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a b s t r a c t

Based on fracture mechanics theory and wing crack model, a three-dimensional strength criterion for
hard rock was developed in detail in this paper. Although the basic expression is derived from initiation
and propagation of a single crack, it can be extended to microcrack cluster so as to reflect the macro-
scopic failure characteristic. Besides, it can be derived as HoekeBrown criterion when the intermediate
principal stress s2 is equal to the minimum principal stress s3 (Zuo et al., 2015). In addition, the opening
direction of the microcrack cluster decreases with the increase of the intermediate principal stress co-
efficient, which could be described by an empirical function and verified by 10 kinds of hard rocks. Rock
strength is influenced by the coupled effect of stress level and the opening direction of the microcrack
clusters related to the stress level. As the effects of these two factors on the strength are opposite, the
intermediate principal stress effect is induced.
� 2023 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Rock fracturing process under multiaxial stresses, especially the
effect of stress on the rock brittle fracture, has become an signifi-
cant subject in rock mechanics (Mogi, 1967; Pan et al., 2012). The
magnitude and orientation of the principal stresses play important
roles in changing the failure mode of rocks. The stiffness of testing
machine apparently affects the post-peak stressestrain curves of
brittle hard rocks under axial-strain-controlled loading (Cai et al.,
2021). Conventional triaxial compression tests are often used to
study the influence of confining pressure on rock failure. However,
in the compression tests, the rock specimens is subjected to the
same radial stress state. With the development of testing tech-
nique, a large number of true triaxial compression tests have been
conducted to reveal the actual rock failure performance under
principal stresses (Mogi, 1981, 2006; Geng and Xu, 1985; Takahashi
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and Koide, 1989; Chang and Haimson, 2000; Chen and Feng, 2006;
Feng et al., 2016). More importantly, the special effect of interme-
diate principal stress (s2) on the rock strength has been observed
and examined in these laboratory studies.

The intermediate principal stress effect revealed that hard rock
strength increases and then decreases with the increase of s2:

Based on the laboratory results, many theories have been proposed
to interpret this effect. Earlier studies attributed this effect to the
following three factors: uncertain anisotropy of rock (Böker, 1915),
low accuracy of failure stress measurement (Murrell, 1965; Mogi,
1967; Chang and Haimson, 2000), and uneven stress distribution
at the end of rock specimen (Jaeger and Hoskins, 1966). After the
effect has been verified in true triaxial compression tests, this effect
was considered as the influence of s2 on the effective normal stress
over the failure plane (Mogi, 1967; Chang and Haimson, 2000), the
effective shear strain energy stored in rock (Takahashi and Koide,
1989), or a kind of failure mode (Mogi, 2006; Feng et al., 2019).
With deeper explanation and more profound understanding of this
effect, various failure criteria considering the influence of s2 were
proposed (Mogi, 1967, 1971; Aubertin and Simon, 1996; Ewy, 1999;
Zhang and Zhu, 2007; Chang and Haimson, 2012; Ma et al., 2017;
Wang et al., 2018, 2019; Feng et al., 2019). These interpretations and
strength criteria mainly focus on the macroscopic failure
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Diagrammatic sketch of the fracture model, in which a penny-shaped crack is
located in the material matrix. The global coordinate system (Ox1x2x3) and the local
coordinate system (Ox01x

0
2x

0
3) of the crack are also illustrated. The angle between the x02

axis and plane Ox2x3 is q, and the angle between x03 and x2 is 4.

Fig. 2. Development of the penny-shaped microcrack. Secondary wing cracks form at
the two tips of the microcrack due to the shear stress s021 on the surface of the penny-
shaped microcrack. s022 is the normal stress on the surface. s1, s2 and s3 are loaded to
the material matrix in the far field.
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characteristics of rocks observed and summarized from laboratory
results. However, they appear to ignore the physical mechanism
induced by micro-fracturing.

