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This paper presents a new approach for simulating the watermigration in freezing soils, in which the pore water
migration and heat transfer are characterized using an imaginary pump attached with a small imaginary reser-
voir. The pumpmoveswith the freezing front as temperature decreases, sucks the liquidwater from the unfrozen
zone and then stores it in the frozen zone. The reservoir is used to gather the suckedwater and store it in the form
of pore ice through phase change. Explicit governing equations are developed for describing thewatermigration,
crystallization and/or heat transfer in the soil, the pump and the reservoir. The proposed model is numerically
implemented into a commercial code. Compared to the previous approaches used to simulate the soil freezing
processes, application of the new approach avoids remeshing and recalculating the moving boundaries, and
this feature can drastically simplify the numerical implementation of the theoretical model. The new approach
is used to analyze the one-dimensional freezing process in soils. The simulated results are compared with the
experimental data available in the literature and the simulations based on other approaches, showing that the
new approach is capable of effectively simulating the freezing process of soils.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Any freezing process in soil is accompanied by both heat and pore
water transfers, and these processes occur in a coupled manner. During
a freezing process, a temperature gradient forms in the soil, driving the
heat to flow from the higher-temperature zone toward the lower-
temperature zone and the pore water to migrate from the unfrozen
zone to the frozen zone. The pore water migration driven by tempera-
ture can influence the heat conduction process due to the effect of con-
vection and latent heat of phase change, while the heat conductionmay
induce phase change and in turn change the hydraulic conductivity of
the soil (Harlan, 1973; O'Neill and Miller, 1985; Taylor and Luthin,
1978). In addition, both heat and mass transfer can change the physical
andmechanical properties of the soil. In analyzing the problems related
to soil freezing, it is crucial to properly characterize both heat and pore
water transferring processes.

If a fully saturated soil with a sufficientwater supply begins to freeze,
the soil waterwill constantlymigrate to the frozen zone from the unfro-
zen region due to the effect of cryosuction, resulting in an increase in the
water content of the frozen zone, while the water content in the unfro-
zen zone remains practically unchanged. Therefore, in analyzing the
freezing process of a fully saturated soil with a sufficient water supply,
only the water increase in the frozen zone and consequently the total
86 27 8719 8346.
frost heave are of concern, and the problem can be solved by ignoring
the effect of the water content variation and the skeletal deformation
in the unfrozen zone (Xu and Deng, 1991; Zhou et al., 2011). In the
freezing process of an unsaturated soil, however, the water migration
is more complex, and this is the case especially for a closed system,
i.e., the soil without a water supply. In this case, the water content
increases in the frozen zone while decreases in the unfrozen zone. The
problem is complicated by the movement of the interface between the
frozen and the unfrozen zone with temperature.

To simulate the processes of heat and water transfer in unsaturated
freezing soil, Chen et al. (1990) and Hu et al. (1992) developed the
governing equations of water migration in the frozen and unfrozen
zones, respectively. It is remarkable, however, that in applying these
equations, a boundary condition has to be introduced to ensure the
flow continuity between the frozen and unfrozen zones. As such,
when the interface moves with the freezing front, the boundary condi-
tion of these two equations also varywith temperature. Hence, if a finite
element or finite difference procedure is adopted in the simulation, it is
necessary to remesh and recalculate the moving boundary after each
time step. In addition to this complexity, the high nonlinearity of the
governing equations and the coupling of heat and water transfer make
the simulation procedure rather difficult (Black, 1995a; Chen et al.,
1990; Hu et al., 1992; O'Neill and Miller, 1985; Taylor and Luthin,
1978; Zhou and Zhou, 2010).

In this paper a new approach is presented to simulating the one-
dimensional pore water migration in freezing unsaturated soils. In this
approach, the frozen fringe can be envisioned as a moving pump,
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which sucks pore water from the unfrozen zone and store it as pore ice
through phase transition in the frozen zone. To characterize the crystal-
lization of the sucked pore water, a small imaginary reservoir is intro-
duced, which is attached to the moving pump and used for collecting
the sucked pore water and related phase transition. During the soil
freezing, the pump and the reservoir simultaneously move as the tem-
perature decreases. Governing equations are then developed for the
water migration and heat transfer as well as phase transition in the
pump and/or in the reservoir. As such, in simulating the soil freezing
process, it is not necessary to change the boundary conditions of the
solution domain, and the theoretical model can be readily implemented
into a commercial code without complex programming.

