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Abstract This paper applies the hybrid boundary node
method (Hybrid BNM) for the thermal analysis of 3D com-
posites. A new formulation is derived for the inclusion-based
composites. In the new formulation, the unknowns of the
interfaces are assembled only once in the final system equa-
tion, which can reduce nearly one half of degrees of freedom
(DOFs) compared with the conventional multi-domain solver
when there are lots of inclusions. A new version of the fast
multipole method (FMM) is also coupled with the new for-
mulation and the technique is applied to thermal analysis of
composites with many inclusions. In the new fast multipole
hybrid boundary node method (FM-HBNM), a diagonal form
for translation operators is used and the method presented can
be applied to the computation of more than 1,000,000 DOFs
on a personal computer. Numerical examples are presented
to analyze the thermal behavior of composites with many
inclusions.

Keywords Hybrid boundary node method · 3D com-
posites · New formulation · Fast multipole method ·
New FM-HBNM

1 Introduction

Composites are being increasingly applied to many industrial
projects, which leads to much interest and research in the
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numerical simulation of these materials. In order to analyze
the thermal properties of composite materials, many numer-
ical models based on the finite element method (FEM) [1,2]
and boundary element method (BEM) [3,4] have been devel-
oped. BEM is one of the mostly investigated methods for the
analysis of thermal problems of composites in recent years.

Although the FEM and BEM are widely investigated and
have been applied into many areas, they have much diffi-
culty in solving problems involving changing domains such
as large deformation or crack propagation. Besides, the task
of mesh generation for complex geometries is often time-
consuming and prone to errors by FEM or BEM. This may
become worse when deal with composite materials. In order
to overcome these disadvantages of methods based on cells,
a new class of numerical methods, namely, the meshless
or meshfree methods have been proposed and developed in
recent years. Many kinds of meshless methods have been
proposed so far, including the element free Galerkin method
(EFG) [5], the meshless local Petrov–Galerkin (MLPG)
approach [6], the boundary node method (BNM) [7], the
Galerkin boundary node method (GBNM) [8], the bound-
ary face method (BFM) [9] and the hybrid boundary node
method (Hybrid BNM), etc.

The Hybrid BNM was proposed by Zhang et al. [10,11],
which combines the MLS approximation scheme with the
hybrid displacement variational formula. This method has
been developed by Miao et al. [12,13] and applied to elas-
todynamics problems [14], Helmholtz problems [15] and
multi-domain problems [16]. The Hybrid BNM not only
reduce the spatial dimensions by one like BEM or BNM, but
also does not require boundary element meshes, neither for
the purpose of interpolation of the solution variables nor for
the integration of energy. In fact, the Hybrid BNM requires
only discrete node located on the surface of the domain and
its parametric representation.
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The meshless methods are very suitable for the simula-
tion of composite materials since they can avoid the mesh
task. However, few meshless methods have been applied
to the analysis of composites so far. A simplified model
based on the Hybrid BNM for the heat conduction analy-
sis of carbon nanotubes (CNTs) based nano-composites was
proposed by Zhang et al. [17]. In the simplified model, the
host polymer is the only domain which is modeled, while
the CNTs are treated as heat superconductors with con-
stant and unknown temperatures constrained at their sur-
faces. Singh et al. [18] applied the EFG to the thermal analy-
sis of CNT based composites with both the mulit-domain
solver and simplified approach. In the simplified approach
of Zhang and Singh, since the inclusions are treated as heat
superconductors, it can not be applied to general compos-
ites, even though it can reduce the total degrees of free-
dom (DOFs) substantially. Multi-domain solver [16] can be
used to overcome this restriction as the matrix and inclu-
sions are modeled as separate regions. However, it leads
much more computational time than the simplified model,
since the total DOFs containing both the unknowns in matrix
and inclusions.

In this paper, a new formulation based on the Hybrid BNM
is derived for the thermal analysis of composites with inclu-
sions. The new formulation can be applied to general com-
posites like the multi-domain solver since no assumption is
used. It can also reduce the total DOFs as the simplified
approach and only the domain of the matrix needs to be mod-
eled. In the new formulation, the final system equation has
a dense and unsymmetrical matrix, which requires O(N 2)

memory and O(N 3) operations if using the direct solvers,
such as Gaussian elimination method, where N is the total
unknowns. The computational time of an iterative solver is
still O(M×N 2), where M is the number of iterations, and
the memory required is also O(N 2). Thus, it is impossible
to apply the new formulation to simulate composites with
lots of inclusions because of the large scale computation.
The fast multipole method (FMM) [19,20] is one of the most
widely investigated and applied methods for accelerating. It
was introduced by Rokhlin [19] as a fast solution method for
integral equations for two dimensional Laplace’s equation.
The computational cost for an iterative solver can be reduced
from O(N 2) to O(N ) by the FMM, which makes large scale
computation possible.

Appling the FMM to accelerate the hybrid BNM for 3D
potential problems was presented by Zhang et al. [21], called
as FM-HBNM. Zhang also used the FM-HBNM to study the
thermal behavior of CNT composites [22,23]. Wang et al.
[24,25] developed the FM-HNBM for 3D elasticity prob-
lems and applied it to simulate the mechanical properties of
composites [26] by coupling with the multi-domain solver.
The FMM also have some implementations in some other
meshless methods [27,28].

In the FMM, the major obstacle in achieving reasonable
efficiency with high accuracy is the large number of the mul-
tipole to local (M2L) translations. In 3D case, the compu-
tational cost for M2L is proportional to O(189p4) in the
worst case, where p is the number of terms in the trun-
cated expansion series. To overcome this obstacle, Greengard
and Rokhlin [29] proposed a new diagonal form, which can
reduce the M2L cost to O(p3). Applying this new version of
FMM to accelerate BEM in 3D potential problems has been
investigated by some researchers [30–33].