On the other hand, based on the micro-fracturing mechanism,
rock failure can be also studied from the theoretical perspective by
establishing a theoretical model and making several assumptions.
Some well-known strength criteria, such as the Griffith criterion
(Griffith, 1921), modified Griffith criterion (McClintock and Walsh,
1962), and WiebolseCook criterion (Wiebols and Cook, 1968),
were proposed based on puremathematical derivation. A nonlinear
strength criterion (Zuo et al., 2008) was derived for rocks based on
fracture mechanics and two-dimensional (2D) crack model, which
has a similar expression with the HoekeBrown criterion (Hoek and
Brown, 1980). This work was further extended to a three-
dimensional (3D) crack model subjected to pseudo triaxial stress,
namely s2 ¼ s3. Based on that, the theoretical HoekeBrown crite-
rionwas derived, and the physical meaning of the parametermwas
explained (Zuo et al., 2015). The study of Zuo et al. (2015) is of great
value for providing the basis and derivation of the HoekeBrown
criterion for intact rock using a fundamental and mechanically
rigorous fracture mechanics approach (Brown, 2015). Renctly, Hoek
and Brown (2019) and Rafiei Renani and Cai (2022) comprehen-
sively reviewed the HoekeBrown criterion from the perspectives of
geological strength index (GSI) and jointed rock mass, respectively.
Hoek and Brown (2019) pointed out that Zuo et al. (2008, 2015)
showed a very similar equation which could be derived by
analyzing the failure propagation of a penny-shaped crack in the
triaxial stress field. Zuo and Shen (2020) investigated the micro-
meso physical transformation mechanism and a theoretical
model for brittle-ductile transition behavior of rocks in detail. Zhou
et al. (2014) extended the nonlinear strength criterion to 3D con-
ditions using a similar method. Through these theoretical studies,
the gap between the physical mechanism and the macroscopic
failure of hard rock can be completely or partially filled.

In this study, a 3D rock failure model containing a single
microcrack subjected to true triaxial stresses is derived in detail
based on fracture mechanics theory and the wing crack model.
Then the model is extended to microcrack cluster to predict hard
rock strength at macroscale. Based on several failure characteristics
and reasonable assumptions, relations between the most favorable
direction of microcrack cluster and intermediate principal stress
coefficient are derived and examined based on the results of pre-
vious laboratory true triaxial compression tests. Finally, the inter-
mediate principal stress effect on the hard rock strength is
discussed and the physical meaning of the effect is revealed ac-
cording to the above derivations and assumptions.

2. Fundamental hypotheses according to single penny-
shaped crack model

The development of microcracks was the main reason of in-
elastic response of brittle or quasi brittle material (Tapponnier and
Brace, 1976). Its strength decreased due to the existence of initial
flaws or cracks (Jaeger et al., 2007). In this paper, it is assumed that
the failure of hard rocks is caused by penny-shaped microcracks,
which are widespread in many brittle materials (Paterson and
Wong, 2005). Similar to Zuo et al. (2008), this paper makes two
fundamental assumptions: (1) abundant penny-shaped micro-
cracks are randomly embedded in the isotropic elastic material, and
inelastic response is induced by the crack development; and (2)
cracks are sparsely distributed, ignoring the interaction of these
cracks.

Based on the above assumptions, the fracture model shown in
Fig. 1 is considered, with a penny-shaped crack of radius a
embedded in the isotropic elastic material matrix, loaded in the far
field. The global and local coordinate systems of the crack are set as
Ox1x2x3 and Ox01x

0
2x

0
3, respectively. In the local coordinate system,

the x02 axis is parallel to the normal vector of the crack, while both
the x01 and x03 axes are parallel to the surface of the penny-shaped
crack. Moreover, the x03 axis is coplanar with the x2 and x3 axes in
the global coordinate system. In addition, the angle between the x02
axis and plane Ox2x3 is q, while 4 is the angle between the x03 and x2
axes. Therefore, the set (q, 4) can be adopted to describe the incli-
nation of the penny-shaped microcrack in 3D space. The relation
between the basic vector of the two coordinate systems is shown
below:

e0i ¼ gijej (1)
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The relation between the stress components (positive in
compression) of the two systems can be derived as follows:

s0ij ¼ gikgjlskl (2)

where

gij ¼
2
4 cosq �sin qsin4 sinq cos4
sinq cosq sin4 �cosq cos4
0 cos4 sin4

3
5 (3)

