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This paper investigates the influence of heterogeneity of undrained shear strength on the reliability of,
and risk posed by, a long slope cut in clay, for different depths of foundation layer. The clay has been idea-
lised as a linear elastic, perfectly plastic Von Mises material and its spatial variability has been modelled
using random field theory, whereas slope performance has been computed using a parallel 3D finite ele-
ment program. The results of Monte Carlo simulations confirm previous findings that three categories of
failure mode are possible and that these are significantly influenced by the horizontal scale of fluctuation
relative to the slope geometry. In particular, discrete 3D failures are likely for intermediate scales of fluc-
tuation and, in this case, reliability is a function of slope length. The risk posed by potential slides has
been quantified in terms of slide volumes and slide lengths, which have been estimated by considering
the computed out-of-face displacements. The results show that, for a given horizontal scale of fluctuation
relative to the slope geometry, there is a wide range of possible slide volumes and slide geometries.
Indeed, the results highlight just how difficult it is to compute a 2D slope failure in a heterogeneous soil.
However, they also indicate that, for low probabilities of failure, the volumes of potential slides can be
small. This suggests that, for some problems, it may not be necessary to design to very small probabilities
of failure, due to the reduced consequence of failure in this case. The techniques developed in this paper
will be important in benchmarking simpler 2D and 3D solutions used in design, as there is a need to
quantify slide geometries when benchmarking simpler methods based on predefined failure
mechanisms.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

This investigation uses random field theory to model the spatial
variability of material properties and finite elements to compute
geo-structural response. It is the latest in a series of papers inves-
tigating the influence of heterogeneity of undrained shear strength
(cu) for a simple slope stability problem. Previously, Paice and Grif-
fiths [1] and Griffiths and Fenton [2,3] considered the influence of
isotropic heterogeneity for a 2D slope using a lognormal distribu-
tion of cu and depth-independent statistics. In particular, they
demonstrated the importance of accounting for the spatial aspect
of variability through implementation of a correlation distance
(or scale of fluctuation).

Hicks and Samy [4–7] conducted similar analyses to demon-
strate the importance of depth-dependency and anisotropy of the
heterogeneity. They assumed a normal distribution of cu, arguing
that this was sufficient for practical ranges (0.1–0.3) of the coeffi-
cient of variation of cu. (This is because the probability of negative
values with the normal distribution is then so small, that truncat-
ing the normal distribution to ensure positive values has a negligi-
ble effect on any analysis [4].) The authors demonstrated a strategy
for deriving reliability-based characteristic property values [6] (in
line with the requirements of Eurocode 7) and showed that solu-
tions converged at higher degrees of anisotropy of the heterogene-
ity [4–7]. This implied that the horizontal scale of fluctuation need
not always be accurately known, an encouraging result given the
difficulty of measuring this quantity in practice. However, the find-
ings were restricted to slope failure in plane strain and the implicit
assumption of an infinite scale of fluctuation in the out-of-plane
dimension (that is, along the line of the slope).

Spencer and Hicks [8,9], Spencer [10], Hicks et al. [11,12] and
Hicks and Spencer [13,14] extended the research to three dimen-
sions. As in Hicks and Samy [4–7], they considered the influence
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of heterogeneity of undrained shear strength on a slope founded on
a firm base and identified three categories of failure mode, depend-
ing on the horizontal scale of fluctuation relative to the slope
geometry. The implications of the research were twofold. Firstly,
2D analysis is only justified for long slopes if the failure mechanism
is two-dimensional. For discrete failures, 3D analysis should be
considered and slope reliability is then slope length dependent
[8–14]. Secondly, for very long slopes (as in flood defence systems),
the performance of the whole slope can be reasonably assessed by
carrying out a detailed analysis of a shorter ‘‘representative’’ sec-
tion of the slope and then extrapolating the results to longer sec-
tions by simple statistical analysis [14]. In their work, Hicks and
Spencer [14] analysed a slope section with a length to height ratio
equal to ten, and used the results to successfully predict the reli-
ability of shorter and much longer slopes that had also been ana-
lysed in 3D.

