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Abstract A method of continuous-discontinuous cellular
automaton for modeling the growth and coalescence of mul-
tiple cracks in brittle material is presented. The method uses
the level set to track arbitrary discontinuities, and calculation
grids are independent of the discontinuities and no remesh-
ing are required with the crack growing. Based on Grif-
fith fracture theory and Mohr–Coulumb criterion, a mixed
fracture criterion for multiple cracks growth in brittle mate-
rial is proposed. The method treats the junction and coales-
cence of multiple cracks, and junction criterion and coales-
cence criterion for brittle material are given, too. Besides,
in order to overcome the tracking error in the level set ap-
proximation for crack junction and coalescence, a dichotomy
searching algorithm is proposed. Introduced the above the-
ories into continuous-discontinuous cellular automaton, the
present method can be applied to solving multiple crack
growth in brittle material, and only cell stiffness is needed
and no assembled global stiffness is needed. Some numer-
ical examples are given to shown that the present method
is efficient and accurate for crack junction, coalescence and
percolation problems.
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1 Introduction

The presence of crack is a common cause of the failure of
structure. Brittle materials such as concrete, ceramics, rock,
etc. often contain a large number of flaws and micro-cracks,
and the failure for brittle material may occur from the micro-
crack growth. With the external loading, micro-crack growth
arises, and intersection, coalescence may take place in the
process of multiple micro-crack growth. The prediction of
crack behavior has always been a challenge for researchers,
and crack propagation represents a real concern of engineers
designing general structures. So it is important to study mul-
tiple crack growth, especially for the process from multiple
micro-crack initially propagation, further crack intersection
and coalescence, and finally the occurrence of failure.

The mechanics of two interacting cracks in brittle ma-
terial has been firstly studied in the experiment by Tanaka et
al. [1], in which Tanaka studied propagation and closure of
small cracks in SiC particulate reinforced aluminum alloy in
high cycle and low cycle fatigue. Later Lawler [2] studied
hybrid fiber-reinforcement in mortar and concrete, and re-
vealed that the fracture process occurs in three stages: micro-
crack formation, micro-crack coalescence and finally the for-
mation of macro-crack. And Barpi and Valente [3] have been
studied the size-effects bifurcation phenomena during multi-
ple cohesive crack propagation via experiments.

Analytic solutions for materials containing random dis-
tributions of cracks, such as Poisson distributions, were re-
ported by Datsyshin and Savruk [4]. Based on the superpo-
sition technique and the idea of self-consistency applied to
the average tractions on individual cracks, Kachanov [5, 6]
proposed a simple analytic method of stress analysis in elas-
tic solids with many cracks. Later, Rubinstein [7, 8] gave a
close form of solution in terms of complex stress potentials
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and the exact solution of the interaction of a macro-crack
with a single micro-crack, and studied the interaction by dif-
ferent micro-crack spacing. Besides, based on the concept
of approximating the crack-generated stress field, a disloca-
tion approximation for calculating crack interaction was in-
troduced by Freij-Ayoub et al. [9].

It is not absolute for all cases to use analytical method
to solve multiple crack problems, especially for many cracks
and complex location relation of cracks. So it is significant
work to develop numerical method to solve multiple crack
problems. Chen et al. [10] developed singular integral equa-
tions method for random and regular distributions of multiple
cracks in an infinite plate. Stochastic methods for the relia-
bility analysis against fatigue failure and the emphasis on the
reliability in the presence of sets of cracks were developed by
Bolotin [11], furthermore, based on the lognormal random
process model and a second order approximation, a sim-
ple stochastic crack growth analysis method was proposed
for practical application by Yang [12], additionally, Lua and
Liu et al. [13, 14] proposed a stochastic damage model for
the rupture prediction of a multi-phase solid, in which the
stochastic damage model was utilized to quantitatively ana-
lyze the effects of uncertainties in locations, orientations and
numbers of micro-cracks at the macro-tip. And McDow-
ell [15] adopted the viewpoint that multiple, microstructure
interactions and closure effects may simultaneously influ-
ence the propagation of small cracks.

Later, fractal methods for multiple cracks problems
were studied by Rybaczuk and Stoppel [16], and Lua [17]
developed a mixed boundary integral equation method for
the analysis of elastic interactions of a fatigue crack with
a micro-defect, and further Carpinteri [18] used boundary
element method to take the snap-back analysis of fracture
evolution in multi-cracked solids. Then Ma et al. [19] com-
bined the concept of the eigen crack opening displacement
with boundary integral equations to get an efficient solution
of multiple cracks problems. In addition, Budyn et al. [20]
described a method for modeling the evolution of multi-
ple cracks in the framework of the extended finite element
method, which is a numerical method for treating arbitrary
discontinuities without remeshing. For 3D, Lo et al. [21]
developed integral equation approach for 3D multiple cracks
problems, then Krysl and Belytschko [22] employed the el-
ement free Galerkin method for dynamic propagation of ar-
bitrary 3D cracks, later Rabczuk [23] proposed a three di-
mensional meshfree method for continuous multiple-crack
initiation, propagation and junction in statics and dynamics.
Finally, Miao et al. [24–26] developed dual hybrid boundary
node method for evaluating cracks in asphalt pavements.

As a new numerical method that can deal with the
change from continuity to discontinuity for crack propaga-
tion process, the continuous-discontinuous cellular automa-
ton method has been proposed by Yan, Pan and coworker
[27, 28], which is based on the level set method [29], the
enrichment shape function theory and discontinuous cellular

automaton method [30]. In this method, the discontinuities
are independent with the calculating grids, and no assembled
global stiffness is needed but only cell stiffness is needed in
the whole calculation.