2. Theory

2.1. The driving force for water migration in freezing soil

In a frozen soil, a certain amount of unfrozen water exists in the
vicinity between the surfaces of soil grains and ice grains due to the
premelting effect (Wettlaufer and Worster, 1995; Wettlaufer et al.,
1996; Xu et al., 1993). At equilibrium, the pressures of the unfrozen
pore water and the pore ice can be related to each other through the
generalized Clapeyron equation (Black, 1995b), i.e.,

duw ¼ ρw

ρi
dui þ

ΔHρw

T0
dT ð1Þ

where uw and ui are the pressures of unfrozen pore water and pore ice,
respectively; ρw and ρi are the densities of pore water and pore ice, re-
spectively; T0 (K), T(°C) and ΔH are the freezing point of bulk water,
the current temperature and the latent heat of fusion, respectively.
Without overburden loading, ui remains practically unchanged, while
uw decreases linearly with temperature according to Eq. (1).

Strictly, the generalized Clapeyron equation is valid only in the case
that unfrozen pore water and pore ice coexist in equilibrium. In any
transient process, however, this equilibrium condition cannot be strictly
achieved. In the following, it is assumed that the temperature change
and the water migration are slow enough compared to the phase
change, so that Eq. (1) is valid under the transient condition. Eq. (1) im-
plies that, if ice pressure gradient is neglected, a temperature gradient
can induce pore water pressure gradient, driving the pore water to
migrate from the higher temperature zone to the lower temperature
zone.

Harlan (1973) assumed that the potential of porewater in the frozen
soil equals to that in the unsaturated soil with the same liquid water
content. This assumption has been validated using the soil–water char-
acteristic curve (SWCC) and the soil freezing characteristic curve (SFCC)
of the soil under partially saturated and frozen conditions, respectively
(Azmatch et al., 2012; Liu et al., 2011; Spaans and Baker, 1996). Indeed,
according to the generalized Clapeyron equation, one can easily see that,
if the ice pressure is constant and capillary hysteresis is excluded, there
is a one-to-one correspondence between unfrozen water content and
temperature in the frozen soil. Hence, both the pore water pressure
and the temperature in the frozen soil (with undercooling pore water)
can be expressed as a function of unfrozen water content only. Based
on the above discussions, it is suggested that, if the ice pressure remains
constant and its gradient is neglected, the driving force of water migra-
tion in the frozen soil can be expressed as the gradient of unfrozen
water content.

2.2. Governing for water migration and heat transfer

Based on the above discussions, if the gradient of ice pressure is neg-
ligible, the seepage velocity can generally be expressed as the diffusivity
multiplying the gradient of unfrozen water content (Shao et al., 2006).
Recalling the assumption that the heat conduction and the water
migration are slow enough compared to the phase change (between
liquid water and ice), one obtains the governing equation for water mi-
gration in frozen soils, which in a form similar to the Richards Equation
(Richards, 1931; Taylor and Luthin, 1978):

∂
∂t θu þ

ρi

ρw
θi

� �
¼ ∂

∂x D
∂θu
∂x

� �
ð2Þ

where t and x represent the elapsing time and the spatial coordinate,
respectively; D is the water diffusivity; θu is the specific unfrozen (or
liquid) water content; θi is the specific ice content. The term in the
bracket of the left-hand side is equal to the total specific water content
(including both liquid water and ice). Hereinafter both ρw and ρi are
assumed to be constant. Eq. (2) implies that any change in the total
specific water content of the frozen soil is solely due to the transfer of
unfrozen water.

In general, the migrating process of pore water in a frozen soil is
slow, and thus its effect on heat convection is negligible. Hence, one
obtains the heat conduction equation as (Taylor and Luthin, 1978):

C
∂T
∂t ¼ ∂

∂x λ
∂T
∂x

� �
þ Lρi

∂θi
∂t ð3Þ

where C is the volumetric heat capacity, λ is the thermal conductivity of
the soil, and L is the latent heat of fusion (per unit mass of water).