Development of the penny-shaped microcrack is considered by
the wing crack model (Horii and Nemat-Nasser, 1986; Wang and
Shrive, 1993; Bobet, 2000), as shown in Fig. 2. When the penny-
shaped crack propagates along x01, it is subjected to shear stress.
However, it is subjected to tensile stress or traction when the crack
propagates along the direction parallel to x2. In addition, it is
generally subjected to coupled tensile and shear stresses when the
crack propagates between x01 and x2. Therefore, the opening of the
secondary wing cracks is caused by the shear stress or traction on
the surface of the penny-shaped crack. The shear stress s021 and the
normal stress s022 on the surface of the penny-shaped microcrack
can be calculated as

s021 ¼ s1cosq sinq�s2 cos q sin q sin
2 4�s3 cos q sin q cos 2 4

s022 ¼ s1sin
2 qþs2 cos

2 q sin 2 4þs3 cos
2 q cos 2 4

9=
;
(4)

According to the wing crack model (Horii and Nemat-Nasser,
1986; Wang and Shrive, 1993; Bobet, 2000), in-plane traction is
always considered in the formation of the secondary wing cracks,
while the out-plane traction should be ignored here. The stress
intensity factor depends on the magnitude of the traction st on the
crack plane, which can be calculated below:

st ¼ s� sc ¼ s� msN ¼ s021 � ms022 (5)

where sN and s are the normal and shear stresses on the shear
plane, respectively; m stands for the frictional coefficient; and sc is
the shear strength on the plane, and it equals msN as the Mohre
tan q1 � tan q � tanq2

tanq2 ¼
s1 � s2sin

2 4� s3sin
2 4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
s1 � s2sin

2 4� s3sin
2 4

�2 � 4ðbþ ms1Þ
�
bþ ms2sin

2 4þ ms3cos
2 4

�r

2ðbþ ms1Þ

tanq1 ¼
s1 � s2sin

2 4� s3sin
2 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
s1 � s2sin

2 4� s3sin
2 4

�2 � 4ðbþ ms1Þ
�
bþ ms2sin

2 4þ ms3cos
2 4

�r

2ðbþ ms1Þ

9>>>>>>>>>=
>>>>>>>>>;

(9)
Coulomb criterion is applied on the crack internal surface. Be-
sides, the upper and lower sides of the pre-existing crack are
disconnected. Therefore, the cohesion at the crack surface could be
tana ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
s1 � s2sin 2 4� s3sin 2 4

�2 � 4ðbþ ms1Þ
�
bþ ms2sin 2 4þ

r

m
�
s1 þ s2sin 2 4þ s3cos 2 4

�
þ 2b
ignored. The stress intensity factor KII for this in-plane shear crack
can be calculated (Tada et al., 1973) as

KII ¼ 4st
2� v

ffiffiffiffi
a
p

r
(6)

where n is the Poisson’s ratio, and a is the radius of the penny-
shaped crack.

The propagation condition of the penny-shaped crack for the
mixed fracture mode is defined (Kachanov, 1982) as follows:

KII ¼ kKIC (7)

where KIC is the fracture toughness for the mode I opening, which
was determined by Zuo et al. (2008) as 2st

ffiffiffiffiffiffiffiffiffi
a=p

p
, in which st is the

uniaxial tensile strength; and k is the fracture coefficient depending
on the mixed fracture criterion, for instance, k ¼ 1 for the
maximum energy release rate criterion (Sih and Macdonald, 1974;
Nuismer, 1975).

Combining Eqs. (4)e(7), the following equation can be obtained:

ðbþms1Þtan 2 qþ
�
s2sin

2 4þ s3sin
2 4� s1

�
tanq

þ
�
bþms2sin

2 4þms3cos
2 4

�
¼ 0 (8)

where b ¼ ð1� n=2Þk; s1 ¼ s1=st, s2 ¼ s2=st; and s3 ¼ s3=st. Eq.
(8) includes the possible crack inclination set (q, 4) under different
stress levels (s1, s2, s3).