This paper presents a new FM-HBNM for the ther-
mal analysis of composites with inclusions. In the new
FM-HBNM, the new diagonal form is used for translation
operators and the computational cost of M2L translation can
be further reduced to O(p3). A new formulation is also pro-
posed for the thermal analysis of composites with inclusions
and accelerated by the new FMM. It can be applied to gen-
eral composites like the conventional multi-domain solver
and the total DOFs can also be reduced as the simplified
approach since the unknowns on the interfaces are computed
only once in the final system equation.

This paper is organized as follows. In the Sect. 2, the
Hybrid BNM for 3D heat conduction problems is reviewed.
Then a new formulation is derived for the thermal analy-
sis of composites with inclusions in the Sect. 3. The Sect. 4
gives the details of the new FM-HNBM. Finally, numerical
examples are given.

2 The hybrid boundary node method

In this section, the conventional Hybrid BNM [11] is sum-
marized. A steady state heat conduction problem is governed
by Laplace’s equation with proper boundary conditions. The
Hybrid BNM is based on a modified variational principle. In
3D heat conduction problems, the functions in the modified
variational principle assumed to be independent are: tem-
perature T inside the domain, boundary temperature T̃ and
boundary normal heat flux q̃ . Consider a domain Ω enclosed
by Γ = ΓT +Γq with T̄ and q̄ are the prescribed temperature
and normal heat flux, respectively.

The T̃ and q̃ at the boundary Γ are approximated by the
MLS approximation:

T̃ (s) =
N∑

J=1

ΦJ (s)T̂J (1)

q̃(s) =
N∑

J=1

ΦJ (s)q̂J (2)

where N is the number of boundary nodes; T̂J and q̂J are
nodal values, and ΦJ (s) is the shape function of the MLS
approximation, corresponding to node sJ .
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The T and q inside the domain can be approximated by
fundamental solutions as

T =
N∑

J=1

T s
J xJ (3)

q =
N∑

J=1

qs
J xJ (4)

where T s
J is the fundamental solution; xJ is unknown para-

meter and

T s
J = 1

κ

1

4πr(Q, sJ )
(5)

qs
J = −κ

∂T s
J

∂n
(6)

where κ is the heat conductivity, Q is a field point, r(Q, sJ )

is the distance between the point Q and the node sJ .
As the modified variational principle holds both in the

whole domain and any sub-domain, the local sub-domain
around each node can be taken into consideration. The fol-
lowing set of equations, expressed in matrix form, are given
as

Ux = HT̂ (7)

Vx = Hq̂ (8)

In the above equations, the elements of U, V and H are
given as

UI J =
∫

ΓI

T s
J vI (Q)dΓ (9)

VI J =
∫

ΓI

qs
J vI (Q)dΓ (10)

HI J =
∫

ΓI

ΦJ (s)vI (Q)dΓ (11)

where vI (Q) is a weight function, ΓI is a regularly shaped
local region around node sI in the parametric representation
space of the boundary surface.

For a general problem, either T̃ or q̃ are known at each
node on the boundary and by rearranging Eqs. (7) and (8),
a final algebraic equation in terms of x only can be obtained
as below:

Ax = d (12)

For the node sI , if T̃ is known, select the correspond row
in U to A, otherwise, select the correspond row in V to A,
and the corresponding term of d comes from the matrix–
vector product of HT̂ or Hq̂. Then the unknown vector x is
obtained by solving the final algebraic equation. The nodal
values T̂ and q̂ on the boundary can be computed by the
back-substitution of x into Eqs. (7) and (8), then use Eqs. (1)

0S

1S 2S

nS

Fig. 1 The model of matrix with inclusions

and (2) the temperature field and normal flux on the boundary
can be obtained.

3 New formulation of Hybrid BNM for composites
with inclusions

For composite materials, a multi-domain formulation is a
natural way to be chosen. In the conventional multi-domain
solver [16], the unknown vectors of both the matrix domain
and inclusion domain are computed in the final system equa-
tion. In this section, a new formulation for composites with
inclusions is derived, which can reduce the total number of
DOFs of the final system equation since only the vector of
the matrix domain is computed.

Consider a matrix with inclusions as shown in Fig. 1, S0 is
the sub-domain of matrix and S1, S2, . . . , Sn are sub-domains
of the inclusions. In this paper, we only consider the case
when the inclusions are solid and totally embed in the matrix.
For the sub-domain of the matrix, the following set of Hybrid
BNM equation can be written as

⎡

⎢⎢⎢⎣

U0
00 U0

01 · · · U0
0n

U0
10 U0

11 · · · U0
1n

...
...

. . .
...

U0
n0 U0

n1 · · · U0
nn

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0
0

x0
1
...

x0
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H0
0T̂0

0
H0

1T̂0
1

...

H0
nT̂0

n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(13)

⎡

⎢⎢⎢⎣

V0
00 V0

01 · · · V0
0n

V0
10 V0

11 · · · V0
1n

...
...

. . .
...

V0
n0 V0

n1 · · · V0
nn

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0
0

x0
1
...

x0
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H0
0q̂0

0
H0

1q̂0
1

...

H0
n q̂0

n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(14)

where superscripts 0, subscripts 0 and k, k = 1, . . . , n stand
for matrix, quantities exclusively associated with a domain,
and quantities associated with the interface between the k-th
inclusion and the matrix, respectively.

For the k-th inclusion domain we have

Uk
00xk

0 = Hk
0T̂k

0 (15)

Vk
00xk

0 = Hk
0q̂k

0 (16)
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where superscripts k stands for the k-th inclusion and sub-
scripts 0 indicates the quantities associated with the interface
between the k-th inclusion and the matrix.