In a freezing soil subjected to a temperature gradient, two processes
associated with crystallization in the pores may simultaneously occur.
Indeed, as the temperature decreases, part of the liquid water at the
site may change into ice, while a certain amount of liquid water is
sucked from the higher-temperature zone into the frozen zone where
it crystallizes. Correspondently, the variation of θi (Eq. (3)) can be addi-
tively decomposed into two components (Penner andUeda, 1978; Zhou
et al., 2011): one is due to the crystallization of the liquid pore water at
the site (denoted as dθ1), and the other is due to the crystallization of
the sucked liquid water (i.e., the water transferred from other places),
which is denoted as dθ2. Then, the variation of the specific ice content
can be expressed as

dθi ¼ dθ1 þ dθ2 ð4Þ

where

dθ1 ¼ −ρw

ρi
dθin ð5Þ

and

∂θ2
∂t ¼ ρw

ρi
q ð6Þ

where θin is the specific content of the liquid water that changes into
pore ice at the site, and q is the changing rate of the specific content of
the liquid water sucked from the higher-temperature zone. Eq. (6) im-
plies that all the liquid water sucked from the higher-temperature
zone changes into pore ice.

Substituting Eqs. (4)–(6) into Eq. (3), one obtains

Ce
∂T
∂t ¼ ∂

∂x λ
∂T
∂x

� �
þ Lρwq ð7Þ

where Ce is the equivalent volumetric heat capacity, defined by

Ce ¼ C þ Lρw
∂θin
∂T ð8Þ

Clearly, Ce includes a component related to the latent heat that is
released by the phase change at the site (Bonacina et al., 1973).
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Fig. 1. Schematic diagram of moving-pump and reservoir.
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2.3. A moving-pump model

2.3.1. Conception of the model
In a soil freezing under certain temperature gradient, a frozen fringe

of a certain thickness usually develops in the vicinity of the freezing
front (Miller, 1972). In the frozen fringe, unfrozen pore water and
pore ice coexist; on the cooler side of the fringe, there exists a frozen
zone where ice lenses and pore ice exist (sometimes including a small
amount of strongly adsorbed water); on the warmer side of the fringe,
there is an unfrozen zonewhere no pore ice can exist. During a freezing
process, the frozen fringe moves as temperature decreases in the same
direction as the temperature gradient. As temperature decreases, two
processes occur in the freezing soil, i.e., the liquid porewater crystallizes
locally at the site, while some amount of liquid water migrates into the
fringe from the unfrozen zone and then crystallizes in the frozen zone.

To characterize these processes, we assume that the frozen fringe is a
“thin” transition zone, located between the frozen zone and the unfro-
zen zone. If the actual thermodynamic processes occurring in this
zone are not of concern, the frozen fringe can be envisioned as a small
pump (Fig. 1), which moves as temperature varies. The role of this
imaginary pump is to suck the liquid water from the unfrozen zone
and then to store it in the frozen zone where the sucked water crystal-
lizes. To characterize the crystallization of the sucked liquid water, we
assume that a small reservoir is attached to the cooler boundary of the
frozen fringe. The role of the imaginary reservoir is to collect the sucked
water and to provide a room for the collected water to crystallize. As
such, during the freezing process, the pump (i.e., the frozen fringe)
and the water gathering reservoir simultaneously moves as tempera-
ture changes, and some amount of liquid water is sucked into the reser-
voir where it crystallizes.

As schematically illustrated in Fig. 1, the pump is defined by a tem-
perature transition interval, i.e., [−Tt,Tt], where Tt is a small positive
number. Although not necessarily defined explicitly, the temperature
transition interval is supposed to cover the whole range of temperature
variation in the frozen fringe. The water gathering reservoir is defined
by temperature interval [−Tt −2Td, −Tt], where Td is a small positive
number, and 2Td equals the temperature difference between the two
ends of the reservoir. Under a specified temperature gradient, these
temperature intervals can also be transformed into the spatial domain.
Remarkably, however, it is not necessary to perform such transforma-
tion explicitly in the following derivations.