As q is the angle between the local x02 axis and the plane Ox2x3,
q represents the inclination angle of the crack surface Ox01x

0
3

relative to the x1 axis or s1. The wing crack opening direction is
coplanar with the x01 and x02 axes where the shear stress s021 and
the normal stress s022 distribute, inducing the opening of the
secondary wing crack. Moreover, the wing crack opening direc-
tion is also perpendicular to x1 or s1. Therefore, 4 can be
considered as the rotation angle between the wing crack opening
direction and x3 or s3. For a given 4 and far-field load set (s1, s2,
s3), as shown in Fig. 3, the range of tanq, tanq1 and tanq2 can be
calculated below:
In Fig. 3, a ¼ q2 � q1, which is used to represent the micro-
failure orientation angle or azimuth under triaxial compression
(Zuo et al., 2008). Based on Eq. (9), tana can be calculated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms3cos 2 4

�
(10)



Fig. 5. Measurement of the macro-failure plane rotation angle j at different stress
levels. It should be noted that j is calculated from a side image of the specimen and the
spatial rotation is ignored: (a) g ¼ 0; (b) g ¼ 0:06; (c) g ¼ 0:18; and (d) g ¼ 0:31.

Fig. 3. The possible crack inclination angle q in 1/8 of the unit sphere for a given 4 and
far-field load set (s1, s2, s3). The blue solid line represents the possible range, and
penny-shaped cracks with their local coordinate systems are also illustrated. In addi-
tion, the upper and lower boundaries of the possible crack inclination angle, q2 and q1,
are also shown.
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The angle a represents the damaged portion of the internal
microcrack, while the macroscopic damage occurs in the sector
between q1 and q2 (Zuo et al., 2008), as shown in Fig. 3. Further-
more, jva =vs1j can be used to measure the characteristic of
damaged microcrack clusters that cause macr-failure considering
both the magnitude and rate of change of this ratio. a can be
replaced by sina as the angle between the final failure plane and s1
is relatively small (Zuo et al., 2015; Zuo and Shen, 2020). The
following macro-failure measurement M can be obtained:
Fig. 4. Diagrammatic sketch of the opening tendency of a single crack. Zones I and II
are the directional zones of opening and unopening tendency, respectively.
M ¼
����vðcos aÞvs1

���� ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p
�
cosa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p .
m� 1

�2
2
�
s2sin 2 4þ s3cos 2 4

�þ 2b
�
m

(11)

In the uniaxial compression state, s2 and s3 equal 0, while s1 is
the ratio between the uniaxial compressive and tensile strengths,
i.e. s1 ¼ sc=st, which can be used to calculate the macro-failure
measurement Muc under uniaxial compression. The macro-failure
measurement can quantitatively describe the macro-failure ten-
dency for each rock type. When M ¼ Muc, the following relation
can be obtained:

s1 ¼ s2sin
2 4þ s3cos

2 4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

b

sc
st
sc
�
s2sin 2 4þ s3cos 2 4

�
þ s2c

r
(12)

When s2 ¼ s3 in the triaxial compression, Eq. (12) can be
transformed into the following equation:

s1 ¼ s3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

b

sc
st
scs3 þ s2c

r
(13)

Eq. (13) is similar to the nonlinear strength criterion proposed
by Zuo et al. (2008), which was strictly derived based on the theory
of fracture mechanics and has a similar formwith the HoekeBrown
criterion.

3. Extension to the strength of microcrack cluster

It should be noted that 4 in Eq. (12) is obtained based on an
assumption that there exists only one single crack embedded in the
material matrix. In fact, the strength of rocks is determined by the
behavior of microcrack cluster. As discussed above, in the condition



Table 1
Values of ðm =bÞðsc =stÞ and sc for different rock types.