This paper continues the work of Hicks and Spencer [14], by
considering the range of potential slide volumes and lengths asso-
ciated with different scales of fluctuation and levels of reliability.
For this purpose, a simple automated strategy is devised to esti-
mate the slide volumes and lengths in Monte Carlo simulations.
The results provide an increased understanding of the failure
mechanisms involved, and of the influence of heterogeneity on
slope reliability in general. In particular, they represent a first step
towards quantifying the influence of soil heterogeneity on slope
reliability and failure consequence within a risk-based framework,
by focussing on the uncertainty associated with geometric consid-
erations (e.g. 2D versus 3D and horizontal scale of fluctuation rel-
ative to slope dimensions). Note that the general methodology is
not restricted to simple parameters such as undrained shear
strength, and it has already been used successfully for 2D reliabil-
ity assessments involving much more complicated (effective
stress) models of soil behaviour, such as in analyses of slope lique-
faction case histories (Hicks and Onisiphorou [15], Bakhtiari [16])
and rainfall-induced slope failure in unsaturated soils (Arnold
and Hicks [17]). However, complex material behaviour and soil
model uncertainty are not considered here.

The advantages of confining the current investigation to
undrained shear strength are threefold. Firstly, the experience
gained with comparable 2D investigations means that the impact
of 3D effects can be readily evaluated. Secondly, as moving to 3D
leads to a big increase in the required computational effort, the
use of a simple soil model means that available computational
resources can be focussed on properly modelling the physical size
of the problem. Thirdly, the investigation leads directly to assess-
ing the applicability of 3D analytical solutions that are sometimes
used in geotechnical design, as these solutions are generally based
on simpler models of soil behaviour. For example, attempts have
been made by previous researchers (e.g. Vanmarcke [18], Calle
[19]) to investigate the probability of failure of long slopes such
as dykes and embankments. These techniques are based on simpli-
fications regarding the soil model (e.g. undrained shear strength)
and geometry of the failed zone (e.g. a cylindrical failure surface
is generally assumed). Therefore, a useful application of the meth-
odology described in this paper is to benchmark (and, where
appropriate, improve) simpler 2D and 3D techniques (Li et al.
[20], Li and Hicks [21]). To that end, the techniques implemented
in this paper relating to failure surface length and geometry are
important, because there is a need to quantify the range of slide
geometries in benchmarking simpler methods based on predefined
failure mechanisms.

The previous investigation by Hicks and Spencer [14] consid-
ered a slope directly founded on a firm base; that is, no underlying
soil foundation was considered in order to reduce the problem size.
In contrast, this paper includes results for different depths of soil
foundation layer, to ascertain whether the more severe (bottom)
boundary conditions employed previously have any impact on
the general conclusions of the investigation. The associated
increase in computational requirements, relative to Hicks and
Spencer [14], has required the parallelisation of both the finite ele-
ment code and Monte Carlo process (Nuttall [22]).
2. Methodology

A detailed description of the methodology is given by Hicks and
Spencer [14]. In brief, the undrained shear strength (cu) has been
represented by a normal distribution and by the point and spatial
statistics of cu: these are the mean (lcu

) and standard deviation
(rcu

), which combine to give the coefficient of variation (Vcu
= rcu

/
lcu

); and the vertical and horizontal scales of fluctuation (hv and
hh), which are measures of the distance between adjacent zones
of similar strength.

The statistics of cu are used to generate numerical predictions of
its spatial variability. For each so-called ‘‘random field’’ of cu, the
first stage is to generate an isotropic standard normal random field
of local averages using Local Average Subdivision [23]. This is
based on the exponential Gauss Markov covariance function,

bðs1; s2; s3Þ ¼ r2
cu

exp �2js1j
h1
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where b is the covariance function, s is the lag distance, and sub-
scripts 1–3 represent the three coordinate directions (with 1 being
the vertical direction). However, as in Hicks and Spencer [14], the
random field is initially generated for the scale of fluctuation being
equal in all directions (and is often taken to be hh). There then fol-
low a series of post-processing stages to arrive at the final field
[14]: these are to transform the field to a normal distribution (based
on lcu

and rcu
) and to distort it to an anisotropic field based on hv

and hh. The final field comprises cubic cells of cross-correlated local
averages of cu, and these values are mapped onto the finite element
mesh at the Gauss point level.

