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a b s t r a c t

A numerical technical of discontinuous cellular automaton method for crack growth anal-
ysis without remeshing is developed. In this method, the level set method is employed to
track the crack location and its growth path, where the level set functions and calculation
grids are independent, so no explicit meshing for crack surface and no remeshing for crack
growth are needed. Then, the discontinuous enrichment shape functions which are
enriched by the Heaviside function and the exact near-tip asymptotic field functions are
constructed to model the discontinuity of cracks. Finally, a discontinuous cellular automa-
ton theory is proposed, which are composed of cell, neighborhood and updating rules for
discontinuous case. There is an advantage that the calculation is only applied on local cell,
so no assembled stiffness matrix but only cell stiffness is needed, which can overcome the
stiffness matrix assembling difficulty caused by unequal degrees of nodal freedom for dif-
ferent cells, and much easier to consider the local properties of cells. Besides, the present
method requires much less computer memory than that of XFEM because of it local prop-
erty.

Combined level set method, the discontinuous enrichment shape functions and discon-
tinuous cellular automaton theory, the discontinuous cellular automaton method is pro-
posed, which can conveniently achieve the analysis from continuity to discontinuity.
Numerical examples are given to illustrate that the present method is effective, and can
be further extended into practical engineering.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Failures in engineering structure are usually caused by some defects, such as cracks, inclusion and interface and so on, and
many failures result largely from the microcracks which grow beyond a safety limit. While the cracks in engineering struc-
tures are always exist during manufacturing and service, and exact solutions for most of complex cracks growth are not
available, so crack growth simulation is a challenging and important problem in practical engineering.

Crack is a discontinuous structure, and its propagation leads to the expansion of some local areas of structure from con-
tinuous into discontinuous, which brings some difficulty for many numerical methods. Finite element method has been
firstly used to calculate stress intensity factors [1,2]. But it requires the element edges to coincide with the crack surface,
and remeshing is inevitable when the discontinuous surface changes. Later, boundary element method [3,4], boundary inte-
gral equation method [5] and boundary collocation method [6,7], in which the mesh is only enforced on the boundary, have
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been proposed to solve the fracture calculation, and those methods avoid a large part of remeshing because only the bound-
ary is needed to be meshed.

Recently, the element-free Galerkin method [8–10] has been applied to fracture computation, and the essential feature of
this methods is that they only require a set of nodes to construct the calculation model. Besides, meshless local Petrov–
Galerkin method [11] and local boundary integral equation method [12] have been also applied to analyze growing crack
problems. Additionally, numerical manifold method [13] has been also used to simulate the crack propagation, which is suit-
able to simulate continuous and discontinuous problems at the same frame, but its dual grid property causes some difficulty
in some complex crack growth.

Recently, some methods in FE framework without remeshing have been developed. Using partition of unity [14], Bely-
tschko and Black [15] first introduced a method for solving crack problem with FE framework. Later, Moes et al. [16] used
the Heaviside function to describe the discontinuity across crack faces and developed crack tip enrichments. After that, a
junction function concept has been introduced to solve multiple branched cracks [17], and extended finite element method
(XFEM) has been developed in detail. Based on XFEM formulation, 2D and 3D crack growth analysis with or without contact
friction have been developed by Sukumar et al. [18] and Dolbow et al. [19]. Besides, Xiao and Karihaloo [20] discussed the
influence of quadrature rules on the accuracy of XFEM.

Incorporating the application of the analytical or numerical function into tradition FE approximation with the partition of
unity, generalized finite element method [21–23] has been proposed to solve fracture mechanics, which can improve the
local and global accuracy of numerical solutions. Those methods have been widely used to simulate crack growth problems,
because the finite element mesh can be completely independent of the morphology of the model, and the crack surface and
crack front are completely independent of the mesh, so no remeshing is needed in crack propagation simulation.

In order to track complex crack configurations, the level set method(LSM) was developed by Osher and Sethian [24],
which was used for tracking the moving interface. Then the LSM was used to describe the topology changes of the interface.
Later, Belytschko et al. [25] and Stolarska et al. [26] combined the LSM with the XFEM to study the growth of a fatigue crack
and several frictionless contact problems. With the use of the LSM, the grid for XFEM is completely independent of the crack
faces, so no remeshing is need for crack growth analysis.