Rock type sc (MPa) ðm =bÞðsc =stÞ R2

Dunham dolomite (Mogi, 2006) 261.5 9.82 0.9954
Solnhofen limestone (Mogi, 2006) 310 4.69 0.9835
Yamaguchi marble (Mogi, 2006) 82 10.21 0.9976
Manazuru andesite (Mogi, 2006) 140 36.45 0.9932
Inada granite (Mogi, 2006) 229 30.15 0.9882
Orikabe monzonite (Mogi, 2006) 234 20.02 0.9794
Mizuho trachyte (Mogi, 2006) 100 11.23 0.9909
KTB amphibolite (Chang and Haimson, 2000) 164.7 30.11 0.9849
CJPL-II marble (Wang, 2020) 176 13.37 0.9851
Yunnan sandstone (Feng et al., 2019) 60 29.94 0.9994

Note: True triaxial compression tests of the CJPL-II marble were conducted in Wang
(2020). More details about this rock type, the loading apparatus and the loading
path can be found in previous studies (Zhao et al., 2018; Wang et al., 2020; Feng
et al., 2021; Gao and Wang, 2021).
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that s2 and s3 are constant, the larger the 4 is, the larger the s1 will
be based on Eq. (12). The opening tendency of a single crack is
shown in Fig. 4 when 4 stands for the material property. When the
actual rotation angle 4a is smaller than 4, the actual local strength
ss1a will be smaller than ss1 (calculated with 4 from Eq. (12)).
Therefore, the directional zone in which 4a < 4 is considered to be
of opening tendency. Oppositely, when 4a > 4, the crack could be
more stable due to the local strength ss1a greater than ss1, and thus
the directional zone in which 4a > 4 is considered to be of unop-
ening tendency.

In the local area, the stress conditions are approximately the
same when ignoring crack interactions. The microcrack cluster in
this local area could influence the global bearing capacity. The
opening of microcracks whose opening directions are in the
directional zone of unopening tendency delays, and the other
microcracks which open in the directional zone of opening ten-
dency strengthen. Actually, the strength of microcrack cluster is
determined by the maximum strength provided by the microcrack
with themost favorable direction in the directional zone of opening
tendency, which could be calculated below:

ss1 ¼ ss1að4mÞ (14)

where ss1a can be calculated from Eq. (12), and 4m is the most
favorable direction. Apparently, 4m is the upper limit of 4a in the
directional zone of opening tendency, and it is the assumed ma-
terial property 4. Eq. (14) indicates that Eq. (12) is also suitable to
describe the strength of microcrack cluster. The following strength
criterion for microcrack cluster can be obtained by substituting Eq.
(12) into Eq. (14):

s1 ¼ s2sin
24m þ s3cos

24mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

b

sc
st
sc
�
s2sin 24m þ s3cos 24m

�þ s2c

r
(15)

Actually, the macro-failure is mainly influenced by the micro-
crack cluster instead of a single microcrack, indicating that 4m can
reflect the characteristics of macro-failure.
Fig. 6. Statistical relation between the macroscopic failure plane rotation angle j and
intermediate principal stress coefficient g. The blue dashed line is the trend line
without fitting.
4. Relations between the most favorable direction and
intermediate principal stress coefficient

In the previous section, Eq. (15) is derived for constant s2 and s3.
Basically, 4m is the most favorable direction angle between the
wing crack opening direction and s3. In Eq. (15), when s3 keeps
constant and s2 increases, as ðm =bÞðsc =stÞ is influenced by the
constant material properties, s1 could increase. This contrasts with
the test results where intermediate principal stress effects were
observed in true triaxial compression test. It reveals that the
strength increases at first and then decreases with the increase of
s2 under constant s3. Therefore, 4m should be related to the stress
levels. As the stress level set (s1, s2, s3) is in a vector space, which is
hard to handle, a simple scalar named as the intermediate principal
stress coefficient was proposed by Wang and Lade (2001). It is
expressed as below:

g ¼ s2 � s3
s1 � s3

(16)

where g is in the range of 0e1. When s2 ¼ s3, we have g ¼ 0,
which stands for the conventional triaxial compression. When
s1 ¼ s2, g ¼ 1, indicating the generalized conventional triaxial
tension.