Hence, this investigation uses a Monte Carlo approach, in which
each realisation is a deterministic finite element analysis of the
slope based on a different random field of cu, a technique often
referred to as the Random Finite Element Method [24].
3. Analysis

Fig. 1 shows the problem geometry and finite element mesh
details with respect to Cartesian axes x, y and z. A 45� slope, of
height H = 5 m and length L = 100 m, is cut from a clay layer of
depth H + D, where D is the depth of clay below the slope toe.
The front and back faces of the mesh are on rollers preventing
movement in the x-direction, and are placed some distance away
from the slope toe and crest to minimise each boundary’s influence
on the failure mechanism; in the case of D = 0.0 m the boundary is
usually placed 5 m away from the slope crest, whereas, for
D = 3.0 m, the boundaries are placed 10 m from the slope toe and
crest. The bottom of the mesh is fixed, whereas, at the two mesh
ends, only vertical displacement is allowed. Griffiths et al. [25]
investigated the influence of the mesh ends in computations of
3D slope reliability for a soil exhibiting isotropic heterogeneity,
and highlighted the differences between using perfectly smooth
and perfectly restrained boundaries. However, the decision herein
to adopt an ‘‘intermediate’’ level of restraint for this boundary, by
preventing movement in both the x- and y-directions while leaving
the z-direction free, is based on Spencer [10], who found that
restraining only the y-direction led to a bias towards failure near
the mesh ends. This was thought to be due to an increased influ-
ence of weaker zones near the mesh ends, arising from the implied



Fig. 1. Slope geometry (not to scale), boundary conditions and finite element mesh details.
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Fig. 2. Influence of foundation layer on load factor versus maximum settlement for
a 100 m long homogeneous slope.
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Fig. 3. Influence of foundation layer on factor of safety for a 100 m long
homogeneous slope.
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symmetry of the random field about this boundary when allowing
free movement in the x–z plane. Hicks and Spencer [14] investi-
gated the validity of the boundary conditions, by analysing slopes
of different length for the case of D = 0.0 m, and produced results
supported by probabilistic theory.

The finite element mesh comprises 20-node brick elements. All
elements use 2 � 2 � 2 Gaussian integration, and each element is
0.5 m deep and 1.0 m � 1.0 m in plan, except for those elements
that have been distorted to model the slope face. Hence, for
D = 0.0 m the mesh comprises 8000 elements and for D = 3.0 m
there are 32,000 elements. In order to assign cu values to the Gauss
points, the random field cell size is 0.25 m (which is half the min-
imum element dimension). Hence, for assigning values to each
finite element there are 32 cubic cells, with each Gauss point value
being the average of a group of 4 cells. Further details can be found
in Hicks and Spencer [14].

The clay layer has been modelled as linear elastic, perfectly
plastic. The elastic component uses a Young’s modulus,
E = 100,000 kPa, and Poisson’s ratio, m = 0.3, whereas the plastic
component uses the ‘‘internal’’ Von Mises failure criterion and a
spatially varying undrained shear strength (cu). This is based on a
normal distribution and the following set of statistics: depth-inde-
pendent mean, lcu

= 40 kPa; coefficient of variation, Vcu
= 0.2; verti-

cal scale of fluctuation, hv = H/5 = 1.0 m; and horizontal scale of
fluctuation, hh = n � hv, where n is the degree of anisotropy of the
heterogeneity and is here investigated over the range 0 < n <1.
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(a) contours of shear strain invariant

(b) critical failure surface (black) and threshold displacement
contour (grey)

Fig. 6. 2D failure mechanism for a homogeneous slope with D = 0.0 m.
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Fig. 8. Visualisation of multiple failures in a 3D heterogeneous slope with
D = 0.0 m.
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Note that the vertical scale of fluctuation is generally much smaller
than the height of a slope and may easily be determined from
in situ (e.g. CPT) data [4,5,15], whereas the horizontal scale of fluc-
tuation is generally much larger than the vertical scale of fluctua-
tion and more difficult to quantify [26,27]: hence the reason for
keeping hv constant and varying hh in this investigation.

The slope has been analysed, for each realisation of the random
field, by applying gravitational loading to generate the in situ stres-
ses and by finding the conditions necessary for slope failure. For a
homogeneous, plane strain slope, of height H and constant
undrained shear strength cu, Taylor’s [28] stability number (NS) is
given by
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Fig. 10. 2D failure mechanism for a homogeneous slope with D = 3.0 m.
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NS ¼
cu

FcH
ð2Þ

where c is the soil unit weight, F is the factor of safety, and NS is a
function of the slope angle and the ratio D/H [28]. For a heteroge-
neous slope, the equation may be rewritten as

NS ¼
lcu

FcH
ð3Þ
where F is now the ‘‘global’’ factor of safety based on the target
mean property value lcu

(and not to be confused with the factor
of safety of a potential slide mechanism, which is obviously 1.0
for a slope at the point of failure). Hence, slope failure can be initi-
ated by either decreasing the shear strength profile or increasing
the gravitational loading.