At the interface between a inclusion and the matrix, both
the temperature and heat fluxes must be continuous. And if
we use the same set of nodes distributed on the interface, we
can obtain

Hk
0T̂k

0 = H0
k T̂0

k (17)

Hk
0q̂k

0 = −H0
k q̂0

k (18)

If use the conventional multi-domain, one can obtain the
final system equation for the whole domain by using Eqs.
(17) and (18) and the boundary conditions as
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0
00 A0

01 · · · A0
0n 0 0 0

U0
10 U0

11 · · · U0
1n −U1

00 0 0
.
.
.

.

.

.
. . .

.

.

. 0
. . . 0

U0
n0 U0

n1 · · · U0
nn 0 0 −Un

00
V0

10 V0
11 · · · V0

1n V1
00 0 0

.

.

.
.
.
.

. . .
.
.
. 0

. . . 0
V0

n0 V0
n1 · · · V0

nn 0 0 Vn
00

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0
0

x0
1
.
.
.

x0
n

x1
0
.
.
.

xn
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0
0

0
.
.
.

0
0
.
.
.

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

where A and d are given in the Sect. 2 according to the
boundary condition of the matrix. In Eq. (19) all the unknown
parameters x about the matrix and inclusions are solved.

From Eq. (13), one can obtain

H0
k T̂0

k = U0
k0x0

0 + U0
k1x0

1 + · · · + U0
knx0

n =
n∑

j=0

U0
k j x

0
j (20)

From Eq. (15), one can obtain

xk
0 = [Uk

00]−1Hk
0T̂k

0 (21)

Using Eqs. (21), (17) and (20), one can obtain

xk
0 = [Uk

00]−1H0
k T̂0

k = [Uk
00]−1

n∑

j=0

U0
k j x

0
j (22)

Substitute Eq. (22) into Eq. (16), and use Eq. (18), we can
obtain

− H0
k q̂0

k = Hk
0q̂k

0 = Vk
00xk

0 = Vk
00[Uk

00]−1
n∑

j=0

U0
k j x

0
j (23)

Then by substituting Eq. (23) into Eq. (14) and assembling
with Eq. (13) by the boundary condition, we can obtain the
final system equations as
⎡

⎢⎢⎢⎣

A0
00 A0

01 · · · A0
0n

D0
10 D0

11 · · · D0
1n

...
...

. . .
...

D0
n0 D0

n1 · · · D0
nn

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0
0

x0
1
...

x0
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d0
0

0
...

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(24)

where

D0
k j = V0

k j + CkU0
k j (25)

Ck = Vk
00[Uk

00]−1 (26)

If the inclusions are of the same size and material, the cor-
responding incidence matrices Ck are also identical. There-
fore, Ck is required to be formed only once. If the inclusions
are of the same shape, Ck can also be calculated only once
because the similar relationship between inclusions phases of
different size and material, which can be expressed as below

Ck+1 = κk+1

κk

rk

rk+1 Ck (27)

where κk and rk are heat conductivity and radius of the k-th
inclusion, respectively.

By solving Eq. (24), the unknown vector x for the matrix
domain can be obtained. Then the other unknown vector x for
the inclusion domains can be computed by Eq. (22). Equa-
tion (24) is a new formulation for the analysis of composites
with inclusions, which can reduce the total DOFs comparing
with Eq. (19) since only the unknown vector x for the matrix
domain are assembled in the final system equation.

4 Formulation of new fast multipole method for hybrid
boundary node method

The coefficient matrix in Eq. (24) is unsymmetrical and
dense, which makes it is impossible to apply the method for
large scale computation. In this paper, an iterative solver, i.e.
the restarted preconditioned GMRES [34] is used to solve Eq.
(24). The most time-consuming aspect of an iterative method
when employed for solving a system of linear equations is
the matrix–vector product in each iteration.

Equation (24) can be rewritten as

⎡

⎢⎢⎢⎣

A0
00 A0

01 · · · A0
0n

V0
10 V0

11 · · · V0
1n

...
...

. . .
...

V0
n0 V0

n1 · · · V0
nn

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0
0

x0
1
...

x0
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
+

⎡

⎢⎢⎢⎣

0 0 · · · 0
U0

10 U0
11 · · · U0

1n
...

...
. . .

...

U0
n0 U0

n1 · · · U0
nn

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0
0

x0
1
...

x0
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
◦

⎡

⎢⎢⎢⎣

0
C1

...

Cn

⎤

⎥⎥⎥⎦ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d0
0

0
...

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(28)

where ◦ is Hadamard product. In Eq. (28), Ck is relative to the
k-th inclusion and its dimension is small sine we can discrete
every inclusion with not many nodes, and Ck can be com-
puted directly. Consider an iteration vector x′ corresponding
to the solution vector x, then the most time-consuming aspect
of the matrix–vector product in Eq. (28) is one of the follow-
ing sums:

N∑

J=1

∫

ΓI

T s
J vI (Q)x ′

J dΓ (29)

123



Comput Mech

Is

I

Q

Js

1O

2O

1O

2O

M
2M

M2L

L2L
M2M=Multipole to multipole translation

M2L=Multipole to local translation

M2L=Local to local translationaC

bC

p
bC

p
aC

Γ

Fig. 2 Conversions of multipole to local expansions

N∑

J=1

∫

ΓI

qs
J vI (Q)x ′

J dΓ (30)

where x ′
J is the J th element of the iteration vector x′.

The sums of (29) and (30) will be accelerated by the FMM.
The main idea of the FMM is to translate the node-to-node
interactions to cell-to-cell interactions. In 3D problems, the
cells can be constructed by a hierarchical oct-tree structure.