As Eq. (15) can stand for the strength of microcrack cluster, it can
also reflect the characteristics of macro-failure. Hence, the macro-
failure plane rotation angle j, which is the angle between the
main failure plane and s2, is measured approximately, as shown in
Fig. 5. Moreover, j is the angle between the opening direction of the
main failure plane and s3, which is consistent with the definition of
the rotation angle 4. It should be noted that j is calculated from a
side view of the specimen and the spatial rotation is ignored.

The relation between j and the intermediate principal stress
coefficient g is shown in Fig. 6, inwhich the blue dashed line stands
for the trend line. It can be observed from Fig. 6 that j seems to
decrease with the increase of g at a decreasing rate. j and g have a
negative exponential relationship, as reported in previous study
(Chang and Haimson, 2005). It was pointed out that most of the
microcrack orientations are random when s2 ¼ s3, and they tend
to be parallel to s2 direction as the differential stress s2 � s3 in-
creases. Since 4m is derivated from microcrack cluster, which re-
flects the feature of macro-failure to a certain extent, it can be
assumed that 4m follows the relation below:

4m ¼ 40e
�Dg (17)



Fig. 7. Relations between the most advantageous direction angle 4m and the intermediate principal stress coefficient g for different rock types: (a) Dunham dolomite; (b) Solnhofen
limestone; (c) Yamaguchi marble; (d) Manazuru andesite; (e) Inada granite; (f) Orikabe monzonite; (g) Mizuho trachyte; (h) KTB amphibolite; (i) CJPL-II marble; and (j) Yunnan
sandstone.
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Fig. 8. Fitting result and errors of KTB amphibolite: (a) Fitting results of KTB amphibolite with an exponential function; and (b) Probability density histogram of the fitting error on
the rotation angle 4m. Besides, the best normal distribution is also illustrated.
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where 40 is the initial favorable direction angle for g ¼ 0, and D is
the attenuation rate.

The reasonability of Eq. (17) needs to be verified. Ten sets of
published true triaxial tests on different types of intact rocks
(Chang and Haimson, 2000; Mogi, 2006; Feng et al., 2019) have
been taken for examining the accuracy of Eq. (17). Based on the
uniaxial compression test results, the average sc is obtained. In
addition, ðm =bÞðsc =stÞ is obtained from the best-fitting results ac-
cording to the conventional compression data and Eq. (13), as
shown in Table 1.

It can be seen that the results fit well in Table 1, indicating that
Eq. (13) (derivative from Eq. (12)) can be applied for the uniaxial
and conventional triaxial compression. With the reliability of sc
and ðm =bÞðsc =stÞ, 4m can be calculated directly by Eq. (15). The
relations between 4m and the intermediate principal stress coeffi-
cient g of different rocks are shown in Fig. 7.

It should be noted that 4m was calculated directly from the
experimental data and Eq. (15) without fitting. Eq. (17) was
applied to fit the data, and the fitting results and errors of KTB
amphibolite are shown in Fig. 8. The data are relatively discrete
and the R2 value is only 0.4076, as shown in Fig. 8a. It can be
explained that the actual strength cannot be reached for a con-
stant positive g in real true triaxial compression tests, due to the
variable experimental controlling conditions. Besides, there also
exist errors during the experimental operation. In Fig. 8b, normal
distribution is applied to fit the probability density histogram of
the fitting errors, and Kolmogorov-Smirnov test condition is ob-
tained. Hence, these experimental errors are random and acci-
dental, which need to be abandoned for acquiring rational results.
Thus, a computer program was written to abandon these random
errors and determine the best-fitting solutions of the relation
between 4m and g. Firstly, the data set was fitted roughly using the
least square method and the misfit was calculated as well. The
average value M and standard deviation S can be acquired. Af-
terward, the abnormal outlier data points (not in the range of ½M �
2S;M þ 2S�) were detected and eliminated based on the Pauta
criterion. The remaining data were processed with the same
method. It is worthy mentioning that iteration could be broken
down when there were no outliers. The well fitted relation be-
tween 4m and g is shown in Fig. 9.