Hicks and Spencer [14] followed previous researchers by re-
analysing the problem with progressively lower values of
undrained shear strength until slope failure occurred. In contrast,
this investigation has triggered slope failure by incrementally
increasing gravity (while keeping the same shear strength profile).
Gravity is increased in incremental steps, with the step size reduc-
ing as a function of the maximum incremental nodal displacement
as failure is approached, allowing failure to be defined to an accu-
racy of 0.01 (in terms of the traditional factor of safety) [22]. In this
study, slope failure is defined by a load increment failing to con-
verge in 50 equilibrium iterations, using a tangent stiffness
approach.

3.1. Monte Carlo simulation

For a given global factor of safety (F), the percentage reliability
is given by

R ¼ 1� Nf

N

� �
� 100 ð4Þ

where N is the total number of realisations and Nf is the number of
realisations in which slope failure occurs at or above that value of F.
Hicks and Spencer [14] reviewed various strategies for setting up
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this equation, all of which involved analysing the slope for progres-
sively lower values of cu (for example, by gradually scaling down
the random field values using an increasing strength reduction
factor). The value of F at failure (for any realisation) was related
to lcu

at failure through Eq. (3).
For the Monte Carlo simulations in this paper, the mean

undrained shear strength for generating the random fields is
40 kPa for each realisation. Hence, for each value of n, the reliability
distribution has been obtained as follows: firstly, the point and
spatial statistics of cu (i.e. lcu

, Vcu
, hv, hh) are used to generate N ran-

dom fields of cu; secondly, the slope is analysed for each random
field in turn, by increasing the gravitational loading until slope fail-
ure occurs. The global factor of safety for any realisation is then
given by Eq. (3), using lcu

= 40 kPa, the value of c at which slope
failure occurs and the appropriate value of NS (which depends on
the slope angle (45� in this instance) and D).
3.2. Computing

The current investigation considers the same slope angle, height
and length as in Hicks and Spencer [14], and uses the same finite
element size. However, the total number of elements is much lar-
ger for some analyses (32,000 compared to 8000), due to the con-
sideration of a 3 m deep foundation layer and also to increasing the
distance between the back mesh boundary and slope crest to 10 m
for the deeper foundation (from the 5 m used previously). Hicks
and Spencer [14] used parallel computing to analyse their slope,
but, as the mesh was designed to fit on only one computer proces-
sor (CPU), only the Monte Carlo simulation was parallelised; that
Fig. 12. Influence of n on slide volume an
is, the realisations were shared across the processors using a
load-balancing technique and, as each realisation was only ana-
lysed on one processor, the communication required between pro-
cessors was minimal. (Moreover, the finite element program used a
direct solver and a Tresca failure criterion.)

For this investigation, both the Monte Carlo simulation and
finite element program have been parallelised (Nuttall [22]). For
the latter, this has been achieved by using an element by element
technique: that is, only the element stiffness matrices are required,
there is no assembling of a global stiffness matrix, and the equa-
tions have been solved using an iterative preconditioned conjugate
gradient (PCG) solver. The efficiency of this solver has been facili-
tated by the use of a Von Mises failure criterion with a suitable
return algorithm (Smith and Griffiths [29]). Note that, although
the Tresca failure criterion is generally considered to be better than
Von Mises for soils, the latter has here been chosen due to the
adopted solution algorithm working more robustly and efficiently
for a failure surface with no corners.

4. Results

4.1. Deterministic study of homogeneous slopes

Fig. 2 shows the load factor as a function of the maximum mesh
settlement, for a homogeneous slope (with cu = 40 kPa and
c = 20 kN/m3) and for 0.0 < D < 3.0 m (based on a back boundary
10 m from the slope crest, for all values of D), in which the load fac-
tor is the magnitude by which c is scaled up during an analysis.
Each analysis terminates when a load increment fails to converge
d length for a 3D slope (D = 0.0 m).
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in 50 equilibrium iterations. Fig. 2 shows that this is consistent
with the slope failing, as indicated by the settlement increasing
very rapidly at constant load. Therefore the curves indicate that a
limit of 50 equilibrium iterations has been enough to capture the
factor of safety of each slope (corresponding to the load factor at
failure).

