X Input

Y Output

Vv Effective cavern volume

T'max Maximum radius of cavern

C Cavern storage capacity

fe Capacity coefficient

fe Construction efficiency coefficient

T Total dissolution duration

w Safe distance between caverns

H Cavern height

MSE Mean Squared Error

MAPE Mean AbsolutePercentage Error

R Correlation coefficient

This solution mining process is a convective mass transfer pro-
cess between the water and salt rock [ 14]. Thus, the development of
the cavern boundary can be controlled by changing the boundary
conditions i.e. the construction technological parameters, including
the depth of the inner/outer tubes (used for injection and
discharge), the depth of the blanket pad (used to protect the cavern
roof), the circulation mode (direct circulation mode means injec-
tion from the inner tube, while reverse circulation mode means
injection from the outer tube), the flow rate & concentration of the
injected water, and the dissolution duration. During the construc-
tion of a salt cavern, these parameters need to be adjusted many
times. Each adjustment is followed by a period of several months or
even several years during which the operational parameters are
maintained, called a “mining stage”. The cavern development is
difficult to predict and control since there are many different
combinations of technological parameters at different stages. Re-
searchers have conducted extensive research on the cavern for-
mation mechanism and prediction/design methods of salt caverns
using experimental, theoretical and numerical methods as follows.

Laboratory simulation experiments are an important means to
investigate the mechanism of cavern construction and to test the
controlling methods. Researchers have discussed the dissolution
mechanism of salt rock through laboratory dissolution experiments
[15,16]. Its dependency was investigated on brine concentration,
flow rate, interface angle, interface roughness, and temperature,
and relevant empirical equations have been established to describe
the dependency. The flow pattern and law of injection-discharge
cycle have been studied through water-brine convection experi-
ments [17,18]. Simplified flow field models with reduced di-
mensions have been proposed, e.g. full-cavern mass balance model
[19], stratified-brine model [20] and buoyant flow model [21]. Us-
ing these simplified models, the three-dimensional turbulent flow
field in the process of solution construction can be solved to predict
the development of the salt cavern. Laboratory scaled-down
simulation experiments have been carried out to monitor the
complete solution construction [22,23]. The influence of the tech-
nological parameters on the cavern development was observed.
The construction theory can be verified as well.

Researchers have developed numerical programs for cavern
construction simulation, including CAVITY [24], SALT77 [25], CAV-
SIM3D [26], SANSMIC [27], UBRO [20], INVDIR [28], CAVITA [29],
CPSLS [30], SSCLS [31], HCLS [32], TWHSMC [33], etc. They were
based on the above-mentioned empirical equations of salt rock
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dissolution rate and simplified models of water-brine convection.
SSCLS and HCLS were developed by the authors in their previous
works, and the collapse and accumulation of the insoluble inter-
layer particles and their interaction with the dissolution of salt
were considered. These programs can calculate the water-brine
convection and salt dissolution using time-differentiated methods
according to different geological and technological parameters, and
they can simulate the dynamic cavern development. Specific con-
struction parameters schemes can be quantitatively simulated and
evaluated using these tools.

However, due to the problem of similar incongruity in the
scaled-down experiments, the laboratory simulation experiments
can only be qualitative, not quantitative. As for the numerical
methods, they cannot give direct suggestions for the optimization
of construction parameters. Operators need to simulate and adjust
different parameter schemes to obtain better results. The predic-
tion and evaluation of one design parameter scheme requires
nearly half an hour of computing time using simplified numerical
models or even several weeks using computational fluid dynamics
models. There are so many potential combinations of different
kinds of construction parameters that the design optimization us-
ing traditional methods is very time-consuming. Therefore, the
discussions on design parameter optimization are limited, and
actual engineering design relies heavily on the operator's design
experience. As a result, there are quite a large number of irregularly
shaped caverns due to improper design in China [11,32], which
have not enough capacity and pose severe collapse risks.