The sum of (29) will be computed for convenience and
sum of (30) can be computed in the same way. Instead of
treating interactions with each of the distant nodes individu-
ally, the FMM computes cell–cell interactions and achieves
an O(N ) complexity algorithm.

4.1 Formulation for the original FM-HBNM

We first introduce the original FM-HBNM [21] briefly before
the formulation of the new FM-HBNM is derived. This is
because the new FM-HBNM is presented as a modification
to the original one. Now consider two cells Ca and Cb, which
contain Na and Nb nodes, respectively. The fundamental
solution in Eq. (5) is expanded in terms of solid harmonic
series as

T s
J = 1

4πκ

1

r(Q, sJ )

= 1

4πκ

∞∑

n=0

n∑

m=−n

Rn,m(
−−→
O1sJ )Sn,m(

−−→
O1 Q) (31)

for |−−→O1 Q| > |−−→
O1sJ |, where Rn,m and Sn,m are functions

defined in [30], and a superposed bar indicates the complex
conjugate. O1 is the center of Cb (see Fig. 2).

Substituting Eq. (31) into sum of (29) and with the sum-
mation over the nodes included in Cb, we can obtain

Nb∑

J=1

∫

ΓI

T s
J vI (Q)x ′

J dΓ (Q)

=
∞∑

n=0

n∑

m=−n

1

4πκ

∫

ΓI

Sn,m(
−−→
O1 Q)vI (Q)dΓ (Q)Mn,m(O1)

(32)

where Mn,m(O1) is multipole moment centered at O1,
expressed as

Mn,m(O1) = Rn,m(
−−→
O1sJ )x ′

J (33)

Suppose that Ca and Cb are belong to two larger cells C p
a

and C p
b , known as the parent cells of Ca and Cb, respectively.

Assume that C p
a and C p

b are still far away each other (see
Fig. 2).

The multipole moment about the center of Cb to the center
of C p

b can be translated by the following equation

Mn,m(O ′
1) =

n∑

n′=0

n′∑

m′=−n′
Rn′,m′(

−−−→
O ′

1 O1)Mn−n′,m−m′(O1) (34)

which is called as the multipole to multipole (M2M) transla-
tion.

Since C p
a and C p

b are still far away each other, then the
multipole moment from O ′

1 to O ′
2 can be translated by

Ln′,m′(O ′
2) =

∞∑

n=0

n∑

m=−n

(−1)n′
Sn+n′,m+m′(

−−−→
O ′

1 O ′
2)Mn,m(O ′

1) (35)

The above equation is called as M2L translation.
At last, the center of the local moment will be shift from

the center of C p
a to the center of Ca by the following equation

Ln′,m′(O2) =
∞∑

n=n′

n∑

m=−n

Rn−n′,m−m′(
−−−→
O ′

2 O2)Ln,m(O ′
2) (36)

which is called as local to local (L2L) translation and O2 is
the center of Ca .

Then Eq. (32) can be rewritten as

Nb∑

J=1

∫

ΓI

T s
J vI (Q)x ′

J dΓ (Q) = 1

4πκ

×
∞∑

n′=0

n′∑

m′=−n′

∫

ΓI

Rn′,m′(
−−→
O2 Q)vI (Q)dΓ (Q)Ln′,m′(O2)

(37)
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The computation of sum (30) is the same as that of sum
(29), except that Eq. (37) is replaced by

Nb∑

J=1

∫

ΓI

qs
J vI (Q)x ′

J dΓ (Q) = − 1

4π

∞∑

n′=0

n′∑

m′=−n′

∫

ΓI

∂ Rn′,m′(
−−→
O2 Q)

∂n
vI (Q)dΓ (Q)Ln′,m′(O2) (38)

In the procedure of the FM-HBNM, a hierarchical decom-
position of space, represented by a tree structure is employed.
Consider a smallest cube that can contain the entire domain
as the root cell at level 0. Then divide this root cube into eight
equal smaller cubes, which can be called as cubes of level 1.
Continue dividing in this way, that is, the cubes of level l +1
is obtained from level l by subdividing of a cube into eight
equal cubes. The eight cubes at level l + 1 obtained by sub-
division of the cube at level l are considered as its children.
Stop the subdivision of a cube while the number of nodes
included in the cube is smaller than a prescribed number.
Delete the child cube if it contains no node. A childless cube
we call it leaf. Two cubes are said to be neighbors if they
are at the same level and share at least a vertex (a cube is a
neighbor of itself). Two cubes are said to be well separated
if they are at the same level but not neighbors. Each cube b
has an interaction list, whose members are the children of the
neighbors of b’s parent which are well separated from cube
b.

The multipole and local moments are orchestrated in the
tree structure in a recursive way, which consists of two basic
steps: the upward pass and the downward pass. During the
upward pass, the multipole moments are accumulated from
leaves to the root of the tree by Eq. (34). During the downward
pass, local moments are distributed form the root to the leaves
by Eqs. (35) and (36).

In the algorithm of FM-HBNM introduced above, if one
truncates the infinite series in the multipole expansion taking
p terms then the computational costs for M2M, M2L and
L2L translations are proportional to O(p4), O(189p4) in the
worst case and O(p4), respectively. The M2L translation is
the bottleneck in the algorithm of FMM and its computational
cost relate with the number of boxes in the interaction list.
In order to reduce the cost for M2L, Greengard and Rokhlin
have developed a new version of FMM [29], in which they
use a new diagonal form for translation operators and further
reduce the computational cost of M2L translation to O(p3).
In the following section, the formulation for the new version
of FM-HBNM will be derived.