It is known that the node freedoms are different for different nodes for XFEM, which brings some difficulty for global stiff-
ness matrix assembling, besides, it takes a large amount of computer memory for this procedure. So the cellular automaton
(CA) theory is used to overcome this defect. The cellular automaton (CA) theory was initially derived from the self-
organization theory in biology. Shen et al. [27] developed elastic updating rules and applied it to solve the solid mechanical
problem. Gurdal and Tatting [28] built a lattice model to solve the plane lattice deformation problem, additionally Hopman
and Leamy [29], Leamy [30] developed an application of cellular automata modeling to elastodynamics problem and arbi-
trary two-dimensional geometries, and further Feng et al. [31] used the lattice CA model to simulate the failure process
of heterogeneous rocks. There are two advantages of the application of CA model, one is the calculation only applied on local
cell, so no assembled stiffness matrix but only cell stiffness is needed, which can overcome the stiffness matrix assembling
difficulty caused by unequal degrees of nodal freedom for different cells, and much easier to consider the local property of
node and element. Another is that it can be easily extended to the large-scale simulation for its easy implementation of the
parallel algorithm. Besides, much less computer memory requirement is achieved because of it local property.

As the discontinuous numerical methods, DEM [32] and DDA [33] are widely used in soil and rock engineering. Those two
methods are based block theory, which can simulate the moving, rotating, opening and clogging of rock blocks. When those
methods are applied to simulate the crack growth, its growth path can only be along to the block boundary, and its fracture
cannot extend into the blocks, but we do not know the direction of the propagation of crack before its growth. So those two
methods are suitable for solving the known discontinuous structure problems, and can not accurately achieve the expansion
from continuity to discontinuity.

In this work, discontinuous enrichment shape function, level set method and discontinuous cellular automaton theory are
combined, and a numerical technical of discontinuous cellular automaton method is proposed, in which the calculation is
only applied on local elements and nodes, and no assembled stiffness matrix is needed, so it is much easier to consider
the local property of material and its interaction. Firstly, the level set method is employed to track the crack location and
its growth path, in which the level set functions and calculation grid are independent, so no explicit meshing for crack sur-
face and no remeshing for crack growth are needed. Then, the discontinuous enrichment shape functions which are enriched
by the Heaviside function and the exact near-tip asymptotic field functions are constructed to model the discontinuity of
cracks. Finally, a discontinuous cellular automaton theory is proposed, in which the calculation is only applied on local cell,
so no assembled stiffness matrix but only cell stiffness is needed.
2. Continuous and discontinuous structure modeling

Crack is a strong discontinuous structure, and in the traditional finite element the crack surface should coincide with the
element edge in order to model the strong discontinuous displacement and stress field. In this work, approximation of the
discontinuous displacement field is based on a specially designed shape functions, in which the Heaviside function is used to
simulate the discontinuity and the exact near-tip asymptotic field functions is employed to model the high gradient stress
field near the crack tip.
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2.1. Grid model

In present method, crack model and element grid are independent in the calculation, so some elements are penetrated by
crack, and the crack tip can locate on any element of the model. In order to model the discontinuity of crack surface and the
high gradient stress field around the crack tip, some nodes are needed to enrich by some special functions. Therefore, the
classical finite elements can be divided into three groups, one is standard finite element, and another is penetrated element,
which is penetrated by the crack, but crack tip is not located on, and the third one is crack tip element, on which crack tip is
located. In order to improve the calculation accuracy, the nodes which are located at a limited distance from the crack tip are
also chosen as the crack tip nodes, which can be seen in Fig. 1.

It can be seen in Fig. 1 that the node firstly belongs to set T, which is crack tip nodes set; then it is a part of nodes set P, the
others are included in common nodes of standard finite element method.

2.2. Modeling method of strong discontinuous structure

According to partition of unity theory [14], a enriched shape function on a general point x within a finite element can be
given as
Please
Appl.
uhðxÞ ¼
Xn

j¼1

NjðxÞ uj þ
Xm

k¼1

pkðxÞajk

 !
ð1Þ
In which NjðxÞ is the classical finite element shape function; uj is the nodal displacements, which is the standard degree of
freedom; and pkðxÞ is enriched function; ajk is a vector of additional degree of nodal freedom for modeling strong
discontinuity.