Fig. 9 indicates that Eq. (17) is suitable for different rocks after
eliminating the accidental errors. The rock strength under any
stress levels can be calculated by substituting Eq. (17) into Eq.
(15):

s1 ¼ s2sin
240e

�Dg þ s3cos
240e

�Dg

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

b

sc
st
sc
�
s2sin 240e�Dg þ s3cos 240e�Dg

�þ s2c

r
(18)

When s2 ¼ s3, Eq. (18) could be converted to Eq. (13), which is
similar to the theoretical Hoek-Brown criterion (Zuo et al., 2008,
2015). Furthermore, Eq. (18) can be applied for true triaxial
compression conditions.
5. Interpretation of the intermediate principal stress effect

The intermediate principal stress effect could be explained by
Eq. (18), and its physical meaning is illustrated in this section.

Eq. (18) can be simplified as follows:

s1 ¼ s* þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

b

sc
st
scs* þ s2c

r
(19)

where s* is the equivalent stress, and s* ¼ s2sin 240e�Dg þ
s3cos 240e�Dg. When s2 ¼ s3, s* turns into s3, and Eq. (18) could
be converted to Eq. (13).

In fact, the strength s1 increases monotonously with s*. The
change of s* for a constant s3 is considered herein. Based on Eq. (17),
4m decreases with the increase of g, and the opening direction of
microcrack cluster tends to be parallel to s1. Hence, the opening di-
rection tendency of microcrack cluster is determined by the inter-
mediate principal stress coefficient. For a constant s3, g increases
while4m decreaseswith the increaseofs2, as showninFig.10a.When
s2 is larger than s3 and g is larger than 0, 4m and sin 24m are large,
causing that s* could increase with the increase of s2. When s2 is
higher enough than s3 and g is large, 4m and sin 24m could be rela-
tively small. Hence, s* could decrease since the decrement of sin 24m
is much greater. Meanwhile, the strength will also start to decrease.
However, when s1 ¼ s2, the generalized conventional tensile
strength is larger than the compressive strength in the condition that
s2 ¼ s3 as s2sin 240e�D þ s3cos 240e�D is larger than s3.

As shown in Fig. 10b, the calculated strength from Eq. (19) and
the corresponding s* fit well with the experimental results. Hence,
the intermediate principal stress effect can be revealed by Eq. (12)
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Fig. 9. Robust fitting relations between the most favorable direction angle 4m and the intermediate principal stress coefficient g for different rock types: (a) Dunham dolomite; (b)
Solnhofen limestone; (c) Yamaguchi marble; (d) Manazuru andesite; (e) Inada granite; (f) Orikabe monzonite; (g) Mizuho trachyte; (h) KTB amphibolite,; (i) CJPL-II marble; and (j)
Yunnan sandstone.
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Fig. 10. (a) The equivalent stress s* , g and 4m against s2; and (b) Experimental and calculated strengths and 4m against s2. The experimental results are acquired from the true
triaxial compression tests of CJPL-II marbles for s3 ¼ 30 MPa.
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derived based on the fracture mechanics, Eq. (14) for strength
measurement of microcrack cluster, and Eq. (17) for the stress level
dependence of opening direction of microcrack cluster. Further-
more, it also indicates that the strength is influenced by the su-
perposed effect of the stress levels and the stress level dependence
of the opening direction 4m of microcrack cluster in Eq. (17).

This interpretation can be linked to another distinct feature of
true triaxial compression test results. Previous studies revealed that
the final failure plane is approximately parallel to s2 direction
Fig. 11. Physical meaning of the strength and intermediate principal stress effect: (a) Differen
tractions on the planes, S1, S2, S3 and S4 are the areas of the failure planes, and s1s , s

2
s , s

3
s a

octahedral normal stress soct; and (c) Traction T plotted against s2.
(Mogi, 1981, 2006; Geng and Xu, 1985; Takahashi and Koide, 1989;
Chang and Haimson, 2000; Chen and Feng, 2006; Feng et al., 2016)
in true triaxial compression tests. As shown in Eq. (17), 4m de-
creases and the opening direction of microcrack cluster tends to be
parallel to s3 with the increase of g. Accordingly, the marcocrack
induced by the opening of the microcrack cluster tends to extend
along s3 direction. In addition, the direction of final failure plane
tends to be parallel to s2 with the increase of g. The result
t failure planes for different s2 levels (s12, s
2
2, s

3
2 and s42), where T1, T2, T3 and T4 are the

nd s4s are the shear strengths on the planes; (b) Shear strength ss plotted against the
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illustrated in Fig. 6 is consistent with the previous studies for a
relatively high g.