In the present paper, a method of continuous-
discontinuous cellular automaton for modeling the growth,
intersection and coalescence of multiple cracks in brittle ma-
terial is presented. The method uses the level set method
to track arbitrary discontinuities, and calculation grids are
independent of the discontinuities and no remeshing is re-
quired with the growth of crack. Based on Griffith fracture
theory and Mohr–Coulumb criterion, a mixed fracture cri-
terion for multiple crack growth in brittle material is pro-
posed. The method treats the junction and coalescence of
multiple cracks, and corresponding junction criterion and co-
alescence criterion for brittle material are discussed in the
present work. In order to overcome the tracking error in the
level set approximation for crack junction and coalescence,
a dichotomy searching algorithm is proposed. Introduced
the above theories into continuous-discontinuous cellular au-
tomation, the present method can be applied to solving the
growth, intersection and coalescence of multiple cracks in
brittle material, and only cell stiffness is needed and no as-
sembled global stiffness is needed. Some numerical exam-
ples are given to illustrate the efficiency and accuracy of the
present method for crack junction, coalescence and percola-
tion problems.

The outline of this paper is given as follows. The theo-
ries of continuous-discontinuous cellular automaton method
are presented in Sect. 2. The fracture criterion is discussed in
Sect. 3. Junction and coalescence criterions are developed in
Sect. 4. The numerical examples for multiple crack growth
are given in Sect. 5. Finally, the paper will end with conclu-
sions in Sect. 6.

2 Continuous-discontinuous cellular automaton method

2.1 Tracking the discontinuities

It is shown in Fig. 1 that a multiple cracks model is taken
as an example, Γi and Γ j are cracks. In the present method,
the level set method, which is first introduced by Osher and
Sethian [29], is employed to track the moving interfaces of
growing cracks. The moving interface of the present method
is represented as the zero level set function of ϕi(xxx, t) for
crack Γi and ϕ j(xxx, t) for crack Γ j. Then the evolution of
the moving interface can be expressed as an evolution of
equation of ϕi(xxx, t) and ϕ j(xxx, t) for each crack. So it can be
seen that discontinuities are independent with the calculat-
ing grids and cracks are also independent with each other in
whole calculation, except for an intersection is taken place.
In general, a crack surface γi(t) ⊂ R2 can be expressed as the
level set curve of the function ϕi(xxx, t) = 0, which is given as

ϕi(xxx, t) = ξ(xxx, t) = min
xxxΓi∈Γ(t)

∥
∥
∥xxx − xxxΓi

∥
∥
∥ · sign(nnn+ · (xxx − xxxΓi)), (1)

where xxx is the point outside of the crack surface, and xxxΓi is
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Fig. 1 Tracking model of discontinuities

any nearest point to point xxx on the crack surface; nnn+ is a unit
normal vector to the crack surface.

Discretization of the level set function allows for the
evaluation of the level set function at the element level based
on the nodal level set values ϕk

i = ϕ
k
i (xxxk, t) and known clas-

sical finite element shape functions Nk(xxx) [31, 32]

ϕi(xxx, t) =
n∑

k=1

Nk(xxx, t)ϕk
i . (2)

The same as the above theory, two level set functions
φ1

i (xxx, t) and φ2
i (xxx, t) for each tip of crack Γi are defined, in

this definition, the crack tip is represented as the intersection
of the zero level set function of ϕi(xxx, t) with another zero
level set function of φ1

i (xxx, t) or φ2
i (xxx, t). So level set function

φ1
i (xxx, t) and φ2

i (xxx, t) for the crack tips are generally assumed
to be orthogonal to ϕi(xxx, t) [31, 32], which is

∇ϕi(xxx, t)∇φk
i (xxx, t) = 0, k = 1, 2. (3)

2.2 Enriched shape function of discontinuities

Based on partition of unity theory [27, 28] and traditional fi-
nite element shape function, the shape function for cracked
element must be enriched by the Heaviside function so that
the displacement and stress discontinuities caused by cracks
can be exactly described, so the enriched function can be
written as

uuuh(xxx) =
n∑

j=1

Nj(xxx)uuuj +

m∑

k=1

Nk(xxx)(H(ξ) − H(ξk))aaak

︸����������������������������︷︷����������������������������︸

k∈P

, (4)

where n and m are the node numbers of element, P is the
penetrated nodes set, and the Heaviside function H(ξ(xxx, t)) =

sign(ξ(xxx, t)) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1, ∀ξ(xxx, t) > 0

−1, ∀ξ(xxx, t) < 0
.

Then the discontinuities and high gradient stresses for
crack tip can be enriched by the near-tip asymptotic field
functions, which is

uuuh(xxx) =
n∑

j=1

Nj(xxx)uuuj +

t∑

i=1

Ni(xxx)

( n f
∑

l=1

(Fl(xxx) − Fl(xxxi))bbbl
i

)

︸������������������������������������︷︷������������������������������������︸

i∈T

, (5)

where t is node number associated with crack tip node set T ;
n f is the number of the near-tip asymptotic field functions;
bbbl

i is a vector of additional nodal freedom, {Fl(xxx), l = 1−4} =
{√

r sin
(
θ

2

)

,
√

r cos
(
θ

2

)

,
√

r sin(θ) sin
(
θ

2

)

,
√

r sin(θ) cos
(
θ

2

)}

,

in which r and θ are coordinates of polar coordinate of crack
tip, which can be seen in Ref. [27].