It is known to us that the displacements on the nodes of upper and bottom surface of crack are different, in order to model
the strong discontinuity caused by the crack, the signed function is chosen as the Heaviside enrichment function, which is
given as
HðnÞ ¼ signðnÞ ¼
1 8n > 0;
�1 8n < 0:

�
ð2Þ
In which n is the value of level set function, which will be given in the next section (in Fig. 2).
As we know, Eq. (1) is not an interpolation and the nodal parameter uj is not the real displacement value on enriched node

j. In order to satisfy interpolation at nodal points, and substitute Eq. (2) into Eq. (1), one can get [34]
uhðxÞ ¼
Xn

j¼1

NjðxÞuj þ
Xm

k¼1
NkðxÞðHðnÞ � HðnkÞÞak|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k2P

: ð3Þ
In which n and m are the node numbers of element, P is the penetrated nodes set, which can be seen in Fig. 1. In this
equation, the interpolation can be automatically guaranteed.
Nodes set P, belong to penetrated element

Nodes set T, belong to crack tip element

Crack tip element

Penetrated element

Crack surface

Fig. 1. Elements and nodes model.
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Fig. 2. An element cut cross by a crack.
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According to Eq. (3), the overall jump in the displacement field can be obtained, which is
Please
Appl.
huhðxÞi ¼ uhðxþÞ � uhðx�Þ ¼
Xm

k¼1

NkðxÞak: ð4Þ
It can be seen that application of this jump function on a element can lead to a discontinuous field.

2.3. Modeling method of crack tip stress field

It is well known that a high gradient stress field exists around the crack tip. In order to get much higher accuracy, element
refinement is needed around the crack tip in traditional finite element method. So as to accurately model the crack tip stress
field without element refinement, shape functions enriched by the exact near-tip asymptotic field functions are applied.

The same as Eq. (3), one can get
uhðxÞ ¼
Xn

j¼1

NjðxÞuj þ
Xm

k¼1
NkðxÞðHðnÞ � HðnkÞÞak|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k2P

þ
Xt

i¼1
NiðxÞ

Xnf

l¼1
ðFlðxÞ � FlðxiÞÞbl

i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i2T

; ð5Þ
where t is node number associated with crack tip, and T is crack tip nodes set, which can be seen in Fig. 1; nf is the number of
the exact near-tip asymptotic field functions; bl

i is a vector of additional degrees of nodal freedom for modeling crack tip
stress field, and FlðxÞ is the exact near-tip asymptotic field functions, which can be given as [34]
fFlðxÞ; l ¼ 1� 4g ¼
ffiffiffi
r
p

sin
h
2

� �
;
ffiffiffi
r
p

cos
h
2

� �
;
ffiffiffi
r
p

sinðhÞ sin
h
2

� �
;
ffiffiffi
r
p

sinðhÞ cos
h
2

� �� 	
: ð6Þ
In which r, h can be seen in Fig. 3.
r

θ

β

cra
ck

1x

1y

x

y

Fig. 3. Coordinate system of crack tip.
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It can be seen that Eq. (5) satisfies the interpolation at nodal points, and the high gradient stress field around crack tip is
modeled by the exact near-tip asymptotic field functions enriched shape functions, by which the calculation accuracy can be
greatly improved around crack tip.

It can be seen from aforementioned theory that only classical finite element grid is needed, and the enrichment is only
enforced on a small part of nodes, for example, the Heaviside function enrichment is only carried out on the nodes whose
elements are penetrated by the crack, and the exact near-tip asymptotic field functions enrichment is only enforced on
the nodes which are located at a limited distance from the crack tip.

3. Tracking crack growth paths

A powerful tool for tracking moving interface is the level set method, which is first introduced by Osher and Sethian [24],
and the present method can benefit greatly by the level set method. The level set method is based on the idea of representing
the moving interface as a level set curve of a higher-dimensional function uðx; tÞ.

3.1. Tracking crack surface

In this method, the level set method is used to track the growth crack. In the level set method, the moving interface of
interest is represented as the zero level set function of uðx; tÞ. Then, the evolution for the moving interface can be expressed
as an evolution of equation uðx; tÞ.