The factors of safety from Fig. 2 have been re-plotted in Fig. 3
and compare favourably with both Taylor’s [28] solution and
equivalent 2D plane strain computations. As expected, most of
the computed 2D results lie slightly below Taylor’s solution due
to the use of an internal Von Mises failure criterion; moreover,
although the 3D results are stronger than those for 2D due to the
different end-boundary conditions, the overall agreement is still
very good. The factors of safety for Taylor’s solution have been
obtained using Eq. (2) and values of NS ranging from 0.166 to
0.176 (corresponding to the range of D considered). Fig. 3 shows
that the end-boundary conditions, whether free or fixed in the x-
direction, as modelled by the 2D (plane strain) and 3D analyses
respectively, have little influence on the results for a homogeneous
slope.

Fig. 4 shows the results of further homogeneous analyses for
D = 0.0 m and D = 3.0 m, for slope lengths in the range,
H < L < 20H. These show that, for L/H > 8, the 3D solution for F is
similar to the plane strain solution (see also the findings of Griffiths
and Marquez [30]). For L/H < 8, the 3D boundary conditions lead to
an increase in F and, for L/H � 2, they impose a failure surface that
is approximately spherical. Also shown in this figure are results for
D = 0.0 m using a mesh in which the far boundary is located only
5 m from the slope crest (as used in Hicks and Spencer [14]). The
results are almost identical to the larger mesh for the same value
Fig. 13. Influence of n on slide volume a
of D, and support the use of the smaller mesh in later Monte Carlo
simulations (for D = 0.0 m) in order to reduce CPU run-times. Fig. 5
re-plots the same 3D results as a function of the computed plane
strain factor of safety for a 2D slope, indicating an increase in F
of about 20% for a spherical surface.

4.2. Strategy for estimating slide volumes

In this paper, the consequence of failure has been quantified in
terms of the volumes, and lengths, of material associated with
potential slides. Hence, this requires an automated procedure for
estimating the failure volume and length in each realisation
[12,22]. Fig. 6 shows how this may be done for volume in a 2D
analysis (in this case, for D = 0.0 m). Firstly, contours of shear strain
invariant are computed: this is illustrated for a homogeneous slope
in Fig. 6(a), in which the darker contours represent larger strains.
Next, the critical failure surface is computed by using a ridge-find-
ing technique: this involves selecting an imaginary point in space
well above the toe of the slope, and then finding the location at
which the shear strain invariant is highest along straight lines radi-
ating out from the point (Fig. 6(b)). The volume of the slide is then
easily computed as the area above the critical surface. Note that, in
Fig. 6(b), the stepped nature of the critical failure surface is partly a
function of the crudeness of the finite element mesh and the effect
that this has in back-calculating the discontinuous strain field from
the displacement field, and partly due to the (post-processing)
smoothing procedure that has been used to obtain a continuous
strain field from which the shear strain invariant contours in
Fig. 6(a) have been plotted. Although the approximation to the
critical failure surface would be smoother for a finer mesh
nd length for a 3D slope (D = 3.0 m).
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discretisation, the relatively crude mesh is still able to give a good
result for the failure volume.

Fig. 7 shows typical results from the Monte Carlo simulation of
a 2D heterogeneous slope, with hh = 6.0 m, in which the slide vol-
ume is expressed as a percentage of the total mesh area. Note that
all slide depths were around 5 m in this analysis, partly due to the
importance of slope height on slope stability for a depth-indepen-
dent mean strength and relatively low coefficient of variation
(Vcu

= 0.2), and partly due to the steepness of the slope promoting
deep sliding (i.e. the slope angle is less than 53�, which is the angle
of transition from shallow to deep sliding according to Taylor [28]).

Unfortunately, although the ridge-finding method generally
performs well in 2D [12], it was not found to be robust enough
for 3D analyses involving soil heterogeneity. Such problems often
involve the initiation of multiple and complex rupture zones before
the full failure mechanism develops, and this can make the auto-
matic detection of the critical failure surface difficult, especially
when multiple and interacting slides are present, as in Fig. 8.
Hence, the present investigation uses a simpler approach based
on computed displacements in the (out-of-face) x-direction.

Fig. 9 shows the percentage of mesh volume versus percentage
of maximum x-displacement, for 2D (plane strain) and 3D homoge-
neous slopes, as well as for a 2D slice taken through the 3D mesh at
L/2, for both D = 0.0 m (Fig. 9(a)) and D = 3.0 m (Fig. 9(b)). That is,
for each analysis the maximum nodal x-displacement in the mesh
(dmax) is recorded, and then, for a given percentage of that maxi-
mum displacement, the volume of the mesh experiencing that dis-
placement or higher is computed. This has been simply
approximated as the accumulated volume of all elements, or parts
of elements, with an average nodal x-displacement greater than
the threshold value. Note that the small ripples in the solution
are due to the discrete way in which the volume has been
approximated.