2.3.2. Model description
According to the conceptual model described in Section 2.3.1, the

process of water migrating from the unfrozen zone into the frozen
zone can be characterized using an imaginary pump, which sucks liquid
water from the unfrozen zone and stores the water intake in the frozen
zone. To realize this, one can decompose Eq. (2) into two equations. The
first equation is used to describe the water migration in the unfrozen
zone, and can be expressed as

∂θu
∂t ¼ ∂

∂x D
∂θu
∂x

� �
−q ð9Þ

and the second equation describes thewater gathering in the imaginary
reservoir in the form of ice

∂θ f

∂t ¼ q ð10Þ

where θf = ρiθi/ρw and q has been defined in Eq. (6) which is related to
the “power of the pump”. Here, it is implicitly assumed that the time
scale of water crystallization is much shorter than that of water migra-
tion, so that once the pore water is sucked into the reservoir, it immedi-
ately crystallizes. Clearly, the total specific water content θ is equal to
the sum of θu and θf.
Because the water migrating process ceases in the frozen zone, one
can assume that

D ¼ Du T≥−Tt−2Td
0 Tb−Tt−2Td

:

�
ð11Þ

With the temperature gradient being given, D can also be defined in
the spatial domain, namely,

D ¼ Du x≥xf−2xd
0 xbxf−2xd

:

�
ð12Þ

Here, xf is the spatial coordinate of thepointwith temperature (−Tt),
while (xf − 2xd) represents the spatial coordinate at the end of the
water gathering reservoir with (−Tt − 2Td). Function D in Eq. (11)
implies that the water migrating process stops when the liquid water
enters into the frozen zone.

With these equations, the water migrating process can be
envisioned as the movement of a pump with the isotherm, which
sucks the liquid water from the unfrozen zone into the reservoir
where the sucked water crystallizes as temperature decreases.

To calculate q, we consider the water gathering process in the reser-
voir. Under the 1-D condition and a specified temperature gradient, the
reservoir can be represented by either the spatial interval [xf− 2xd, xf] or
the temperature transition interval [−Tt − 2Td, −Tt], as schematically
shown in Fig. 1.

The flow velocity of porewater from the unfrozen zone to the frozen
zone is given by:

v xf

� �
¼ D

dθu
dx

���
x¼x f

: ð13Þ

This equation can be equivalently written as

v xf

� �
¼

Z þ∞

−∞
D
∂θu
∂x δ T þ Ttð ÞdT ð14Þ

where δ(T+ Tt) is the Dirac functionwhich equals infinity in the case of
T=−Tt and equals to 0 in the case of T≠−Tt. The integral of δ(T+ Tt)
from −∞ to ∞ equals 1. The Dirac function δ(T + Tt) can be approxi-
mately represented by a bell-shaped pulse function Δ(T + Tt + Td, Td),
which equals to 0 in the case of T b −Tt − 2Td and T N −Tt, satisfying

Z ∞

−∞
Δ T þ Tt þ Td; Tdð ÞdT ¼

Z −Tt

−Tt−2Td

Δ T þ Tt þ Td; Tdð ÞdT ¼ 1: ð15Þ

Clearly, when Td assumes an infinitesimal value, Δ(T + Tt + Td, Td)
approaches to δ(T + Tt).
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Noting that T is a function of x, one can recast Eq. (14) into

v xf

� �
≈
Z þ∞

−∞
D
∂θu
∂x

∂T
∂x Δ T þ Tt þ Td; Tdð Þdx

¼
Z x f

x f−2xd
D
∂θu
∂x

∂T
∂x Δ T þ Tt þ Td; Tdð Þdx:

ð16Þ

According to its very physical meaning (cf. Eq. (6)), q is the deriva-
tive of v(xf) with 2xd (i.e., the volume of the reservoir), and one obtains

q ¼ D
∂θu
∂x

∂T
∂x Δ T þ Tt þ Td; Tdð Þ: ð17Þ

In deriving Eq. (17), it is assumed that the gradient of ice pressure is
negligible (see Sections 2.1 and 2.2). In reality, however, an ice pressure
gradient may exist in the frozen soil (Gilpin, 1980; O'Neill and Miller,
1985). To account for the effect of the ice pressure gradient, one can
prove that (see the Appendix A)