In general, a crack surface cðtÞ � R2 can be expressed as the level set curve of a function uðx; tÞ ¼ 0 [26,35], which is
shown in Fig. 4, and the expression is given as
Please
Appl.
cðtÞ ¼ fx 2 R2 : uðx; tÞ ¼ 0g: ð7Þ
Taken the Fig. 4 as the example, the level set function uðx; tÞ would be the signed distance function, which is
uðx; tÞ ¼ nðx; tÞ ¼ min
xC2CðtÞ

kx� xCk � signðnþ � ðx� xCÞÞ: ð8Þ
In which x is the point outside of the crack surface, and xC is any nearest point to point x on the crack surface; nþ is a unit
normal to the crack surface.

Discretization of level set allows for the evaluation of the level set function at the element level based on the nodal level
set values uj ¼ ujðxj; tÞ and known classical finite element shape functions NjðxÞ [26,35],
uðx; tÞ ¼
Xn

j¼1

Njðx; tÞuj: ð9Þ
This is practically an important concept for implicitly defining the level set function for describing a general moving inter-
face. This simple procedure of defining the level set function can be widely used in some other method. Another major
advantage of this approximation is that the derivatives of the level set function can be obtained by the classical finite ele-
ment shape functions,
u;iðx; tÞ ¼
Xn

j¼1

Nj;iðx; tÞuj: ð10Þ
),( txiψ

),(1 txiφ

),(2 txiφ

1
1( , )i x tφ +

2
1( , )i x tφ +

△a

△a

Γ

xΓx

Fig. 4. Level set model.
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Based on the above theory, the normal vector n to the interface C at a point x 2 C can then be defined as
Please
Appl.
n ¼ ruðx; tÞ
kruðx; tÞk : ð11Þ
3.2. Tracking crack front

Used the theory of the above section, the crack surface can be decrypted and tracked. But only one level set function of
uðx; tÞ is not generally sufficient to describe the crack, the same as aforementioned theory, another level set function at the
crack tip /iðx; tÞ is defined. The crack tip is represented as the intersection of the zero level set function of uðx; tÞ with an-
other zero level set function of /iðx; tÞ, where i is the number of tips on a given crack. So the crack tip level set function /iðx; tÞ
is generally assumed to be orthogonal to uðx; tÞ [26,35], which is shown in Fig. 4,
ruðx; tÞr/ðx; tÞ ¼ 0: ð12Þ
The same as Eq. (9), the level set function /iðx; tÞ can also be interpolated over the mesh by the same finite element shape
functions,
/iðx; tÞ ¼
Xn

j¼1

NjðxÞ/i
jðxj; tÞ: ð13Þ
According to the aforementioned theory, the values of level set functions are stored only at nodes, and the values of all
other points can be interpolated from their nodes values.

For memory saving, only values of related part of nodes are calculated and stored. Crack growth is modeled by appropri-
ately updating the functions of /iðx; tÞ and uðx; tÞ, and the calculation grid is not changed in all over of the calculation.

4. Discontinuous cellular automaton theory

In the last two sections, the enriched shape functions are obtained, and the crack location and it growth path are tracked
by the level set functions. The discretization of the model and discontinuous cellular automaton procedure will be given in
this section.

4.1. Discretization and integration

Considering a body X, with the boundary C, and the strong form of the equilibrium equation can be written as
r � rþ b ¼ 0 in X; ð14Þ

r � n ¼ �t on Ct; ð15Þ

u ¼ �u on Cu; ð16Þ

r � n ¼ 0 on Cc; ð17Þ
where n is the unit outward normal to X, �u and �t are prescribed displacements and tractions, respectively, and Cu, Ct and Cc

are traction, displacement and crack boundaries, respectively, and b is body force.
Based on Eqs. (14)–(17), one can get the weak form for linear elastostatics, which can be stated as
Z

X
r � edX ¼

Z
X

b � dudXþ
Z

C

�t � dudC: ð18Þ
Discretization of Eq. (18) using the procedure of Eq. (5) results in a discrete system of linear equilibrium equations for
each node,
Keue ¼ fe
; ð19Þ
where Ke is the nodal stiffness matrix, ue is the nodal vector of degrees of nodal freedom for both classical and enriched ones,
and fe is nodal vector of external force. In this method the assembled matrix and vectors are not needed. And the detail of
matrix Ke and fe can be referred to reference [34].