4.2 Formulation for the new FM-HBNM

In the new FMM, three translations are introduced to replace
the M2L translation, which called multipole moment to expo-

1( , ; )X k j O, 1( )n mM O

2( , ; )X k j O, 2( )n mL O

M2X

X2X

X2L

M2L

3p

4p

original FMM

new FMM

Local moment

Multipole moment

Exponential
expansion

Exponential
expansion

3p

2p

Fig. 3 Computational cost for M2L, and M2X+X2X+X2L

nential expansion (M2X) translation, exponential expansion
to exponential expansion (X2X) translation and exponential
expansion to local expansion (X2L) expansion (see Fig. 3).
The computational costs for M2X, X2X, X2L translations
are O(p3), O(p2) and O(p3), respectively. This is why the
new FMM is more efficient than the original one.

Suppose we evaluate the local expansion associated with a
cell B from another cell C , which is belonging to the interac-
tion list of B. We divided the interaction list of a box B into 6
lists called the up-list, down-list, north-list, south-list, east-
list and west-list. The up-list and down-list contain boxes
located in the +z and −z directions of B respectively. The
north-list and south-list contain boxes located in the +y and
−y directions of B except those in the up-list or down-list,
respectively. The east-list and west-list contain boxes in the
+x and −x directions of B except that those in the up-list,
down-list, north-list or south-list, respectively.

Now suppose the cell C is in the down-list of cell B (see
Fig. 4). Give two points O at (x0, y0, z0) and Q at (x, y, z),
with Q in the box B and O in box C . Since z > z0 holds, we
have the well-known integral representation

1√
(x − x0)2 + (y − y0)2 + (z − z0)2

= 1

2π

∞∫

0

e−λ(z−z0)

2π∫

0

eiλ((x−x0) cos α+(y−y0) sin α)dαdλ

(39)

The outer integral with respect to λ in Eq. (39) is computed
with generalized Gaussian quadrature while the inner integral
with respect to α is computed with the trapezoidal rule, then

1√
(x − x0)2 + (y − y0)2 + (z − z0)2

=
s(ε)∑

k=1

M(k)∑

j=1

wk

M(k)d

e−(λk/d)(z−z0)ei(λk/d)((x−x0) cos α j (k)+(y−y0) sin α j (k)) + ε

(40)
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where α j (k) is given by

α j (k) = 2π j

M(k)

ε is the error term and the numbers s(ε), M(k), Gaussian
weights wk and nodes λk are given in [29,35]. d is the length
of box B.

Noting we have the following formulae

Sn,m(
−→
Ox) = (−1)n∂m

x+∂n−m
x3

(
1

|−→Ox |

)
(m ≥ 0) (41)

Sn,−m(
−→
Ox) = (−1)m Sn,m(

−→
Ox)

= (−1)n+m∂m
x−∂n−m

x3

(
1

|−→Ox |

)
(m ≥ 0) (42)

∂x± = (
∂

∂x1
± i

∂

∂x2
) (43)

Assume O1 is the center of cell C and O2 is the center of
cell B. Now we can rewrite Eq. (32) by using Eqs. (41) and
(42) as

Nb∑

J=1

∫

ΓI

T s
J vI (Q)x ′

J dΓ (Q) = 1

4πκ

s∑

k=1

M(k)∑

j=1

X (k, j; O1)

∫

ΓI

[e−(λk/d)((
−−→
O1 Q)3−i(

−−→
O1 Q)1 cos α j (k)−i(

−−→
O1 Q)2 sin α j (k))

×vI (Q)]dΓ (Q) (44)

where X (k, j; O1) is the coefficient of the exponential
expansion centered at O1 defined as

X (k, j; O1) = wk

M(k)d

∞∑

m=−∞
(−i)me−imα j (k)

×
∞∑

n=|m|
(λk/d)n Mn,m(O1) (45)

Equation (45) converts the multipole moments into the
exponential expansion coefficients and we call it M2X trans-
lation.

Then we shift the center of the exponential expansion from
O1 to O2 and we can obtain

Nb∑

J=1

∫

ΓI

T s
J vI (Q)x ′

J dΓ (Q) = 1

4πκ

s∑

k=1

M(k)∑

j=1

X (k, j; O2)

∫

ΓI

[e−(λk/d)((
−−→
O2 Q)3−i(

−−→
O2 Q)1 cos α j (k)−i(

−−→
O2 Q)2 sin α j (k))

×vI (Q)]dΓ (Q) (46)

where

X (k, j; O2) = X (k, j; O1)

e−(λk/d)((
−−−→
O1 O2)3−i(

−−−→
O1 O2)1 cos α j (k)−i(

−−−→
O1 O2)2 sin α j (k)) (47)

We call Eq. (47) as the X2X translation.
Substituting the following formula into the right-hand side

of Eq. (46):

e−(λk/d)((
−−→
O2 Q)3−i(

−−→
O2 Q)1 cos α j (k)−i(

−−→
O2 Q)2 sin α j (k))

=
∞∑

n=0

(−λk/d)n

n!
×((

−−→
O2 Q)3−i(

−−→
O2 Q)1 cos α j (k)−i(

−−→
O2 Q)2 sin α j (k))n

(48)

and use the following identity

((
−→
Ox)3 − i(

−→
Ox)1 cos α j (k) − i(

−→
Ox)2 sin α j (k))n

n!
=

n∑

m=−n

(−i)me−imα j (k) Rn,m(
−→
Ox) (49)

one can rewrite Eq. (46) as

Nb∑

J=1

∫

ΓI

T s
J vI (Q)x ′

J dΓ (Q) = 1

4πκ

×
∞∑

n=0

n∑

m=−n

∫

ΓI

Rn,m(
−−→
O2 Q)vI (Q)dΓ (Q)Ln,m(O2) (50)

where

Ln,m(O2) =
s∑

k=1

(−λk/d)n
M(k)∑

j=1

(−i)me−imα j (k) X (k, j; O2) (51)

Equation (51) is called as X2L translation.
The discussion in the previous section has been restricted

to the case where the box C is in the down-list of B. Now we
consider the general case. We rotate the coordinate system so
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that the cell B is in the positive z̃ direction viewed from the
cell C if the cell C is included in lists other that the down-list,
where the (Õx)i denotes the new axis. The explicit form of
the coefficient of rotation is given by

Rn,m,m′ (ν, α) = (−1)m+m′
(n + m′)!(n − m′)!