∂θu
∂x ¼ f

∂θu
∂T ð18Þ

where f is given by

f ¼ T0

ρiΔH
∂ui

∂x þ ∂T
∂x : ð19Þ

In general, the direction of ice pressure gradient is opposite to that of
temperature gradient, i.e., the existence of the ice pressure gradient hin-
ders the water flowing into the frozen zone. Eq. (19) implies that f is a
function of both the ice pressure gradient and the temperature gradient.
The ice pressure gradient is associated with discrete ice lens formation
and temperature gradient. Because the ice lens formation is not of con-
cern in this paper, one can simply assume that the ice pressure gradient
depends upon the temperature gradient only. Therefore, coefficient
f can be viewed as a function of the temperature gradient, which has
yet to be determined.

After substituting Eq. (18) into Eq. (17), it immediately follows that

q ¼ Df
∂θu
∂T

∂T
∂x Δ T þ Tt þ Td; Tdð Þ: ð20Þ

Similarly, in the spatial domain, one has

q ¼ Df
∂θu
∂T Δ x−xf þ xd; xd

� �
: ð21Þ

In the frozen soil, the unfrozen water content can be expressed as a
function of temperature, i.e.,

θu ¼ w Tð Þ: ð22Þ

Derivative ∂θu/∂T can be considered as a function of θu, that is, one
can write

∂θu
∂T ¼ w0 w−1 θuð Þ

h i
ð23Þ

where w′ and w−1 are the derivative and inverse functions of T,
respectively.

As derived above, the reservoir can be viewed as the engine of the
pump, and the power of the engine is described by Eq. (21). It is remark-
able that we assign diffusivity Du to the reservoir through Eqs. (11) and
(12) simply because the diffusivity accounts for the power of the engine,
and no water migrating process can actually occur in the reservoir.
2.3.3. Material properties
The theoretical model developed above includes two material

parameters yet to be determined, i.e., volumetric heat capacity C and
thermal conductivity λ. In general, these parameters depends upon
the volume fractions of individual bulk phases, which include the liquid
pore water, pore ice, solid grains and/or pore gas. In the following, it is
assumed that the volume fractions of individual bulk phases vary only
slightly in both frozen zone and unfrozen zone so that C and λ are prac-
tically constant in both frozen and unfrozen zones. The volumetric heat
capacity and thermal conductivity are denoted as Cf and λf, respectively,
for the frozen zone and Cu and λu, respectively, for the unfrozen zone.
To determine the material parameters for the freezing fringe, one
can introduce a piecewise function H(T, Tt), which is defined by
(Zimmerman, 2007)

H T; Ttð Þ ¼
0 Tb−Tt

3T
4Tt

− T3

4Tt
3 þ

1
2

−Tt≤T≤Tt

1 T NTt

:

8>><
>>:

ð24Þ

It can be proved that the derivative ofH(T, Tt) is a bell-shaped pulse
function, whose integral over the whole real number field equals 1
(cf. Eq. (15)). Hence, with Eq. (24), one can define function Δ(T, Tt) as

Δ T; Ttð Þ ¼ dH T ; Ttð Þ
dT

: ð25Þ

Functions H and Δ are schematically shown in Figs. 2 and 3,
respectively.

By using function H(T, Tt), the thermal conductivity and the volu-
metric heat capacity for the freezing fringe can be analytically expressed
as

λ ¼ λ f þ λu−λ f

� �
H T ; Ttð Þ ð26Þ

C ¼ C f þ Cu−C f

� �
H T; Ttð Þ: ð27Þ

Eqs. (26) and (27) imply that C and λ in the freezing fringe varywith
the temperature, in a sharp contrast to those in the frozen and unfrozen
zones.

3. Numerical examples

The proposed model has been implemented into a commercial
computer code, Comsol Multiphysics. To illustrate its capability, the
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proposed model is used to analyze two examples related to the one-
dimensional water migration and heat transfer in freezing soils.