4.2. Discontinuous cellular automaton model (DCA)

The basic procedure of the traditional numerical methods can be summarized as the following steps: discretization of the
object, approximation of the shape function, forming the stiffness matrix of node, assembling the overall stiffness of all
nodes, solving the overall linear equations. Used discontinuous cellular automaton, the equilibrium state of the object can
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be obtained through the self-organization phenomenon formed by the one-another transfer of the information between
nodes. Based on this theory, the localization property of object can be easily treated, and the behavior of the cell is thought
to be essentially local, in other words, the state of one cell is just determined by the states of itself and its neighbors.

As mentioned, there are three advantages for this theory. One is no need to assemble the overall matrix, especially for the
enriched nodes, the degrees for some nodes may be different, which may bring some difficulty for the assembling operation.
The second is that it is easily to consider the local properties of the cell, because the updating rule of DCA is only applying on
the local cell. The third one is that the large-scale simulation of the failure process can be performed on the mesoscopic scale
because of the easy implementation of parallel algorithm.

The DCA model is composed of cell, cell space, cell state, crack, neighborhood and updating rules and so on, and the rela-
tion between those components can be seen in Fig. 5. Besides, DCA model includes the continuous cell and discontinuous
cell, and in this paper, only the latter is developed, and the former can be seen in [31].

4.2.1. Cell
As the basic component, the cell consists of cell nodes Ni, corresponding cell elements Ej

i and its neighbor cell nodes Nk
i , in

which cell nodes include classical finite element nodes, the Heaviside enriched nodes and the exact near-tip asymptotic field
functions enriched nodes and cell elements consist of classical finite elements, penetrated elements and crack tip elements
[31,36].

4.2.2. Cell space and its states
According to finite element type, 2-D cell space can be rectangular, triangular, hexagon and so on. In order to describe the

cell states, a series of physical and mechanical values must be defined to determine its different states. For a DCA model, it is
composed of the degree values vector of nodal freedom uh ¼ fu; a;bg, in which u is traditional degree of nodal freedom, a is
Heaviside enriched degree of nodal freedom and b is crack tip field function enriched degree of nodal freedom; material
property of thickness t, Young’s modulus E, Poisson’s ratio l and fracture toughness KIC; cell nodal forces vector
f ¼ ffu; fa; fbg, in which the subscript u, a and b are represented traditional, Heaviside enriched and the exact near-tip
asymptotic field functions enriched degrees of nodal freedom respectively; elastic strain ee, equivalent plastic strain ep

and equivalent stress intensity factor KIe and so on.

4.2.3. Neighborhood
Because only the states of cell itself and its neighbors are taken into account when the updating rules are constructed,

neighbor structure is the most essential character of cell space. So the relation between a cell and its neighbors is constructed
in this method, which can be seen in Fig. 6.

4.2.4. Continuity to discontinuity model
In DCA model, the discontinuity may exist in some cellular elements, which can be seen in Fig. 6. The location of the crack

will determine the cellular node type, cellular element type and cellular automaton model. And in this method, the crack
path is tracked by the level set functions. By way of the values of level set functions, the node cellular type, element cellular
type and cellular automaton model are updated, especially for some cells, which change from continuous cellular automaton
model to discontinuous cellular automaton model.

4.2.5. Updating rules
The updating rules are the most important part of the DCA model, because the updating rules will determine the stress

state of a cell element [31,36].
Discrete time 
assembly

Cell and its 
states

Cell space

Update rules
NeighborCrack

Fig. 5. The relation between the DCA components.
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Consider a cellular node Ni for a plane elastic problem, the displacement of this node can be obtained due to the effect of
nodal force vector f i ¼ ffu

i ; f
a
i ; f

b
i g and restrict all degrees of the nodal freedom on its neighbor cell nodes Nk

i , which can be
shown in Fig. 7. The relation between the incremental force and incremental deformation can be reflected into two steps.
Firstly, the nodal force increment Df i ¼ fDfu

i ;Dfa
i ;Dfb

i g will lead the cell node Ni to produce the displacement increment
Duh

i ¼ fDui;Dai;Dbig. Then, the displacement increment Duh
i on the cell node Ni will lead its neighboring cell nodes to pro-

duce the nodal force increment Dfk
i .