Aiming at these problems, in this paper, we propose a machine-
learning-based method, as a third option besides the physical and
numerical methods, to conduct much more rapid prediction of
capacity and optimization of construction design parameters for
energy storage salt caverns. Machine learning methods have been
widely used in engineering design [34,35], but the application to
salt cavern construction prediction and optimization has not been
reported. We summarize the main contributions and technique
route of this study as follows.

(1) A novel data abstraction and generation method for the
construction prediction of salt storages: the changing design
parameters over years of construction are formatted into sets
of parameters in a fixed number of stages. A random data
generation rule is proposed and 1253 sets of design param-
eters are generated. Their resulting important evaluation
indexes for the final storage service are obtained using the
pre-programmed Single-well Salt Cavern Leaching Simula-
tion (SSCLS) software [31].

(2) A successful application of machine learning methods in
predicting the capacity from the construction design pa-
rameters of the energy storage salt caverns: the TRAINING,
VALIDATION, and TEST datasets are created using the con-
struction parameters as the input and the result data as the
output. A back propagation artificial-neural-network salt
cavern construction prediction (BPANN-SCCP) model is built
and trained on the datasets until the error is reduced to a
level that meets the design requirements. BPANN-SCCP can
directly predict the effective cavern volume (with <2% error
compared with the numerical results) and maximum radius
(with 3% error) from formatted multi-stage construction
parameters (then we can further calculate the capacity and
efficiency coefficients based on these two results).

(3) A novel design parameter optimization scheme combining
machine learning with numerical methods: a million sets of
construction design parameters are randomly generated and
used as input, it covers nearly all possible combinations. The
corresponding results are predicted using the BPANN-SCCP
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model. Optimized construction design parameters are ob-
tained by evaluating the safety, capacity and efficiency of the
predicted results. A further optimization is conducted using
numerical tools to optimize the final options by taking safety
concerns of cavern shapes into consideration.

2. Methodology

BPANN is a multi-layer feed-forward neural network using
backpropagation algorithm. This was selected due to its strong
nonlinear function fitting capability. A BPANN includes one input
layer, several hidden layers, and one output layer. Each layer con-
sists of a different number of “neurons”. Each neuron passes a
weighted sum of its inputs from the previous layer to the next layer
until it reaches the output layer. When the output does not match
with the expected output, the error is backpropagated to adjust the
neuron weights and biases in each layer. This process is repeated
until the error between the predicted output and the expected
output is acceptable. Eventually, the neural network model can be
used for prediction using similar input data. In this section, we
establish a back propagation artificial neural network model for salt
cavern construction prediction (BPANN-SCCP). The flow chart is
shown in Fig. 1, the details will be described in the following
sections.

2.1. Data generation

Establishing a reasonable database is the most critical step in
establishing a predictive neural network model. All factors affecting
the prediction results need to be quantified as inputs (X), and the
corresponding prediction results as outputs (Y). In this paper, we
simplify the geological factors by assuming that the salt layer is
homogeneous and the insoluble content is 10%, then only the
technological parameters are considered. Considering that the
process parameters are adjustable among stages, different combi-
nations of design parameters in different stages should all be
quantified as inputs. Here we assume cases with 5 direct cycle
stages. This can represent cases with fewer stages as well by
inputting the same parameters in adjacent stages. The design

Input SSCLS Output
1253 sets of design |simulation Construction
parameters results V and oy
Normallzatlon

Dataset

‘ TRAINING] ‘ VALIDATION
dataset dataset

Model setting

TEST
dataset
and training

ANN model Predlctlop and
comparison

Fig. 1. Flow chart of the training and evaluation of the BPANN-SCCP model. SSCLS is
our previously software, V = cavern volume, ryax = maximum cavern radius.

[
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parameters in each stage are randomly generated under the
following rules:

(1) The depth of the water injection tube in the first stage is 0 m,
and all the other depths are taken as values relative to this
depth.

(2) The depth of the blanket pad in the last stage is 80 m, so that
the heights of the final caverns are all 80 m.

(3) The depth of the water injection tube rises sequentially in
each stage; each rise is not less than 10 m.

(4) The depth of the brine discharge tube in each stage is 5 m
lower than the depth of the blanket pad, and these depths
are always higher than the depth of the water injection tube.