3.1. Example 1

Hu et al. (1992) performed a one-dimensional (vertical) freezing
experiment, during which a partially saturated soil column was frozen
from the top to the bottomwithout an externalwater supply. The tested
material was a loamy soil. The soil sample is 13.68 cm high, with a dry
density of 1.5 g/cm3 and an initial saturation degree of 49.68% (corre-
sponding to an initial water content of 0.2208). During the experiment,
the side wall of the sample was adiabatic, and the temperatures on the
top and the bottom of the sample were controlled by circulating a
coolant around the sample. The relationship between unfrozen water
content and temperature is shown in Fig. 4, and can be expressed as

θu ¼ 0:89T þ 0:4336;−0:37≤T≤0
0:0045 T þ 0:4ð Þ þ 0:0776; Tb−0:37 :

�
ð28Þ

It can be seen that, when the temperature decreases from the real
freezing point Tf to −0.37 °C, the unfrozen water content decreases
drastically from the initial volumetric water content at the freezing
front (denoted as θr) to 0.1043, and in a sharp contrast, when the tem-
perature is lower than−0.37 °C, the unfrozen water content decreases
only slightly with temperature. Hence, it is proposed herein that θin can
be expressed as

θin ¼ 0:1043þ θr−0:1043ð ÞH T ; Ttð Þ ð29Þ

which implies that θin is equal to 0.1043, in the frozen zone (T b −Tt),
and θr, in the unfrozen zone (T N Tt).
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Fig. 4. The relationship between unfrozen water and temperature (after Hu et al. (1992)).
Neglecting the effect of the phase change at the temperature lower-
ing than −0.37 °C, one can obtain the latent heat due to the phase
change at the site as

Z Tt

−Tt

Lρw
∂θin
∂T dT ¼

Z θr

−0:37
Lρw

∂θu
∂T dT: ð30Þ

Eq. (30) transforms the real temperature interval for the phase
change to the temperature transition interval [−Tt, Tt] based on the
equivalence of releasing latent heat. Then the equivalent volumetric
heat capacity (Eq. (8)) is

Ce ¼ C þ Lρw θr−0:1043ð ÞΔ T; Ttð Þ: ð31Þ

Although the unfrozenwater contentmay vary in themoving frozen
zone, its variation is expected to be very small in the zone [−Tt, Tt] so
thatθr ≈ θu. Consequently the Eq. (31) can be approximated by

Ce ¼ C þ Lρw θu−0:1043ð ÞΔ T ; Ttð Þ: ð32Þ

The thermal conductivities and volumetric heat capacity are
not available for the tested material. Here, the typical values of these
parameters for a silty soil (Xu et al., 2010) are taken as references, and
it is assumed that, λf = 1.58 W/(m·K), λu = 1.13 W/(m·K), Cf =
2820 kJ/(m3·K) and Cu = 2360 kJ/(m3·K).

According to Eqs. (23) and (28)

∂θu
∂T ¼ 0:89 θu≥0:1043

0:0045 θub0:1043
:

�
ð33Þ

The diffusivity (cm2/min) of unfrozen soil depends upon the degree
of liquid water saturation, and it is assumed as (Hu et al., 1992)

Du ¼ 2:03S7:35 ð34Þ

where S is the degree of saturation of the liquid water, which equals
the specific water content θ divided by the porosity n (n = 0.4444).
Function f in Eq. (18) is assumed as

f ¼ 1
10

∂T
∂x : ð35Þ

The initial temperature distribution and the boundary condition are
shown in Tables 1 and 2. The initial specific water content is 0.2208, and
hence the initial values of θu and θf are 0.2208 and 0, respectively. All the
boundary conditions for θu and θf are of Neumann's type. Other param-
eters in the moving-pump model for this example are Tt(0.3 °C) and
Td(0.3 °C).

Fig. 5 illustrates the simulations for θu and θf distributions at different
moments. It can be seen that during the freezing process, the volumetric
water content decreases in the unfrozen zone and increases in the fro-
zen zone. This phenomenon can be easily understood, because during
the freezing process no external water was supplied to the soil column
and the liquidwater was “sucked” from the unfrozen zone and stored in
the frozen zone. The simulated andmeasured results of the total specific
water content distribution at 47.2 h are compared in Fig. 6. Figs. 7 and 8
show the simulated andmeasuredmovement of freezing front (approx-
imately the isotherm of 0 °C) and temperature distribution, respective-
ly. Hu et al.'s (1992) simulation is also given for comparison in these
figures. It can be seen that both the simulated results agree reasonably
well with the experimental result. Remarkably, however, the simulation
procedure proposed here is much simpler than that followed by Hu
et al. (1992), which was based on the finite differential method, in
that remeshing and recalculating the moving boundary is not required
in the new approach.