∑

k

(α0 − iα3)
n+m−k (−iα1 − α2)

m′−m+k (−iα1 + α2)
k(α0 + iα3)

n−m′−k

(n + m − k)!(m′ − m + k)!k!(n − m′ − k)!
(52)

where ν is a unit vector parallel to the rotation axis and α is
a rotation angle. α0 = cos(α/2) and αi = νi sin(α/2). The
summation is over such k that the numbers in the parentheses
in the denominator are all non-negative.

The M2L translation process for the case when C ∈ lists
other than the down-list can be described as below.

Rotation

Rotate the multipole moments by the following equation

M∗
n,m(O1) =

n∑

m′=−n

Rn,m,m′(ν, α)Mn,m′(O1) (53)

Compute the coefficients of the exponential expansion

Compute the coefficients of the exponential expansion as
follows:

X∗(k, j; O1) =
wk

M(k)d

∞∑

m=−∞
(−i)me−imα j (k)

∞∑

n=|m|
(λk/d)n M∗

n,m(O1)

(54)

Translate the coefficients of the exponential expansion

As the center of the exponential expansion is shifted from
O1 (the centroid of box C) to O2 (the centroid of box B), the
coefficients of the exponential expansion are transformed by
the following equation

X∗(k, j; O2) = X∗(k, j; O1)

×e−(λk/d)(( ˜O1 O2)3−i( ˜O1 O2)1 cos α j (k)−i( ˜O1 O2)2 sin α j (k))

(55)

where the components (˜O1 O2)i are obtained by applying
the corresponding rotation of coordinates to (

−−−→
O1 O2) and

(˜O1 O2)i = Ai j (
−−−→
O1 O2) j , and

AD =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , AU =
⎡

⎣
1 0 0
0 −1 0
0 0 −1

⎤

⎦

AS =
⎡

⎣
1 0 0
0 0 −1
0 1 0

⎤

⎦ , AN =
⎡

⎣
1 0 0
0 0 1
0 −1 0

⎤

⎦

AW =
⎡

⎣
0 0 −1
0 1 0
1 0 0

⎤

⎦ , AE =
⎡

⎣
0 0 1
0 1 0

−1 0 0

⎤

⎦

and AD, AU , AS, AN , AW , AE indicate the rotation matrix
of the down-list, up-list, south-list, north-list, west-list and
east-list, respectively.

Compute the coefficients of the local expansion

Compute the coefficients of the local expansion via Eq. (51)
as follows:

L∗
n,m(O2) =

s∑

k=1

(−λk/d)n
M(k)∑

j=1

(−i)me−imα j (k) X∗(k, j; O2) (56)

Rotation

At last, rotate the local expansion to the original coordinate
system.

Ln,m(O2) =
n∑

m′=−n

Rn,m′,m(ν, α)L∗
n,m′(O2) (57)

In Eqs. (53) and (57), the vector ν and rotation angle α

are given as
If C ∈ up-list, ν = e1, α = π ;
If C ∈ north-list, ν = e1, α = −π/2;
If C ∈ south-list, ν = e1, α = π/2;
If C ∈ east-list, ν = e2, α = π/2;
If C ∈ west-list, ν = e2, α = −π/2.
ei is the base vector for the Cartesian coordinates.
Finally the coefficients of local expansion at O2 can be

obtained by add the local expansion computed from the up-
list, down-list, north-list, south-list, east-list and west-list of
B.

4.3 Algorithm of the new FM-HBNM

The algorithm of the new FM-HBNM can be summarized as
below:

Step 1: Discretization Create nodes which disturbed on the
boundary of the domain in the same manner as in the
original Hybrid BNM.

Step 2: Construction of oct-tree structure Construct the hier-
archy of boxes using an oct-tree data structure
described in the original FM-HBNM.
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Step 3: Computation of the multipole moments (upward) For
an iteration vector x ′

J form multipole moments Mn,m

about the center of each leaf from all the nodes
included in that leaf by Eq. (33). Now consider a
non leaf box of level l. Compute multipole moment
Mn,m about the centre of each box at level l by merg-
ing multipole moments from its children using Eq.
(34) (M2M in Fig. 2). This procedure is repeated for
l ≥ 2 tracing the tree structure of boxes obtained in
step upward (decreasing l).

Step 4: Compute the exponential expansion Rotating the
multipole moments in each box via Eq. (53), then
compute the exponential expansion by Eq. (54).

Step 5: Compute the local expansion Consider boxes at level
l from level 2 to the finest level. For each box B at
level l, we first use Eq. (55) to shift the center of
the exponential expansion for each box C (which in
the interaction list of box B) to box B, depending
on the position of C relative to B. Next convert the
exponential expansions from all the up-list, down-
list, north-list, south-list, east-list and west-list to
the local expansion via Eq. (56) and rotate them via
Eq. (57). Then add them together to obtain the local
expansion of box B. If l > 2, shift the local expan-
sion of B’s parent to itself, using Eq. (36) (L2L in
Fig. 2).
Add these two local expansions together.