(5) The depth of the blanket pad rises sequentially in each stage
(the commonly used blanket material is diesel fuel, the
reduction of the blanket pad requires a large amount of
diesel fuel, the cost of which is high). Each of these rises is not
less than 10 m.

(6) The minimum duration for each stage is 30 days and the
maximum duration is 300 days. The total duration of the 5
stages is 600 days.

(7) The adjustment ranges of flow rate and concentration are
small in the field, thus, the flow rate is 60 m>/h for each stage,
which is very common in the field.

Under the above rules, we randomly generate 1253 sets of
design parameters. Each set contains the water injection tube
depth, brine discharge tube depth, blanket pad depth, duration, and
flow rate in 5 stages. Using these parameters, we obtain 1253
simulated caverns (Fig. 2) by our previously developed SSCLS
software [31]. The effective cavern volume V and maximum radius
rmax are exported for the calculation of the most important evalu-
ation indexes of the storage service, including storage capacity C
(usually considered equal to the effective volume), capacity coef-
ficient f, (the ratio of the cavern capacity to its occupied space), and
construction efficiency coefficient fz (Eq. (1), proposed by Ref. [13]).
These 1253 sets of 5-stage parameters and corresponding results
form our initial data set. A part of the data set is shown in Table 1.
The full dataset can be found in the supplementary material.

C C
C=Vfomnfiz—o 1
fe =Ffe 2rmm + W)PH (1)

where, T is the total dissolution duration, W is the safe distance
between neighboring caverns, usually two times the maximum
cavern diameter (or 4rmax) in China [3], H is the cavern height.

2.2. Data processing

Among the previously mentioned technological parameters, the
flow rate is a constant and does not need to be included in the
TRAINING data set. The depth of the outer tube depends on the
depth of the blanket pad, it is not an independent variable and
hence does not need to be included as well. Therefore, the final
input data only includes 15 items, i.e. the inner tube depth, blanket
pad depth, and the duration of the 5 stages. C, fe and f. are
dependent on V and rpax as per Eq. (1). Thus, the output of the data
set used for training only includes two items: V and rpax. To
improve the convergence speed and accuracy of the model, the
input and output data are normalized before training. The data
values in each column of the dataset are mapped to the interval
[0,1]. The prediction results will be inversely normalized to the
original value interval as well.

After normalization, we divide the data into three sets. 80% of
the data is taken as the TRAINING set to train the model, 10% of the
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Fig. 2. A part (88) of the 1253 caverns simulated using SSCLS software [31].

Table 1

Data examples of the input design parameters and their corresponding output results.
Input Output
Stage 1 Stage 5
Water injection depth/m  Brine discharge depth/m Blanket pad depth/m Dissolution duration/day Flow rate ... ... V/C Tmax/M  fc fe

jm’/h Jm? jm?®/day

0 20 25 41 60 JUTE 86,370 32.90 0.028 143.95
0 9 14 23 60 e 80,779 27.72 0.037 134.63
0 19 24 59 60 75,137 31.99 0.025 125.23
0 25 30 36 60 JUT 79,406 28.45 0.034 13234
0 16 21 52 60 76,299 27.28 0.036 127.16

data is taken as the VALIDATION set to help prevent overfitting, and
the remaining 10% of the data is taken as the TEST set to evaluate
the performance of the model.

2.3. Model setting and training

The topology and the training hyperparameters of the BPANN-
SCCP model are optimized through training. The topology of the
final optimized model consists of an input layer, 3 hidden layers,
and an output layer, as shown in Fig. 3. The input layer consists of 15
neurons corresponding to the 15 inputs (inner tube depth, blanket
pad depth, and duration of 5 stages). The 3 hidden layers are fully
connected, and the number of neurons in each layer is 512. The
output layer consists of 2 neurons corresponding to V and rpax. The
hidden layer uses the “ReLU” function [36] as the activation func-
tion, which introduces a nonlinear factor to the neural network and
makes it more capable of mapping nonlinear functions.