Therefore, the process of the DCA updating rules is: increment of nodal force leads to the increment of nodal displace-
ment, and the increment of nodal displacement leads to the increment of nodal force of its neighboring nodes, until the sys-
tem static equilibrium is achieved, in other words, the self-organization phenomenon of Duh

i ! 0 and Dfk
i ! 0 appears. So

the updating steps can be given as:
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(1) The equilibrium equation of the cell node Ni can be described as
Please
Appl.
KiDuh
i ¼ Df i: ð20Þ
In which Ki is the stiffness of cell node Ni, Duh
i ¼ fDui;Dai;Dbig; Df i ¼ fDfu

i ;Dfa
i ;Dfb

i g are increment of degrees of nodal free-
dom and nodal force respectively of cell node Ni.
Calculate the increment of degrees of nodal freedom Duh

i via the increment of nodal force Df i.
(2) Restrict all degrees of nodal freedom on all neighboring cell Nk

i , which can be seen in Fig. 7.
(3) Obtain the nodal force increment Dfk

i of the neighboring cell Nk
i via Duh

i from the following equation
Dfk
i ¼ Kk

i Duh
i ; ð21Þ
where Kk
i is the stiffness of neighboring cell Nk

i .

(4) Finish the calculation of steps (1)–(3) on all cell nodes, until Duh
i ! 0 and Dfk

i ! 0 appear.
(5) Calculate equivalent stress intensity factor KIe, and judge whether the crack propagation can be occur according to

fracture toughness, and finish the crack growth simulation. In order to ensure the accuracy of present method, inter-
action integral method and equivalent domain integral are combined to use to calculate the stress intensity factor,
which are given as,
Mð1;2Þ ¼
Z

A
rð1Þij

@uð2Þj

@xi
þ rð2Þij

@uð1Þi

@xi
�W ð1;2Þd1j

" #
@q
@xj

dA; ð22Þ
where W ð1;2Þ ¼ rð1Þij eð2Þij ¼ rð2Þij eð1Þij , and A is the integral domain, which can be seen in Fig. 8; and q is weight function, on nodes
which are located inside the circle q ¼ 1, on nodes which are located outside the circle q ¼ 0, on the other location of the
integral element q ¼

P4
i¼1Niqi, the superscript 1 is the actual stress state, and the superscript 2 is an auxiliary stress state.

Mð1;2Þ can also given as
Mð1;2Þ ¼ 2
E�

Kð1ÞI Kð2ÞI þ Kð1ÞII Kð2ÞII

� �
; ð23Þ
where E� ¼ E for plane stress problem and E� ¼ E=ð1� m2Þ for plane strain problem. If give rð2Þij and uð2Þi as the pure opening
mode I crack tip filed, Kð2ÞII ¼ 0, then the stress intensity factor KI of actual stress state 1 can be solved, and the same work can
be applied for KII.
For mixed mode crack propagation, many criteria can be used, we take maximum circumferential tensile stress as example,
in this case,
KI

KIC
cos3 h

2
� 3KII

2KIC
cos

h
2

sin h ¼ 1; ð24Þ
or
Keq ¼ KI cos3 h
2
� 3

2
KII cos

h
2

sin h: ð25Þ
crack
A

crack tip element

hrR k=h

Fig. 8. Integration domain.
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(6) According to the crack growth information of step (5), update level set functions uðx; tÞ and /iðx; tÞ, and update node
type and element type for all nodes and elements and so on. The updating steps are given as

Step 1: Determine /k;r , /k;r ¼ ðx� xkÞ vx
kvk þ ðy� ykÞ

vy

kvk, in which v ¼ ðvx;vyÞ is prescribed velocity vector.

Step 2: Determine unþ1; unþ1 ¼ � ðx� xkÞ vy

kvk þ ðy� ykÞ vx
kvk




 


.
Step 3: The updated crack tip is given as /k

nþ1 ¼ /k;r � Dtkvk, and /ðx; tÞ ¼max
k
ð/kÞ for k crack tips.