As discussed above, there are two sources of latent heat, one of
which originates from the phase change at the site and the other



Table 1
Initial temperature distribution (After Hu et al. (1992)).

Depth (cm) 0.00 1.52 3.04 4.56 6.08 7.60 9.12 10.64 12.16 13.68
T (°C) 11.42 15.48 16.36 16.75 16.84 16.89 16.84 16.90 16.79 16.41
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originates from the phase change of thewatermigrating from theunfro-
zen zone. Consequently, the following three cases need to be addressed,
including: 1) both the two kinds of phase change are involved in, 2) only
the crystallization of pore water at site is considered, and 3) none of the
two kinds of phase change is considered. The simulated results in
Figs. 6–8 are obtained for the first case. The variation of temperature
with time at the depths of 4 cm (frozen) and 10 cm (unfrozen) are pre-
sented in Fig. 9 for all the three cases. It can be seen that the temperature
changes in case 1 and case 2 are very close to each other, and the tem-
perature change curve in case 3 is significantly different from the
other two curves. In addition, the temperature in all the three situations
tends to be coincident as time elapses. This is because thewater content
in the unfrozen zone becomes very low after a long time of water and
heat transfer, and consequently the diffusivity of unfrozen zone be-
comes very low so that there is not sufficient liquid water to migrate
to the frozen zone and the released latent heat of phase change is very
small.

3.2. Example 2

In Example 1, the temperature and the specific water content are
solved in a fully coupled manner. Fig. 9 illustrates that the results of
Case 1 (involving both at-site phase change and water migration) and
Case 2 (involving at-site phase change only) are quite similar to each
other, implying the effect of water migration on the heat transfer is in-
significant. Hence, it is tempting to solve the problem in an uncoupled
way. To this end, we try to first determine the temperature field and
then, with the obtained temperature field, to determine the volumetric
water content. From Fig. 8, one can see that when the temperature is
lower than 0, it varies linearly with the depth. Hence, the temperature
gradient is approximately equal to the difference between 0 °C and
the colder boundary temperature divided by the distance between 0
°C and the colder boundary. With the obtained temperature data, one
can determine the moving rate of the pump and the value of q, and fi-
nally obtain the volumetric water content.

Jame and Norum (1976) reported experimental results on a silica
sand, which were later analyzed by Taylor and Luthin (1978) based on
the finite differential method. In the following, we adopt the uncoupled
procedure introduced above to solve the problem. In Jame and Norum's
experiment, the dry density of the tested soil is 1.35 g/cm3, with an
initial mass water content of 0.205 g/g. Based on the experimental
data, we obtain the equivalent volumetric heat capacity as

Ce ¼ C þ 0:2768−0:005ð ÞLρwΔ T; Ttð Þ: ð36Þ

The initial temperature and boundary temperature are the same
as those in Taylor and Luthin (1978). The thermal conductivities of
the soil in the frozen zone and unfrozen zone are unavailable, and
they are assumed to be 2.6 W/(m·K) and 1.6 W/(m·K), respectively.
The volumetric heat capacities of the soil in the frozen zone and
Table 2
Temperature variations on the boundaries (After Hu et al. (1992)).

Time (min) 0 34 55 86 367 401 445
Top (°C) 11.42 0.98 −0.68 −2.16 −1.34 −2.29 −2.85
Bottom (°C) 16.41 15.63 6.78 4.65 4.83 4.45 4.01
Time (min) 528 767 1374 1595 1837 2177 2830
Top (°C) −3.38 −4.27 −4.86 −4.83 −4.86 −4.88 −4.86
Bottom (°C) 3.93 3.8 3.59 3.62 3.62 3.59 3.67
the unfrozen zone are assumed to equal 1500 kJ/(m3·K) and
1820 kJ/(m3·K), respectively. In calculation, Tt = 0.25 °C, respectively.