The hyperparameters used for model training, including loss,
metric, optimizer, epoch, batch size, callback, and initializer are
listed in Table 2. Among them, considering that the learning rate of
the neural network needs to be reduced as the model gradually
converges to prevent oscillations, the model uses the “Reduc-
eLROnPlateau” function [37] as the callback function to update the
learning rate of the model automatically. The detailed parameters
are set as follows: monitor = val_loss, factor = 0.2, patience = 5,
min_Ir = 0.001.

Fig. 4 shows the change of MSE with epoch for the TRAINING
and VALIDATION data sets. At around 100 epochs, the MSE of the
TRAINING set is stable at around 0.0002. The stable value of the
MSE on the VALIDATION data set is higher than 0.0030, indicating

the model is overfitting. This could be fixed by introducing more
data, but since a MSE of 0.0030 is small enough for actual cavern
design, it can be said that the model is well trained.

3. Results
3.1. Prediction accuracy

The prediction accuracy of the trained BPANN-SCCP model is
evaluated using the mean absolute percentage error (MAPE) and
the correlation coefficient (R) [39]. The MAPE calculates the mean
value of the ratio of the error (absolute value) to its true value. The R
investigates the degree of linear correlation between the model
output and the measured values (R = 1 means perfectly linear).

Fig. 5 shows the MAPE and R of the predicted V in different data
sets. The prediction accuracy is high in the TRAINING set (Fig. 5a),
the R and MAPE are 0.998 and 0.509%, respectively. Tose of the
VALIDATION and TEST sets are slightly lower than those of the
TRAINING set (Fig. 5b and c), their Rs are 0.972 and 0.962, and those
of MAPEs are 2.005% and 1.689%, respectively. The accuracy of this
prediction varies across different intervals of V. For the half data
with larger V (the area in the black square box in Fig. 5¢), the MAPEs
are 0.855% and 0.724% on the VALIDATION and TEST sets, respec-
tively, much smaller than those of the complete data set. For half of
the data with smaller V, the prediction error is larger. This reflects
that the relation is much more complicated in this range since these
caverns with smaller V are most irregular due to inappropriate
parameter design. The goal of this model is to select the parameters
with larger V, thus the prediction accuracy with larger Vis relatively
more important. Therefore, it can be considered that the capacity
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Fig. 3. Topology of the BPANN-SCCP model.
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Table 2
Training hyperparameters used for model.
Hyperparameter Setting
Loss Mean squared error (MSE)
Metric Mean absolute error (MAE)
Optimizer Adam [38]
Epochs 200
Batch size 5
Callback ReduceLROnPlateau
Initializer Normal [37]
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Fig. 4. Trend of MSE (Mean Square Error) of the model on the TRAINING and VALI-
DATION data sets.

and efficiency prediction MAPE of the model is better than 1% and
can meet the requirement of prediction accuracy in actual
engineering.

Fig. 6 shows the MAPEs and Rs of the predicted maximum
cavern radius rmax in different data sets. The Rs are 0.918 and 0.892
for the VALIDATION and TEST set (Fig. 6b and c), and their MAPEs
are 3.065% and 3.067%, respectively. Overall, the prediction accu-
racy of rmax is lower than that of V. However, a MAPE of 3% is still
within the acceptable error range for actual engineering design and
is acceptable for our goal of preliminary parameter optimization as
well.

To make sure the test results are general, we conduct a 10-fold

cross-validation. The data is randomly split and trained 10 times.
For this validation, the average MAPE of V is 1.838% and that of ryax
is 3.144%, as shown in Table 3. It can be said that this BPANN-SCCP
model can directly predict the V and ryax according to the multi-
stage construction parameters, and the prediction accuracy meets
the actual engineering requirements, while the prediction effi-
ciency is greatly improved by about 6 x 107 times.