(7) Check cellular automaton model, especially for cells which change from continuous model to discontinuous model,
and update corresponding model data.
4.2.6. convergence study for DCA
According to the theory of updating rule of cellular automaton and numerical analysis, the present method is equal to the

relaxation method for linear system, and at this time, the necessary and sufficient condition is
Please
Appl.
qðAÞ < 1:0: ð26Þ

In which A is stiffness matrix of the present method, and qðAÞ is spectral radius.
For stiffness matrix of the present method, according to the theory of finite element method and extended finite element

method, the stiffness matrix of the present method is symmetrical, positive, and diagonally dominant. And according to
numerical analysis theory, if matrix A is symmetrical, positive, and diagonally dominant, then qðAÞ < 1:0 is satisfied at all
time, so the updating step of the present method converges at all conditions.

5. Numerical simulation

In this method, equivalent domain integral method and interaction integral method are combined to calculate the stress
intensity factor, in which the mechanical properties on integral point are all easily to obtain, and the integral element is coin-
cide to the finite element, so that it is easily to deal. Besides, the maximum circumferential tensile stress criterion is used to
judge the crack growth.

5.1. Interactive crack growth of double internal cracks

5.1.1. Path of crack growth
The interaction of crack growth will occur when the crack tips closely approach with each other [37]. The computation

model about the interaction of double internal cracks is shown in Fig. 9 [37]. The non-dimensional size of calculation model
is given as, c=a ¼ 1:0; d=a ¼ 1:0 and a=B ¼ 0:15. The Young’s modulus and the Poisson’s ratio are assumed to be 200 GPa and
0.3, respectively. The uniform tensile stress, r0, is applied at the upper and bottom edges of the plate. aeq represents the
equivalent half crack length, which is the half length between tip 1 and tip 4.
2c 2a

2a

2d

eqa2

tip1 tip2
tip3 tip4 2B

0σ

0σ

2B

Fig. 9. Model of double internal cracks.
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Fig. 10. Predicted crack growth paths of double internal cracks.
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The simulated growth paths of the four crack tips are plotted in Fig. 10, in which both the interior crack tips (Tip 2 and Tip
3) and exterior crack tips (Tip 1 and Tip 4) are almost straight in the beginning of their growing, then the interior crack tips
come closer to each other, and tend to coalesce. While the exterior crack tips extend in the opposite direction of their cor-
responding interior ones. And the present method results are consistent with those of the Ref. [37].

The non-dimensional stress intensity factors (SIF) of those crack tips are shown in Fig. 11, in which KIO ¼ r0
ffiffiffiffiffiffiffiffiffiffipaeq
p

. It can
be seen in this figure that the stress intensity factors of exterior crack tips increase with their growing, and they approach to
the solution of a central crack plate with uniform tension, when the exterior crack tips extend close to the edge of the plate.
But the stress intensity factors of the interior crack tips increase in the beginning, then decrease when they extend to the
upper or the bottom of another crack, which are agreed with the results of reference [37].
5.1.2. Comparison of computer memory and time between XFEM and DCA
It is known that the calculation of the present method is located on the local of the element and no assembled global stiff-

ness matrix is needed. So it has an advantage of computer memory saving. Fig. 12 plots the computer memory comparison
between DCA, XFEM with and without half-bandwidth storage technique. It can be seen that much less computer memory is
needed in DCA than that of XFEM with and without half-bandwidth storage technique, and which is much more obvious
when the element number is much larger, the reason for which is that the calculations is only located on each node, and
no assembled matrix is needed in the whole calculation, but for XFEM, a total assembled matrix is inevitable, so the com-
puter memory expanse is much larger for XFEM.
5.1.3. Comparison of computer time between XFEM and DCA
In order to compare the calculation efficiency of DCA and XFEM, the CPU time for different number of element between

the present method and XFEM are plotted in Fig. 13. it can be seen that the computer time of the present method is a little
larger than that of XFEM, because that cellular automaton updating is time-consuming, which will be studied in next work
for parallel version of DCA to improve the calculation efficiency. The calculation computer system is given as: CPU: Intel Core
2 Duo E8400 @ 3.0 GHz, Memory: 4 GB, operating system: Windows xp.
5.1.4. Convergence of the present method
In order to verify the effectiveness of the present method, the convergence of the present method is studied, which can be

seen in Fig. 14, it is shown that the present method can smoothly converge to the exact values, although many steps are
needed, because it calculation is only located on the node, each steps can be finished very quickly, and its computer time
expense is not very large. Besides, a large number of examples are studied to show that the present method can always con-
verge to the exact value.
5.2. Interactive crack growth of double edge cracks