2.3 Crack surface and model

As we all know, under compression loading, the crack may
be at close state, and there are normal and tangential stresses
on crack surfaces. So frictional contact model for the present
method is employed, which can be seen in Fig. 2. Assuming
that the displacement and traction on each face of the crack
surfaces are: wwwS, tttS on ΓS and wwwT, tttT on ΓT, and they satisfy

tttS = −tttT, wwwS = uuu|ΓS
, wwwT = uuu|ΓT

on crack surface. (6)

Fig. 2 Crack surface and crack model

According to kinematics, equilibrium, the constitutive
laws and fictional contact theory, the variational formulation
can be expressed as [27, 28]
∫

Ω

σσσ :∇suuu∗dΩ =
∫

Ω

bbb · uuu∗dΩ +
∫

Γt

t̄tt · uuu∗ds +
∫

Γs

ttt ·www∗ds. (7)

The superscript “*” denotes the weight function. And the
last term of Eq. (7) can be rewritten as [27, 28]
∫

Γd

ttt ·www∗ds =
∫

ΓS

tttS ·wwwS∗ds +
∫

ΓT

tttT ·wwwT∗ds =
∫

Γd

tttS·ũuuds.(8)

In which ũuu = wwwS −wwwT.
According to the enriched shape functions of Eqs. (4)

and (5), we can get the relative displacement between crack
surfaces ΓS and ΓT [27]

ũuu = 2
m∑

k=1

Nk(xxx)aaak

︸��������︷︷��������︸

k∈P

+ 2
t∑

i=1

Ni(xxx)
√

rbbb0
i

︸��������������︷︷��������������︸

i∈T

= ÑNN{aaa,bbb}T. (9)

In which ÑNN is the shape function that related to the rel-
ative displacement between two crack surfaces of a crack.
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According to frictional contact theory, we assume that
gN(xxx) and gT(xxx) are the normal and tangential gap between
two contact surfaces, and pppN and pppT are contact stresses in
normal and tangential direction. According to Coulomb fric-
tional contact model, their relation can be given as

pppN = kNgN(xxx)nnn(xxx), gN(xxx) � 0,

pppN = 000, gN(xxx) > 0,
(10)

Fc(ppp, u) = ‖pppT‖ − μc ‖pppN‖ − cc

⎧

⎪
⎪
⎨

⎪
⎪
⎩

= 0, slip,

< 0, adherence,
(11)

where nnn(xxx) is outward normal vector of crack surface, and kN

is normal stiffness of crack surface, and μc and cc are the co-
efficient of friction and tangential cohesion of crack surface
respectively.

According to cohesion contact model, their relation can
be given as

pppN = kNgN(xxx)nnn(xxx), gN(xxx) � 0,

pppN = kC(gC − gN(xxx))nnn(xxx), 0 < gN(xxx) � gC,

pppN = 000, gN(xxx) > gC,

(12)

pppT = (μc||pppN(xxx)|| + cc)ttt(xxx), gN � 0,

pppT = 000, gN > 0,
(13)

where kC is the stiffness related to the cohesion, and gC is
critical value of relative gap between crack surfaces.

Substituting Eqs. (4), (5), and (9) into Eqs. (7) and (8),
we can obtain

KKKi j =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

KKKuu
i j KKKua

i j

KKKau
i j KKKaa

i j + KKKI
i j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
, fff i =

{

fff u
i , fff a

i − fff I
i

}

, (14)

where

KKKαβi j =

∫

Ωe
(BBBαi )TDDD(BBBβj)dΩ,

KKKI
i j =

∫

ΓS

(ÑNNi)T(DDDe
f )(ÑNN j)dΓ,

fff I
i =

∫

ΓS

ÑTtttSdΓ,

fff αi =
∫

Γe
Nαi t̄ttdΓ +

∫

Ωe
Nαi fff dΩ,

in which α, β = u, a, DDD is the elasto-plastic constitutive ma-
trix of rock, and DDDe

f is constitutive matrix related to contact,
BBBαi is derivative matrix of traditional finite element shape
function matrix, and the detailed formulation can be seen in
Ref. [27]. In the present method, only the brittle material is
considered, and when cracks growth together or reach the
boundary, the plastic zones are not considered, so only linear
elastic concept is given in this section.

According to Eq. (14), we assume that residual force of
cell i is rrri, which can be written as

rrri =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

fff u
i

fff a
i + fff I

i

⎫

⎪
⎪
⎬

⎪
⎪
⎭

− KKKiiddd, ddd = {uuui, aaai}T. (15)

In Eq. (15), fff I
i is unknown, because contact forces tttS is

unknown in every cell. Then, at each node, we use Newton’s
iteration method, we can get

dddn+1 = dddn − rrri(dddn)
rrr′i(dddn)

, (16)

where rrr′i(dddn) is derivative of rrri(dddn), n is iteration step. For
this iteration, firstly, we assume that ddd0 = 000 and ttt0

S = 000 at
first step, then we can get ddd1 and ttt1

S, and so on, the iteration
is done until rrri → 000 is satisfied.

2.4 Continuous and discontinuous cellular automaton
(CDCA)

Through CDCA, the equilibrium state of a cell can be ob-
tained by the one-another transfer of the information be-
tween cells. The behavior of a cell is thought to be essen-
tially local. There are three advantages for this theory. One
is no need to assemble the global matrix. The second is that it
is easy to consider the local properties of material. The third
one is that the easy implementation of parallel algorithm.

2.4.1 Cell space and its state

Cell model includes the continuous cell and discontinuous
cell. The cell consists of cell nodes Ni, corresponding cell
elements E j

i and its neighbor cell nodes Nk
i , in which cell

nodes include classical finite element nodes, the Heaviside
enriched nodes and the near-tip asymptotic field function
enriched nodes and elements consist of classical finite ele-
ments, penetrated elements and crack tip elements.