Step 6: Evaluation of the integral in sum (29) and (30): The
integral in sums (29) and (30) are computed by Eqs.
(37) and (38).

Step 7: Update Update the candidate vector and go back to
step 3.

A good preconditioner is crucial for the convergence when
use the GMRES solver. In this paper, we use the precon-
ditioner obtained by inverting the diagonal blocked sub-
matrices in Eq. (24). The inverse of A0

00 is approximated
by the conventional single domain preconditioner, which is
based on the leaves of the oct-tree, and the inverse of D0

kk is
obtained according to each inclusion.

5 Numerical results

The proposed techniques have been implemented in C++.
In this section, three numerical examples are presented to
demonstrate the performance of the method. In the new FM-
HBNM, a restarted preconditioned GMRES(m) with m=25
is employed as the iterative solver. The infinite expansions
in the new FM-HNBM are truncated after p = 10 and the
exponential expansion order s = 8 given in [35]. The maxi-
mum number of boundary nodes in a leaf box is set to be 60
and the iteration is terminated when the relative error is less
than 10−5. All the computations are performed on a PC with
a 3.4 GHz CPU and 16.0 GB RAM.

Fig. 5 A cube with 5832 inclusions

For the purpose of error estimation, a formula is defined
as

error = 1

|u|max

√√√√ 1

N

N∑

i=1

(u(e)
i − u(n)

i )2 (58)

where u(e)
i and u(n)

i refer to the exact and numerical solutions
respectively and |u|max is the maximum value of u over N
nodes.

5.1 Accuracy and efficiency of the presented method

In order to examine the accuracy and efficiency of the method
described above, models of the cubes with increasing num-
ber of spherical inclusions are considered. Each model of
the cube is bounded by the planes x = ±1, y = ±1, z =
±1, containing a total of m×m×m inclusions, with m =
2, 4, 6, 8, 10, 12, 14, 16and 18. The radiuses of the holes are
0.4/m for the models contain m×m×m holes. In all the mod-
els, the inclusions are distributed uniformly (see Fig. 5) and
the coordinate systems are set in the center of the geometries.

The cubes and inclusions are assumed to be with the same
materials. Potential problems with Dirichlet boundary con-
dition on all the outer faces are considered, according to the
following exact solution:

u = x3 + y3 + z3 − 3yz2 − 3xz2 − 3zy2 (59)

The model with m = 2 (with 8 inclusions) is studied
first and several different node distributions are compared
to show the accuracy and convergence of the method. The
relative error of u is computed by nodes on the line (−1,0,0)
to (1,0,0) and the results are shown in Fig. 6. Both Gaussian
elimination method and new FMM are applied to solve the
problems and the Gaussian elimination method is applied
when the DOFs less than 10,000. In the new FM-HBNM, we
have used two different exponential expansion order s. From
Fig. 6 we can find the method with direct solver has high
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Fig. 6 Relative error

accuracy. The accuracy declines while the new FMM with
s = 8 is applied, but it remains high. And if we use higher
order s = 17, the accuracy of the new FM-HBNM increases.
Actually, the precision of the FMM can be controlled [35] by
choosing different order p of infinite expansions and different
exponential expansion order s. Sine more time will be costed
by using higher order s and the accuracy is high enough in
our method with order s = 8, thus we use s = 8 to ensure
the efficiency of the new FM-HBNM.

Then we consider models with m increasing from 2 to 18.
In each model, 600 nodes are distributed on the outer faces
of the cubes and 172 nodes are distributed on each interface
between the matrix and inclusions. The maximum number of
total DOFs in the final system equation is 1,003,704. How-
ever, if the conventional multi-domain formulation is applied,
the maximum number of DOFs would reach to 2,006,808.

Figure 7 shows the value of potential u along the line
y = z = 0 for the case with 5,832 inclusions and we can
observe that the numerical result has good agreement with
the exact solution. The CPU time for solving the final system
equation is plotted in Fig. 8. In order to show the efficient
of the new FM-HBNM, the CPU time of the conventional
Hybrid BNM with the Gaussian elimination method is also
plotted in Fig. 8. One can observe that the new FM-HBNM
is much efficient than the conventional Hybrid BNM and it
can solve more than 1,000,000 DOFs on a personal computer
with reasonable time.

5.2 Thermal behavior of composites with spherical
inclusions

In this example, the thermal behavior of cubes with 1,000 ran-
domly distributed spherical inclusions (see Fig. 9) is studied.
The parameters of the matrix are: the length L = 200 m, the
conductivity κmatri x = 1 W/m K. Uniform temperature of
100 K is imposed at the left surface of the cube while 0K
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Fig. 8 CPU time for solving the final system equation

is imposed at the right surfaces, respectively, and the other
four surfaces are heat flux free. These boundary conditions
allow us to estimate the effective heat conductivity of the
mode in the axial direction. The formula for the effective
heat conductivity can be written as

κe = − q L

ΔT
(60)

where κe is the effective heat conductivity, q is the average
value of normal flux at the two end face, L is the length of
the cube, ΔT is the temperature difference between the two
end face.