Melin’s researches are shown that originally collinear edge cracks under predominantly Mode I loading, do not follow a
straight crack path, and they seem to avoid each other before coalescence [37,38]). So in this section, a square plate with
double edge cracks located at opposite edge of plate is studied. The analysis model is given in Fig. 15. The non-dimensional
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geometry of model is assumed to be a=B ¼ 0:4 and e=B ¼ 0:05. It is shown in Fig. 15 that the initial cracked lines are slightly
misaligned. The other parameters are the same as Section 5.1.

Fig. 16(a) shows the simulated paths of double edge cracks by DCA, and Fig. 16(b) plots the predicted crack growth paths
of double edge cracks by XFEM, which are calculated by the codes by the author. It is shown in these two figures that the
present method results are almost the same as the results by XFEM. According those two figures, we can see: different to
double internal cracks, two crack tips in this example seem to avoid each other in the beginning of their growth. In the begin-
ning, the crack tips slightly rotate to the clockwise direction, because the material between the two crack tips is compressed
in the initial crack direction, and after they propagate for a certain distance, they begin to extend in the anti-clockwise direc-
tion, and tend to coalesce.

The same as the results of double internal cracks, the stress intensity factors of those crack tips increase in the beginning
of their propagation, and approach a certain distance, they decrease, which can be seen in Fig. 17. One can see that a great
agreement can be obtained between the results of the present method and those of Ref. [39].
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5.3. Shielding effect of multiple cracks

Some researches are shown that interaction and shielding effect occur when multiple cracks are located closely in a small
zone. The stress intensity factors of each crack tip are quite different, because the geometries of cracks are different with each
other, so the growth paths of cracks vary with each other. In this section three cracks with different length in a square plate
are considered to illustrate the shielding effect of multiple cracks.

A non-dimensional geometry model of multiple cracks is shown in Fig. 18, which bears a uniform tension r0 on the upper
and bottom edge, and the coordinates and the distances among each crack are shown in this figure. In order to study the
shielding effect of multiple cracks, only the interior crack tips are considered in this example.

The simulated paths of each interior crack tip are shown in Fig. 19. Because the different lengths of each crack, the stress
intensity factors vary widely, so the growth velocities are also different, the growth velocity of crack tip 2 is very small, espe-
cially when the long crack propagates through it. In other word, the growth of the long crack brings a shielding effect to the
short one. On the contrary, a largely deflection of the path of long crack is occurred because of the influence of the short
cracks.

The non-dimensional stress intensity factors of crack tip 1 are shown in Fig. 20, in which KIO ¼ r0
ffiffiffiffiffiffiffiffiffiffipaeq
p

and aeq is the real
crack length of the long crack. It can be seen that the stress intensity factor of crack tip 1 increases in the beginning, and
attaches maximum when it meets the crack tip 2, and then it decreases. When it propagates to the below of crack 2, the
stress intensity factor reaches minimum, and then it increases again. And the same effect can be seen when crack tip 1 passes
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though crack 3. The results are shown that the stress intensity factors and growth paths are affected by each other when
multiple cracks are considered.
6. Conclusions

A numerical method of discontinuous cellular automation method has been proposed for the problems of multiple cracks
growth in this paper, in which the level set method, the discontinuous enriched shape functions and discontinuous cellular
automaton theory are combined. Therefore, the present method has the following advantages,
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(1) No remeshing is needed in calculation the crack growth, because of the usage of level set method and discontinuous
enriched shape functions.

(2) No assembled stiffness matrix is needed, but only the nodal stiffness matrix is needed in the whole calculation, owing
to the application of discontinuous cellular automaton.

(3) High accuracy and efficiency can be easily achieved as a result of the combination of discontinuous cellular automaton
and discontinuous enriched shape functions.

(4) Less computer memory requirement than that of XFEM is achieved.
(5) The numerical examples of multiple cracks growth have been given to shown that the present method is accurate and

efficient. Because discontinuous cellular automaton has the intrinsic properties of time evolution, locality and parall-
elization, it can be easily extended to heterogeneous and large-scale problems, so its parallel version will be further
studied for large-scale practical engineering simulation.
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