The physical meaning of the coupling effect is also clear to un-
derstand. As shown in Fig. 11a, T1, T2, T3 and T4 are the global
traction forces on the final failure plane under different s2, S1, S2, S3
and S4 are the effective areas of the final failure plane, and s1s , s

2
s , s

3
s

and s4s are the shear strengths of the failure plane. The failure
condition of the failure plane can be calculated below:

T
S
� ss (20)

In Fig.11b, it can be seen that the shear stress ss always increases
with the octahedral normal stress soct (soct ¼ ðs1 þ s2 þ s3Þ= 2).
For a constant s3, soct increases with the increase of s2, resulting in
s1s < s2s < s3s < s4s , which indicates the influence of stress levels on
the strength. When s3 is constant, the intermediate principal stress
has little influence on the failure angle (the angle between s1 and
the final failure plane) (Feng et al., 2019). Hence, the failure angle is
set constant in Fig. 11a. Keeping s3 constant and increasing s2, the
direction of final failure plane could tend to be parallel to s2 and
then S1 > S2 > S3 > S4, which reveals the influence of the stress
level dependence of the opening direction 4m of microcrack cluster.
Therefore, the coupling effect of stress level and the stress level
dependence of the opening direction can be presented by Eq. (20),
which is equivalent to Eq. (18). Moreover, Eq. (20) reveals the
physical meaning of the coupling effect on the rock strength.

Based on Eq. (20), the real traction T required for failure can be
calculated as ssS. Due to s1s < s2s < s3s < s4s and S1 > S2 > S3 > S4,
the maximum traction T may not be s4s S4 and could occur in a in-
termediate state. Fig. 11c shows a possible condition that T3 is the
maximum traction. The greater the real traction T required is, the
larger the global strength there will be. Hence, the maximum
strength could be reached with a mediate s2 and a constant s3. The
physical meaning of this interpretation is illustrated as well.

Therefore, the rock strength is determined by the stress levels
and the stress level dependence of the opening direction of
microcrack cluster. The development of microcrack cluster is
asymmetric, which could influence the strength. Besides, the
development asymmetry is determined by the stress level. On one
hand, the stress level can directly influence the strength; on the
other hand, the intermediate principal stress can directly influence
the asymmetric development of the microcrack cluster, leading to
the variation of the strength.
6. Conclusions and discussion

In this paper, it is assumed that the failure of hard rocks is
caused by the presence of penny-shaped microcracks. Based on the
fracture mechanics and statistical analyses from existing true
triaxial compression test results, a nonlinear 3D strength relation is
proposed considering the effect of intermediate principal stress.
Finally, the strength relation is applied to interpret the intermedi-
ate principal stress effect on the strength of hard rocks. The
following conclusions are obtained:

(1) Based on the strength of microcrack cluster, a nonlinear 3D
strength relation is proposed. Besides, the relation can be
converted to the HoekeBrown criterion when s2 ¼ s3.

(2) The strength of hard rock is influenced by the coupled effect
of stress level and the stress level dependence of the opening
direction 4m of microcrack cluster. With the increase of the
intermediate principal coefficient g, 4m decreases in an
empirical form, which can be verified by 10 kinds of hard
rocks.
(3) The rock strength increases firstly and then decreases, which
is induced by the direct effect of s2 strengthening coupled
with the indirect effect of microcrack asymmetric
development.

Furthermore, the physical meaning of the coupling effect can be
explained by this nonlinear strength criterion and the interpreta-
tion of the intermediate principal stress effect. Actually, this
strength relation can be considered as a 3D generalized Hoeke
Brown criterion. However, it seems complex to be applied to the
actual field conditions and should be simplified for convenience in
the future. In addition, the physical meaning and determination
method of the two added parameters need to be verified.
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