Two models are considered. In the first model, the para-
meters of the inclusions are: the radius r = 5m and the ther-
mal conductivity κinclusion changes from 1 to 10 W/m K. In
the second model, the parameters of the inclusions are: the
thermal conductivity κinclusion = 6 W/m K and the radius r
changes from 2 to 8 m (see Fig. 9b). In all the models, 600
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Fig. 9 Cubes with 1,000 inclusions
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Fig. 10 Equivalent thermal conductivity with conductivity of inclu-
sions

nodes distribute on the outer faces and 172 nods distribute
on each interface.
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Fig. 11 Equivalent thermal conductivity with radius of inclusions

Figures 10 and 11 show the equivalent thermal conductiv-
ities for the first and second models, respectively. In order to
show the accuracy of the new formulation, the Mori–Tanaka
method [36] are also used. The main formulation of Mori–
Tanaka method is

κe = κ0 +
∑n

j=1(κ j − κ0)c j H̄ j/H̄0

c0 + ∑n
i=1 ci H̄ i/H̄0

(61)

where κi , i = 0, 1, 2, . . . , n and ci are thermal conductivity
and volume fraction for material i and i = 0 corresponds to
the matrix material. For spherical particles

H̄ j/H̄0 = 3κ0

2κ0 + κ j
(62)

From Figs. 10 and 11 we can observe that there is a little
difference between our method and Mori–Tanaka method.
One of the reasons is that Mori–Tanaka method is also not
an exact solution.

In this example, the total number of DOFs in the final sys-
tem equation is about 172,600 and the CPU time for the con-
ventional Hybrid BNM with Gaussian elimination method
will be more than 40 days, however, about half an hour is
taken by the new FM-HBNM presented.

5.3 Thermal behavior of fiber reinforced composites

This example studies the thermal behavior of fiber reinforced
composites (see Fig. 12). In all the models, the length of the
matrix is L = 800 m, the height of the matrix is H=200 m,
the width of the matrix is W = 200 m (see Fig. 12) and the
conductivity κmatri x = 1 W/m K. Uniform temperature of
100 K is imposed at the left end while 0 K is imposed at the
right end, respectively, and the other four surfaces are heat
flux free. The geometry of the fiber is shown in Fig. 13. Five
cases are studied and the fibers are uniformly distributed in
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Fig. 12 Fiber reinforced composites

all the models. The parameters of the fiber inclusions can be
seen in Table 1. In Table 1, the fourth column indicates the
conductivity of the fiber inclusion and the fifth column lists
the total number of inclusions for each case.

The fiber conductivity κ f iber , radius r and length Lc on
the equivalent thermal conductivities of the composites are
studied in Cases A, B and C, respectively, and the results are
shown in Figs. 14, 15 and 16, respectively. The results are
also compared with Mori–Tanaka method and the fibers are
treated as spheroids. For Mori–Tanaka method, Eq. (61) can
also be used, and for prolate spheroid with x1 > x2 = x3,
where x1, x2, and x3 are the semiaxes of the spheroid, it has
the following equations [36,37].

Lc

2r

Fig. 13 Model of the fiber inclusion

Table 1 Parameters of the fiber inclusions

Case Lc (m) r (m) κ f iber (W/m K) Number

A 40 5 1–10 1,000

B 40 2–8 5 1,000

C 20–70 5 5 1,000

D 52 6 1–10 1,000

E 100 6 1–10 500
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Fig. 14 Equivalent thermal conductivity with conductivity of fibers
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Fig. 15 Equivalent thermal conductivity with radius of fibers
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Fig. 16 Equivalent thermal conductivity with length of fibers

If the fibers are randomly distributed

H̄ j/H̄0 = 1

3

3∑

i=1

(
1 + κ j − κ0

β−1
i κ0

)−1

(63)

If the fibers are aligned distributed along xi axis

H̄ j/H̄0 =
(

1 + κ j − κ0

β−1
i κ0

)−1

(64)

where [38]

e =
√

1 − x2
2/x2

1 (65)

β1 = 1 − e2

2e3

(
ln

1 + e

1 − e
− 2e

)
(66)

β2 = β3 = 1

2
(1 − β1) (67)

The results in Figs. 14, 15 and 16 show that the equivalent
thermal conductivity increases as the conductivity, the radius
or the length of the fiber increases. Cases D and E are sim-
ilar to case A. However, the fibers in case E are longer than
case D and there are only 500 fibers in case E (see Fig. 12).
Most important is that the volume fractions of the fibers in
cases D and E are the same, and the value is 16.96 %. Figure
17 shows the results obtained from cases D and E and the
results are also compared with Mori–Tanaka method. From
Fig. 17 one can observe that the equivalent thermal conduc-
tivities of case E are a little higher than case D, and they
become more obvious while the conductivities of the fibers
increasing. We can also indicate that longer fibers are more
efficient than shorter fibers when the volume fraction is the
same.

In this example, one can observe that the results obtained
by our method have difference with Mori–Tanaka method,
one of the reasons is because we treat the fibers as spher-
oids while use Mori–Tanaka method. More research will
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Fig. 17 Equivalent thermal conductivity with conductivity of fibers

be done to determine which method is more accurate or
give a more accurate method. The CPU time cost by
the new FM-HBNM is about one hour and more than
280 days will be used if use the conventional Hybrid
BNM.

6 Conclusions

In this paper, the Hybrid BNM is applied for the large scale
analysis of 3D composites. The thermal behavior of the com-
posites with inclusions is studied by a new formulation,
which can reduce the total DOFs in the final system equation
than the conventional multi-domain solver.

The new version of FMM is coupled with the new for-
mulation in order to apply the method to large scale analysis
and the computational time can be reduced. The method pre-
sented in this paper retains the advantages of both the mesh-
less method and the fast solver, which is especially applica-
ble for large scale analysis of composites. The method pro-
posed, which contains both the new formulation and new
FM-HBNM, can be readily extended to other applications,
such as large scale simulation of mechanical behavior in 3D
composites.

As shown in the work of Yao et al. [39], the difference
between the numerical and experimental results has been
observed, it means that the numerical method has to be
improved by considering more practical micro-structural fac-
tors, including the imperfect interface conditions and thermal
contact between fibers. These researches will be investigated
in the future.
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