Physical and mechanical values of cell are determined
by the cell state, which is shown in Fig. 3, it is composed
of the degree value vector of nodal freedom uuuh = {u, a, b},
in which u is traditional degree of nodal freedom, a is the
Heaviside enriched degree of nodal freedom and b is crack
tip field function enriched degree of nodal freedom; mate-
rial property of thickness t, Young’s modulus E, Poisson’s
ratio μ and fracture toughness KIC; cell nodal forces vector
fff = { fff u, fff a, fff b}, in which the subscript u, a and b are rep-
resented traditional, the Heaviside enriched and the near-tip
asymptotic field functions enriched degrees of nodal free-
dom respectively; elastic strain εe, equivalent plastic strain
εp and equivalent stress intensity factor KIe, contact states cs

and contact stresses tN and tT and so on.

2.4.2 Continuity to discontinuity model

In CDCA model, the discontinuity may exist in some cellu-
lar elements, which can be seen in Fig. 4. The location of
crack will determine the cellular node type, cellular element
type and cellular automaton model. And in this method, the
crack path is tracked by the level set functions. By way of
the values of the level set functions, the node cellular type,
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Fig. 3 Cell states

Fig. 4 Continuity to discontinuity model

element cellular type and cellular automaton model are up-
dated, especially for some cells, which change from contin-
uous cellular automaton model to discontinuous cellular au-
tomaton model.

2.4.3 Updating rule

Considering a cell node Ni for a plane elastic problem, the
displacement of this cell node can be obtained due to the ef-
fect of nodal force vector fff i = { fff u

i , fff
a
i , fff

b
i } when restricted

all degrees of nodal freedoms on its neighbor cell nodes
Nk

i , which can be shown in Fig. 5. The relation between
the incremental force and incremental deformation can be
reflected into two steps. Firstly, the nodal force increment
Δ fff i = {Δ fff u

i ,Δ fff a
i ,Δ fff b

i } will lead the cell node Ni to produce
the displacement increment Δuuuh

i = {Δuuui,Δaaai,Δbbbi}. Then, the
displacement increment Δuuuh

i on the cell node Ni will lead its
neighboring cell nodes Nk

i to produce the nodal force incre-
ment Δ fff k

i .

Fig. 5 Updating model

Therefore, the process of CDCA updating rules is: in-
crement of nodal force leads to the increment of nodal dis-

placement, and the increment of nodal displacement leads to
the increment of nodal force for its neighboring nodes, un-
til the system static equilibrium is achieved, in other words,
Δuuuh

i → 000 and Δ fff k
i → 000 appear. So the updating rule can be

given as:
(1) The equilibrium equation of cell Ni can be described

as KKKiΔuuuh
i = Δ fff i, in which KKKi is the stiffness of cell Ni,

Δuuuh
i = {Δuuui,Δaaai,Δbbbi}, Δ fff i = {Δ fff u

i ,Δ fff a
i ,Δ fff b

i } are increment
of degrees of nodal freedom and nodal force of cell Ni re-
spectively.

(2) Restricting all degrees of nodal freedom on all
neighboring cells Nk

i , which can be seen in Fig. 5, and calcu-
lating the increment of degrees of nodal freedom Δuuuh

i via the
increment of nodal force Δ fff i.

(3) Obtaining the nodal force increment Δ fff k
i of the

neighboring cell Nk
i via Δuuuh

i from equation Δ fff k
i = KKKk

iΔuuuh
i ,

Where KKKk
i is the stiffness of neighboring cell Nk

i .
(4) Finishing the calculation of steps (1)–(3) on all cell

nodes, until Δuuuh
i → 000 and Δ fff k

i → 000 appear.
(5) According to the displacement results of step (4),

calculating the normal pressure of crack surface pppN via
Eqs. (10) or (12). Obtaining trial tangential pressure ppptrial

T =

kTgT(xxx)ttt(xxx), in which kT is tangential stiffness of contact sur-
face. And define a trial function φtrial =

∥
∥
∥ppptrial

T

∥
∥
∥ − ‖μcpppN‖.

(6) If trial function φtrial < 0 (stick), pppT = ppptrial
T ,

and go to step (7); if trial function φtrial > 0 (slip), pppT =

−μc‖pppN‖ttt(xxx), and go to step (1).
(7) According to steps (1)–(4), calculating iteration

residual rrr of Eq. (14), if ‖rrr‖ < toler, iteration finishes, other-
wise, updating initial value and return to step (1).

It is shown in this section, the whole calculation is fo-
cused on cell, so no assembled global stiffness is needed, but
only node stiffness is required, which can greatly save the
computer memory, and it is easy to consider the local prop-
erties of material because of its local property of the present
method.

3 Mixed fracture criterion

Crack propagation in brittle material, especially for rock ma-
terial, are almost caused by tensile stress and shear stress, for
example, a rock under compression and shearing load, the
crack may propagate when the tensile stress is beyond its ten-
sile strength or the shear stress is beyond its shear strength.
The maximum circumferential tensile stress criterion is a fa-
mous fracture criterion, and it is suitable for Mode I frac-
ture [33, 34], but for shearing fracture it is not suitable for
some special cases, especially for shear failure for rock ma-
terial. So a mixed fracture criterion must be constructed for
tensile fracture and shearing fracture of brittle material.

3.1 Tensile fracture and combination fracture of tension and
shear

According to Griffith theory, when the circumferential ten-
sile stress is larger than the tensile strength of material, the
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fracture starts, and the crack growing criterion can be given
as

σ � σT, 3σ1 + σ3 � 0, (17)

(σ1 − σ3)2 = −8σT(σ1 + σ3), 3σ1 + σ3 < 0, (18)

where σT is the tensile strength of material, and σ1, σ2 are
principle stress on any point of crack tip.