3.2. Parameter optimization

In this section, the parameter optimization is discussed. As
suggested in the introduction, a good parameter design should lead
to a larger capacity (C), a higher capacity coefficient (f.), and a
higher efficiency coefficient (f.). Based on the parameter rules
described in Subsection 2.2, we randomly generate one million sets
of parameters, and predict their corresponding results (V and rmax)
using BPANN-SCCP, and then calculate C, fc and fe. As has been
presented in Section 2.2, the total duration is fixed, and f. can be
represented by C. Thus, only the normalized C and f are calculated,
summed, and ranked. 100 sets of parameters with the highest
normalized C and f. are obtained. Considering that the prediction
error of the maximum radius ryay is larger than that of the volume
V, we select 10 sets with the largest C among the selected 100 sets
as the final optimized parameters. The data generation, model
prediction, and ranking screening of one million sets of techno-
logical parameters take 1.53 s, 27.88 s, and 0.40 s of computing time,
respectively. It means the proposed method can evaluate one set of
construction parameter in less than 3 x 107> s (a traditional
method would cost half an hour). This convincingly shows that the
BPANN- SCCP method greatly improves the efficiency of the pre-
diction and preliminary optimization of design parameters.

The current prediction cannot reflect the cavern shape, which is
of great concern for stability analysis. Further manual optimization
is needed to make sure the final cavern shapes are reasonable.
Using the 10 parameter sets selected by BPANN- SCCP, construction
simulations are carried out using SSCLS software. We manually
remove those cases with a large flat top or with other unreasonable
forms. Three sets of parameters are finally selected as shown in
Table 4 (the outer tube depth is taken as 5 m lower than the blanket
pad depth, and the flow rate is 60 m>/h).

To further discuss the optimization results, the shapes and ca-
pacity coefficients (f¢) of the optimized caverns (A, B, C) are
compared with those of 3 actual salt caverns (JT86, JT103, JT86 in
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Jintan Salt Cavern Gas Storage). We chose these three caverns

because they are very close in capacity while their shapes and f.

values are quite different. The comparison results are shown in

Table 3
MAPESs (Mean Absolute Percentage Errors) of 10-fold cross-validation.
Predicted item MAPE
Maximum value Minimum value Mean value Variance
1% 2.042 1.672 1.838 0.017
Tmax 3.452 2.948 3.144 0.032
Table 4

3 sets of design parameters manually selected from the 10 sets optimized using BPANN-SCCP.

Fig. 7 and Fig. 8. The three caverns are larger than those of A, B, C,
thus we shrink their size to facilitate the comparison in Fig. 7.
Considering that the cavern capacity is highly affected by the in-
solubles content, a total capacity coefficient fi. is calculated and

Stage Duration/day Inner tube depth/m Outer tube depth/m Blanket pad depth/m Flow rate/m>/h
A 1 33 0 11 16 60
2 164 8 45 50 60
3 216 12 60 65 60
4 99 46 70 75 60
5 88 59 75 80 60
B 1 29 0 7 12 60
2 133 8 44 49 60
3 227 13 59 64 60
4 122 26 69 74 60
5 89 61 75 80 60
C 1 30 0 14 19 60
2 100 7 45 50 60
3 248 16 60 65 60
4 123 42 68 73 60
5 99 59 75 80 60
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Fig. 7. Comparison of the optimized caverns (simulated using A, B, C parameters in Table 4) and the actual field caverns (JT52, JT103, JT86 in Jintan Salt Cavern Gas Storage).
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Fig. 8. Comparison of the capacity ratios of the optimized caverns (simulated using A,
B, C parameters in Table 4) and the actual field caverns (JT52, JT103, JT86 in Jintan Salt
Cavern Gas Storage).

compared to exclude the effect of different insoluble contents.

Ok
L @)

where, fiys is the insolubles content, fexp is the expansion ratio of
the insolubles in brines.

JT52 is a typical successfully designed cavern. It has a quite
axisymmetric and regular shape and its capacity coefficients are
very high, f. is 3.24% and fi. is 4.64%. As for JT103, its top half is
much smaller that its bottom half, its height and maximum diam-
eter are both larger than those of JT52, while its effective capacity is
nearly the same. Thus, its capacity coefficients are much lower than
those of JT52. The JT86 is an irregularly shaped cavern with a large
overhanging block, resulting from insoluble interlayers probably.
Its capacity coefficients are even smaller.