Comparison of the measured and simulated temperature distribu-
tions are shown in Fig. 10, fromwhich it can be seen that the simulated
temperature agrees very well with the measured data. The position of
0 °C is equal to the length of frozen soil and the calculated value (denot-
ed as “+”) can be determined as xf = 14.94 e0.00381t − 13.57 e−0.07695t

using the trial-and-error procedure (Fig. 11). Because the temperature
distribution in frozen soil is practically linear, the temperature gradient
is determined by dividing the difference between colder boundary
temperature and 0 °C by the length of frozen soil, and the results are
also presented in Fig. 11.

According to the measurement on the variation of unfrozen water
content with temperature (Taylor and Luthin, 1978), the derivative of
unfrozenwater contentwith respect to temperature can be expressed as

∂θu
∂T ¼

0:76; θu≥0:07

0:713� ln10� θu
0:713

� �
; θub0:07ð Þ :

8<
: ð37Þ
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Fig. 6. Comparison of themeasured and simulated distributions of water content at 47.2 h.
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The diffusivity (cm2/h) of the soil is (Jame and Norum, 1976)

D ¼ 107:03 θu−0:1ð Þ−3:25 θu≥0:1ð Þ
¼ 1015:14 θu−0:01ð Þ−4:55 θub0:1ð Þ:

ð38Þ

Parameter xd in Eq. (21) assumes a value of 0.7 cm in the simulation.
As to coefficient f, we consider the following two cases. In the first

case, it is assumed that

f ¼ 1
100

∂T
∂x : ð39Þ

The simulated water content distribution is presented in Fig. 12
(denoted as “simulation A”), showing that the water content in the
zone near the left boundary is overestimated by the simulation A. This
is because the temperature gradient within the first 10 h is high
(Fig. 11), so that f becomes very large, resulting in a greater water
migrating velocity (into the frozen zone).

To reduce the value of f in the early stage of freezing, we assume
another form of f, which is expressed as

f ¼
dT
dx

;
dT
dx

≤0:2

0:2þ 0:002� dT
dx

−0:2
� �

;
dT
dx

N0:2:

8>><
>>:

ð40Þ
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The simulation of water content distribution is presented in Fig. 12
(denoted as “simulation B”). It can be seen that the simulated result is
much closer to the measurement, compared to simulation A. In Taylor
and Luthin's simulation, a resistance factor was adopted for the diffu-
sivity of the soil in the frozen zone, and this factor ranges from 100 to
1000. Their simulated results are also shown in Fig. 12. From the com-
parisons in Fig. 12, the capability of the moving-pumpmodel is clearly
demonstrated.
4. Conclusions

In this paper a simple model for simulating the soil freezing process
is developed, in which the water and heat transferring processes are
characterized by using an imaginary pump attached with a small reser-
voir. The role of the pump is to suck the liquid water from the unfrozen
zone and then to store it in the frozen zone, whereas the role of the
imaginary reservoir is to gather the sucked water and store it in the
form of pore ice through phase changes. As such, during the freezing
process, the pump and the reservoir move simultaneously as tempera-
ture changes. Compared to other models used to simulate freezing pro-
cesses, application of thenewmodel avoids remeshing and recalculating
the moving boundaries, which makes the numerical implementation of
the model much simpler. Two numerical examples are presented. The
simulated results are comparedwith experimental data and those previ-
ous simulations based on other approaches, showing that the proposed
model is capable of effectively simulating the freezing process of soils.
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Appendix A

The water pressure in a frozen soil is a function of the unfrozen
water content (Azmatch et al., 2012; Liu et al., 2011; Spaans and
Baker, 1996), and thus Eq. (1) can be expressed as

g θuð Þdθu ¼ ρw

ρi
dui þ

ΔHρw

T0
dT ðA1Þ
where g(θu) is a function of the unfrozenwater content and determined
by the experiment under the condition of dui = 0. Hence, one can
obtain

g θuð Þ ¼ ΔHρw

T0

dT
dθu

ðA2Þ

Substituting Eq. (A2) into Eq. (A1) yields

dθu ¼ dθu
dT

T0

ρiΔH
dui þ dT

� �
ðA3Þ

or

∂θu
∂x ¼ ∂θu

∂T
T0

ρiΔH
∂ui

∂x þ ∂T
∂x

� �
ðA4Þ

where ∂θu/∂T is determined from the experiment under the condition of
dui = 0.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.coldregions.2014.04.006.
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