According to Eqs. (17) and (18), the above equation can
be rewritten as

τ2 = 4σT(σT − σn). (19)

So at fracture angle θ, Eq. (19) is satisfied, the crack
propagation occurs.

3.2 Shearing fracture

In addition, for the influence of shear stress, a shearing fail-
ure occurs when the Mohr–Coulumb criterion is satisfied,
which can be given as

Max [τrn(r0, θ0)] � σn(r0, θ0)tgϕ + c, (20)

where σn(r0, θ0) is the compression on normal direction of
crack propagating direction, and ϕ is friction angle of mate-
rial, c is cohesion of material. In other words, shearing frac-
ture occurs at an angle θ = θ0, and at the point with θ = θ0
and r = r0, the shear stress τrn is the maximum, which can
be seen in Fig. 6, and the shear stress on this point satisfies
Mohr–Coulomb criterion: τrn(r0, θ0) � σn(r0, θ0)tgϕ + c.

Fig. 6 Crack tip stress field model

Actually, the tensile facture is always a priority one for
brittle material.

3.3 Propagating step

According to this propagating criterion, the propagating step
is defined as: (1) for tensile fracture, the crack arrest point
is located at the point σ1 = σT on its growth path, and
the propagating step is the length between crack tip and
crack arrest point. Based on this theory, the propagating
step is always different on different steps; (2) for shear-
ing fracture, the crack arrest point is located at the point
τrn(r0, θ0) = σn(r0, θ0)tgϕ + c, and the same as tensile frac-
ture, the propagating step is the length between crack tip and
crack arrest point.

4 Junction and coalescence criteria

Multiple crack growth must deal with several situations, such

as the junction, coalescence of cracks and growth to reach a
boundary and so on, when they are junction, especially for
one crack growth reaching another crack, the positional re-
lationship between those two cracks may occur error in the
process of the level set approximation. So some algorithms
are developed for those situations in this section.

4.1 Growth to reach a boundary

Crack tips that are identified to grow are treated separately
when they reach a free boundary. When this occurs, one must
kill the crack tip and let the crack tip terminate on the free
boundary, and at the same time, this crack tip is no longer
a crack tip. At this time the enrichment function of Eq. (5)
for this crack tip must be eliminated, and the Heaviside func-
tion enriched shape function of Eq. (4) is used to replace the
enrichment function of crack tip.

When a crack tip is growing to cross a free boundary,
we must check the positional relationship among cracks, dis-
continuities and free boundaries. It is shown in Fig. 7, at step
i, when the crack tip A is growing, the possible crack tip
of current step can be B, C or D, if growing path is along
AB or AC, no special treatment is required. But the small-
est distance from crack tip A to free boundary is AE, if the
distance di < Δai, in which Δai is the growth increment on
current growing step, so we assume that the crack growing
path on current step is along AD, and the crack terminates on
the boundary at point E, and the crack end of E is no longer
crack tip.

Fig. 7 Crack tip reaching a free boundary

4.2 Crack junction

When a crack grows to reach another crack, a crack junc-
tion is taken place, and the enriched shape function must be
changed to suit this case.

4.2.1 Crack connection

If two crack tips for different cracks are very close at step i,
and at i+1 step they are both growing. If they propagate sep-
arately, at the same step i+1 they may intersect, which can be
seen in Fig. 8. A1 is the crack tip of crack 1 at current step,
and A2 is the crack tip of crack 2 at current step, and they
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both propagate on current step, and the possible new crack
tip of crack 1 is B1, and the possible new crack tip of crack 2
is B2. It is obvious that they intersect at current step. On this
case, we consider that crack connection occurs. At this time,
both crack 1 and crack 2 is going to grow to the final crack
tip E, and they connect together to form one crack. And the
new crack tip E for both cracks is no longer crack tip.

Fig. 8 Crack connection

4.2.2 Crack coalescence

When a crack is growing to reach another crack, a junction
between two cracks occurs, which can be seen in Fig. 9, and
in this work a crack coalescence is allowed, which is almost
the same as Ref. [20].

Fig. 9 Model of crack coalescence

It is shown in Fig. 9, when crack tip A of crack 1 is
very close to another crack, we must check the distance from
crack tip A to another crack surface, and the closest segment
of crack 2 can be get, which is closest to crack tip A, and
the smallest distance is dm, if dm < Δai, in which Δai is the
growth increment on current growing step. Then we assume
that the crack tip A is growing along path AB, and terminates
on crack 2 at point E. On this case, the cracks are joined,
and E is no longer the crack tip of crack 1, and the crack
tip enrichment is removed from old setting, and new junc-
tion enrichment must be added. In addition, an examination
must be performed to avoid the creation of a rigid body mode
when the coalescence occurs.

4.2.3 Junction enrichment

When a junction occurs, the enrichments of Eqs. (4) and (5)

can not exactly describe the discontinuous displacements, so
a new enrichment must be developed. At this time, the en-
richment is similar to Ref. [20]. At junction element, the en-
richment can be given as [20]

uuuh(xxx) =
n∑

j=1

Nj(xxx)uuuj +

m1∑

k=1

Nk(xxx)Jm
j aaam

j

︸������������︷︷������������︸

k∈Jm

+

m2∑

l=1

Nl(xxx)JM
l aaaM

l

︸�������������︷︷�������������︸

k∈JM

, (21)

where J is the junction enrichment of crack m, and its form
is [20]

Jm
j (xxx) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

H( f m(xxx)) − H( f m(xxxJ)), xxx ∈ A,

H( f M(xxx)) − H( f M(xxxJ)), xxx ∈ B,
(22)

where A and B are different areas divided by crack m and M,
and f m(xxx) and f M(xxx) are the level set function of crack m and
M, which can be seen in Fig. 10.