In comparison, our 3 optimized caverns are all regular in shape,
their fcs are about 3.72%—3.9%, higher than all of the actual caverns,
as shown in Fig. 8. The fi.s are about 4.43%—4.64%, higher than
those of JT103 (3.76%) and JT86 (3.49%), close to that of JT52 (4.64%).
It is clear that the proposed optimization method helps to achieve
more regular shapes and higher capacity coefficients during the
design of energy storage salt caverns.

4. Conclusions and discussion

The traditional physical or numerical simulation methods to
optimize the construction design parameters of energy storage salt
cavern are time-consuming and rely heavily on engineering design
experience. In this paper, we propose a machine-learning-based

method to help capacity prediction and parameter optimization
for salt caverns. A back propagation artificial neural network-based
salt cavern construction prediction (BPANN-SCCP) model is estab-
lished. It takes the construction design parameters as inputs to
predict the effective cavern volume (V) and maximum cavern
radius (rmax). They are important evaluation indexes reflecting the
final storage capacity and construction efficiency, as per Eq. (1). We
propose and discuss a rapid parameter optimization method using
the BPANN-SCCP model. The detailed works and main conclusions
are as follows.

(1) We devise a data generation method for salt cavern con-
struction prediction. 1253 sets of technological design pa-
rameters (including the depth of inner and outer tube and
blanket pad, the water injection flow rate, and the duration
of five construction stages) are generated using a random
parameter generator. The corresponding cavern volume V
and maximum cavern radius rpyax are obtained using a pre-
viously developed Single-well Salt Cavern Leaching Simula-
tion (SSCLS) software. The normalized inner tube depth,
blanket pad depth, and duration of the five stages are used as
input data, and the normalized V and rax are used as output
data to form the dataset required for training the neural
network. This dataset is 8:1:1 split into TRAINING, VALIDA-
TION and TEST sets for training, validation and evaluation of
the network.

(2) We establish and train a 5-layered BPANN-SCCP model
through topology and hyperparameter optimization. The
prediction accuracy of V and ryay is discussed. The correla-
tion coefficients (Rs) of V in the TRAINING, VALIDATION, and
TEST sets are all higher than 0.96, and the mean absolute
percentage errors (MAPEs) are lower than 2.1%. For the half
data with larger V, which is more important for construction
design, the MAPE is 0.724% in the TEST set. The correlation
coefficient R of rpax in the TRAINING, VALIDATION, and TEST
sets is higher than 0.89 and their MAPEs are less than 3.1%.
The MAPEs of V and ryax on the TEST set in a 10-fold cross-
validation are 1.838% and 3.144%, respectively. The predic-
tion accuracy of V and rmax are high enough to meet the
design requirements. The prediction efficiency is greatly
improved, by about 6 x 107 times. One traditional numerical
prediction requires half an hour of computing time, while
one BPANN-SCCP prediction requires only about 3 x 107> s. It
is demonstrated that the neural network is highly applicable
in the nonlinear prediction of capacity and construction ef-
ficiency of energy storage salt caverns.

(3) We propose a novel design parameter optimization method
for salt cavern construction. We generate one million sets of
randomly generated construction parameters and predict the
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resulting V and rpax using the BPANN-SCCP model. One
hundred sets of parameters, those with the highest sum of
normalized capacity and efficiency and capacity coefficients
(calculated by V and rpa) are preliminarily selected.
Considering that the prediction error of Vis smaller, 10 sets of
parameters with the highest capacity within these pre-
selected 100 sets are selected as the final optimized param-
eters. The whole data generation, prediction and
optimization process of 1 million sets of random parameters
takes less than 30 s of computing time. The simulated cav-
erns obtained by SSCLS using the optimized parameters are
regular in shape, with larger capacity ratio compared with
three actual field caverns in Jintan Salt Cavern Gas Storage.

In this paper, the dataset is generated using numerical simula-
tion tools, and only a uniform salt layer and direct circulation
construction mode are considered. In the future, more adverse
geological parameters as well as variable circulation modes will be
considered. Even further, field data could be used for training.
Machine learning-based methods might directly predict the cavern
capacity and even cavern shape in the field and serve as the next
generation design tool for the construction of energy storage salt
caverns.
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