Fig. 10 Model of junction element

4.2.4 Dichotomy searching algorithm

It is shown in Fig. 9 that crack 1 and crack 2 intersect at point
E, in other words, crack 1 terminates at point E on crack
2, but those positional relationships are stored as the level
set function on nodes, unfortunately after the level set ap-
proximation by the level set method, this positional relation-
ship may be changed because of the error of approximation,
which can be seen in Fig. 11. Then a dichotomy searching
algorithm is developed in this method to overcome this de-
fect. It is shown in Fig. 11 that crack 1 terminates at point E1

but not at crack 2 after the level set approximation of those
two cracks, and crack 1 may pass through crack 2 at point
E1 in Fig. 11b, or crack 1 may not intersect with crack 2 and
terminate at point E1 in Fig. 11c.

We can see that both Figs. 11b and 11c can not re-
flect the exact positional relationship of crack 1 and crack
2. In order to overcome this problem, a dichotomy search-
ing algorithm is developed in this paper, which can be seen
in Fig. 12. And the dichotomy searching algorithm for the
present method is given as:
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Fig. 11 Level set model of multiple cracks

Fig. 12 Dichotomy searching algorithm model

Step 1. Check the approximat results of the level set
approximation, if an error is made such as Fig. 11, the di-
chotomy searching algorithm is applied. Does the level set
approximation for crack 2, and in the following we use a new
crack shape via the level set approximation as crack 2.

Step 2. Search a point A at crack 1, and assume that this
point is the end of crack 1, at this time crack 1 can not reach
crack 2, and the level set function of crack 1 end with point
A can not reach crack 2. After the level set approximation,
A1 is the end of crack 1, and can also not reach crack 2.

Step 3. Search another point B on extent line of crack
1, and assume that this point is the end of crack 1, on this
case crack 1 intersects with crack 2 at point E, and the level

set function of crack 1 can also intersect with crack 2, after
level set approximation, B1 is the end of crack 1, and crack 1
can also pass through crack 2.

Step 4. Via point A and B of crack 1, get the midpoint
C of line AB, in addition, get its corresponding point C1 by
the level set approximation. Assuming that C is the end of
crack 1, if crack 1 passes through crack 2 after the level set
approximation, use the point C to replace the point B, and
continue step 4, if crack 1 can not reach crack 2 after the
level set approximation, use the point C to replace the point
A, and continue step 4, if C1 is fortunately located on crack
2, end step 4.

Step 5. Use point C as the end of crack 1, and do the
level set approximation for crack 1, and after the dichotomy
searching algorithm optimization, the positional relationship
of those two cracks can be exactly reflected.

5 Numerical examples

5.1 Studies of computational accuracy and efficiency

In this section, consider an edge-cracked plate under pure
tension as an example, that the length, 2D = 20 mm, and
width, L = 52 mm, and the crack length a = 12 mm. The far
field tensile stress, σ = 0.2 GPa, and the material property
are given as: E = 76 GPa, μ = 0.286, in which the results are
compared with those in Ref. [35].

5.1.1 Stress accuracy

The σx and σy near crack tip are given in Fig. 13, in which
the analytical results and those obtained by numerical man-
ifold method (NMM) [35] are given for comparison. It is
shown in those figures that a good agreement is achieved be-
tween those results, and in the present method a total of 4 017
elements are used.

5.1.2 Comparison of computer memory

Figure 14 plots the computer memory comparison between
the present method and extended finite element method
(XFEM), and in XFEM a half-bandwidth storage technique
is used. It can be seen that much less computer memory is
needed in the present method

Fig. 13 Stress comparison of the present method. a σx at the tip of the crack; b σy at the tip of the crack
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Fig. 14 Computer memory comparison between XFEM and the
present method

than that of XFEM with half-bandwidth storage technique,
and which is much more obvious when the element number
is much larger, the reason for which is that the calculations
is only located on each node, and no assembled matrix is
needed in the whole calculation in the present method, but
for XFEM, an assembled global stiffness matrix is inevitable,
so the computer memory expanse is much larger for XFEM.
According to the studies of computational time consumption
of the present method, we can see that the present method
is a little time-consuming than that of XFEM, which can be
referred to Ref. [27], and which will be improved via the de-
velopment of the parallel version of the present method.

5.2 Two cracks coalescence

Some experimental and numerical studies for multiple crack
propagation under compression and shearing load have been
done by a lot of researchers, in order to test the present
method, the present method results are compared with ex-
perimental results by Wong [36] and numerical results by
Zhou [37]. Wong et al. [36] used a mixture of the mod-
eling material, which are composed of barite, sand, plas-
ter and water. The material proprieties are given as: E =
0.33 GPa, ν = 0.19, σc = 2.09 MPa, σt = 0.35 MPa,
KIC = 0.044 3 MPa·m1/2, kN = 40 GPa, kT = 0.4 GPa, μc =

0.45. The geometry of cracked plate can be seen in Fig. 15,
and the dimensions of specimens containing two cracks are
120 mm× 60 mm, and the length of crack is a = 12 mm and
the distance between two cracks is a = 20 mm, crack inclina-
tion is 45◦, and in present method, a total of 16 471 elements
are used, and a total of 16 744 nodes are used.

It is shown in Fig. 16 the present method results of two
cracks coalescence are given, and results by Wong [36] and
Zhou [37] in Fig. 15 are also given for comparison. In Fig. 16
thick solid lines are original cracks and thin dot lines are frac-
turing paths, and in this method we give a fixed length of ex-
pansion step for each growing step, and the length of expan-
sion step is small enough. It can be seen in those figures that
the present method results are very close to the experimental
results by Wong [36] and numerical results by Zhou [37], and
they illustrate that the present method is efficient and accu-

rate. It also reveals that the coalescence criterions proposed
in the present work are suitable.

Fig. 15 Photographs of model tests [36, 37]. a Experiment figure;
b Sketch of experimental results

Fig. 16 Fracture paths of the present method simulation results

5.3 Three cracks coalescence

Consider a rock specimen with its dimensions are
30 mm× 15 mm, and contains 3 cracks and the length of each
crack is 3 mm, which can be seen in Fig. 17, and we look the
present experiment as a plane stress problem. The material
proprieties are given as [38, 39]: Young’s modulus of rock
specimen E = 47.8 GPa; Poisson’s ratio ν = 0.25; cohesive
strength 15 MPa, internal friction angle 49◦; tensile strength
σT = 3.24 MPa; fracture toughness of KIC = 1.03 MPa·m1/2,
KIIC = 2.52 MPa·m1/2. Normal stiffness and tangential
stiffness of crack surface are given as kN = 200 GPa and
kT = 20 GPa, and the coefficient of friction of crack surface
is given as μc = 0.50. And in the present method, a total
of 20 301 elements are used, and a total of 20 604 nodes are
used.

It is shown in Figs. 18 and 19 that the experimental re-
sults and EPCA simulating results by the group of Feng [39]
are given for comparison. The present method results are
given in Fig. 20, it can be seen in those figures that the sim-
ulating results by the present method are very close to the
results of experiment and EPCA. In which the growing paths
of multiple cracks are very close with each others.



82 F. Yan, et al.

Fig. 17 Three cracks coalescence model of rock specimen [39].
a Case 1; b Case 2

Fig. 18 Experimental results of three crack coalescence [38, 39].
a Case 1; b Case 2

Fig. 19 EPCA results of three crack coalescence [39]. a Case 1;
b Case 2

6 Conclusion

In the present paper, a method of continuous-discontinuous
cellular automaton for modeling the growth of multiple
cracks in brittle material is presented. The method uses the
level set method to track arbitrary discontinuities, and cal-
culation grids are independent with the discontinuities and
no remeshing is required as the cracks growing. Based on
cellular automaton method, only cell stiffness is needed and
no assembled global stiffness is needed in the whole calcu-
lation. In all, there are four aspects of development for this
paper, which are concluded as:

Fig. 20 CDCA results of three crack coalescences. a Case 1;
b Case 2

(1) Discontinuous cellular automaton model for multiple
cracks, and contact model for multiple cracks are devel-
oped in the present work.

(2) Based on Griffith fracture theory and Mohr–Coulumb
criterion, a mixed fracture criterion for multiple crack
growth in brittle material is developed, which is suitable
for brittle material, such as rock, concrete and so on.

(3) The present work treats the junction and coalescence of
multiple cracks, and corresponding junction criterion and
coalescence criterion for brittle material are presented in
the present work.

(4) A dichotomy searching algorithm is proposed to over-
come the tracking error in level set approximation for
crack junction and coalescence.

Introduced the above theory into continuous-
discontinuous cellular automaton, the present method is
applied to solve multiple crack growth in brittle material.
Some numerical examples are given to show that the present
method is efficient and accurate for crack junction, coales-
cence and percolation problems.

References

1 Tanaka, K., Akiniwa, Y., Shimizu, K.: Propagation and closure
of small cracks in SiC particulate reinforced aluminum alloy
in high cycle and low cycle fatigue. Engineering Fracture Me-
chanics 55, 751–762 (1996)

2 Lawler, J.: Hybrid fiber-reinforcement in mortar and concrete.
[Ph.D. Thesis]. Department of Civil and Environmental Engi-
neering, Northwestern University, USA (2001)

3 Barpi, F., Valente, S.: Size-effects bifurcation phenomena dur-
ing multiple cohesive crack propagation. International Journal
of Solids and Structures 35, 1851–1861 (1998)

4 Datsyshin, A.P., Savruk, M.P.: A system of arbitrarily oriented
cracks in elastic solids. Journal of Applied Mathematics and
Mechanics 37, 306–332 (1973)

5 Kachanov, M.: Elastic solids with many cracks: A simple



A continuous-discontinuous cellular automaton method for cracks growth and coalescence in brittle material 83

method of analysis. International Journal of Solids and Struc-
tures 23, 23–43 (1987)

6 Kachanov, M.: A simple technique of stress analysis in elastic
solids with many cracks. International Journal of Fracture 28,
R11–R19 (1985)

7 Rubinstein, A.: Macrocrack interaction with semi-infinite mi-
crocrack array. International Journal of Fracture 27, 113–119
(1985)

8 Rubinstein, A.: Macrocrack-mircodefect interaction. Journal
of Applied Mechanics 53, 505–510 (1996)

9 Freij-Ayoub, R., Dyskin, A.V., Galybin, A.N.: The dislocation
approximation for calculating crack interaction. International
Journal of Fracture 86, L57–L62 (1997)

10 Chen, Y.Z.: General case of multiple crack problems in an infi-
nite plate. Engineering Fracture Mechanics 20, 591–597 (1984)

11 Bolotin, V.V.: Reliability against fatigue fracture in presence of
sets of cracks. Engineering Fracture Mechanics 53, 753–759
(1996)

12 Yang, J.N., Manning, S.D.: A simple second order approxima-
tion for stochastic crack growth analysis. Engineering Fracture
Mechanics 53, 677–686 (1996)

13 Lua, Y.J., Liu, W.K., Belytschko, T.: A stochastic damage
model for the rupture prediction of a multi-phase solid, Part
II: Statistical approach. International Journal of Fracture 55,
341–361 (1992)

14 Liu, W.K., Chen, Y., Belytschko, T., et al.: Three reliability
methods for fatigue crack growth. Engineering Fracture Me-
chanics 33, 733–752 (1996)

15 McDowell, D.: An engineering model for propagation of small
cracks in fatigue, Engineering Fracture Mechanics 56, 357–377
(1997)

16 Rybaczuk, M., Stoppel, P.: The fractal growth of fatigue de-
fects in materials. International Journal of Fracture 103, 71–94
(2000)

17 Lua, Y.J., Liu, W.K., Belytschko, T.: Elastic interactions of a
fatigue crack with a micro-defect by the mixed boundary in-
tegral equation method. International Journal for Numerical
Methods in Engineering 36, 2743–2759 (1993)

18 Carpineri, A., Monetto, I.: Snap-back analysis of fracture evo-
lution in multi-cracked solids using boundary element method.
International Journal of Fracture 98, 225–241 (1990)

19 Ma, H., Guo, Z., Dhanasekar, M., et al.: Efficient solution of
multiple cracks in great numer using eigen COD boundary inte-
gral equations with iteration procedure. Engineering Analysis
with Boundary Elements 37, 487–500 (2013)

20 Budyn, E., Zi, G., Moes, N., et al.: A method for multiple crack
growth in brittle materials without remeshing. International
Journal for Numerical Methods in Engineering 61, 1741–1770
(2004)

21 Lo, S.H., Dong, C.Y., Cheung, Y.K.: Integral equation ap-
proach for 3D multiple-crack problems. Engineering Fracture
Mechanics 72, 1830–1840 (2005)

22 Krysl, P., Belytschko, T.: The element free Galerkin method
for dynamic propagation of arbitrary 3-D cracks. Inernational
Journal for Numerical methods in Engineering 44, 767–800
(1999)

23 Rabczuk, T., Bordas, S., Zi, G.: A three-dimensional mesh-
free method for continuous multiple-crack initiation, propaga-

tion and junction in statics and dynamics. Computational me-
chanics 40, 473–495 (2007)

24 Miao, Y., He, T.G., Yang, Q., et al.: Multi-domain hybrid
boundary node method for evaluating top-down crack in as-
phalt pavements. Engineering Analysis with Boundary Ele-
ment 34, 755–760 (2010)

25 Miao, Y., Wang, Q., Liao, B.H., et al.: A dual hybrid bound-
ary node method for 2D elastodynamics problems. Computer
Modeling in Engineering & Science 53, 1–22 (2009)

26 Miao, Y., He, T.G., Luo, H., et al.: Dual hybrid boundary
node method for solving transient dynamic fracture problems.
CMES: Computer Modeling in Engineering & Science 85,
481–498 (2012)

27 Yan, F., Feng, X.T., Pan, P.Z., et al.: A continuous-
discontinuous cellular automaton method for regular frictional
contact problems. Archive of Applied Mechanics 83, 1239–
1255 (2013)

28 Pan, P.Z., Yan, F., Feng, X.T.: Modeling the cracking process
of rocks from continuity to discontinuity using a cellular au-
tomaton. Computer & Geosciences 42, 87–99 (2012)

29 Belytschko, T., Black, T.: Elastic crack growth in finite ele-
ments with minimal remeshing. Inernational Journal for Nu-
merical methods in Engineering 45, 601–620 (1999)

30 Osher, S., Sethian, J.A.: Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formu-
lations. Journal of Computational Physics 79, 12–49 (1988)

31 Stolarska, M., Chopp, D.L., Moes, N., et al.: Modelling crack
growth by level sets in the extended finite element method. In-
ernational Journal for Numerical Methods in Engineering 51,
943–960 (2001)

32 Sethian, J.: Evolution, implementation and application of level
set and fast marching methods for advancing fronts. Journal of
Computational Physics 169, 503–555 (2001)

33 Rao, Q.H., Sun, Z.Q., Stephansson, O., et al.: Shear fracture
(Mode II) of brittle rock. International Journal of Rock and
Mining Science 40, 355–375 (2003)

34 Bobet, A., Einstein, H.H.: Numerical modeling of fracture co-
alescence in a model rock material. International Journal of
Fracture 92, 221–252 (1998)

35 Li, S.C., Chen, Y.M.: Numerical manifold method for crack tip
fields. China Civil Engineering Journal 38, 96–102 (2005)

36 Wong, R.H.C., Chau, K.T., Tang, C.A., et al.: Analysis of crack
coalescence in rock-like materials containing three flaws: Part
I. Experimental approach. International Journal of Rock Me-
chanics and Mining Science 38, 909– 924 (2001)

37 Zhou, X.P., Yang, H.Q., Dong, J.: Numerical simulation of
multiple-crack growth under compressive loads. Chinese Jour-
nal of Geotechnical Engineering 32, 192–197 (2010)

38 Feng, X.T., Ding, W.X., Zhang, D.X.: Multi-crack interaction
in limestone subject to stress and flow of chemical solution. In-
ternational Journal of Rock Mechanics and Mining Science 46,
159–171 (2009)

39 Pan, P.Z., Ding, W.X., Feng, X.T. et al.: Research on influ-
ence of pre-existing crack geometrical and material properties
on crack propagation in rocks. Chinese Journal of Rock Me-
chanics and Engineering 27, 1882–1889 (2008)