Also shown in Fig. 9(a and b) (as horizontal lines) are the
percentage volumes obtained by using the above ridge-finding
technique to compute the critical failure surface for a 2D slice
through the slope. Specifically, for both values of D, two percentage
volumes have been computed: the first is based on the shear strain
invariant contours produced in the plane strain analysis (as in
Fig. 6); whereas the second is based on the shear strain invariant
contours for a single-element slice taken through the 3D mesh at
L/2. Note that both volumes are very similar (for both values of
D), indicating that the 3D mesh does deform in a plane strain
manner over its central region.

Hence, Fig. 9 can be used to estimate the percentage of the
maximum displacement (D) that may be used as a threshold to
approximate the slide volume: that is, by taking it to be that value
which gives the same slide volume as obtained using ridge-finding
for a 2D slice taken through the slope at L/2. For the plane strain
analyses, D = 25.4% for D = 0.0 m and 27.4% for D = 3.0 m. Figs. 6
and 10 show that the x-displacement contours corresponding to
these displacements are close to the critical failure surfaces
obtained using the more rigorous ridge-finding method.

For the 3D analyses, D = 25.2% for D = 0.0 m and 28.3% for
D = 3.0 m. These threshold displacements have been used to esti-
mate the slide volumes for the 100 m slopes investigated in this
paper. Fig. 9(a and b) shows that, based upon these threshold val-
ues, the predicted percentage slide volumes for the 3D homoge-
neous slopes are 46.9% for D = 0.0 m and 35.3% for D = 3.0 m,
which may be compared with the respective percentage volumes
of 62.1% and 50.6%, calculated for the 2D slice at L/2. The reduction
in predicted percentage volume for the whole mesh, with respect
to the 2D slice, is partly a function of the boundary conditions
restricting failure near the mesh ends. However, an additional
(and possibly more significant) factor is that the shear strain gradi-
ents are not as high towards the ends of the failed zone, so that the
displacements associated with failure in these regions are less than
the threshold value estimated at L/2. Although this is likely to lead
to an underestimation of the true failure volume, the primary goal
in the current study is to compare relative failure volumes between
realisations. Hence the current formulation is considered sufficient
for this purpose, although a more robust method may be desirable
in more detailed risk assessments.

A simple procedure has also been adopted for estimating the
slide lengths in the following analyses. For each realisation, the
slide length is taken to be the integrated length along the slope
toe for which the out-of-face displacement is greater than the
threshold displacement derived from Fig. 9 (based on the row of
elements directly above the slope toe). This simple (but effective)
method does not differentiate between the number of slides that
occur along the slope length. As for the estimation of failure vol-
ume, the intention is merely to provide a consistent way of quan-
tifying and comparing the extent of slope failures.
4.3. Influence of heterogeneity on reliability and slide geometry

Fig. 11(a) shows the influence of n, and thereby hh (= n � hv), on
reliability (R) versus global factor of safety (F) for Vcu

= 0.2 and
hv = 1.0 m, for L = 100 m and D = 0.0 m. Each curve is based on
multiple (usually 250–300) realisations, with the Monte Carlo
simulation being checked to ensure convergence of the output
mean and standard deviation. Hicks and Spencer [14] conducted
similar analyses for Vcu

= 0.3 and hv = 1.0 m, using a Tresca failure
criterion, and identified three categories of failure mode which
depended on the magnitude of hh relative to the slope geometry.
The following general guidelines were proposed [14]:



Fig. 15. Example Mode 2 failure mechanisms for n = 6 (Vs = slide volume, displacement magnification = 75).

206 M.A. Hicks et al. / Computers and Geotechnics 61 (2014) 198–208
� Mode 1: for hh < H there is little opportunity for failure to
develop through semi-continuous weaker zones. Hence, failure
goes through weak and strong zones alike, there is considerable
averaging of property values over the failure surface, and the
slope fails along its entire length. This case is analogous to a
conventional 2D analysis based on lcu

.
� Mode 2: for H < hh < L/2 there is a tendency for failure to propa-

gate through semi-continuous weaker zones, leading to discrete
(3D) failures and a decrease in reliability as the slope length
increases. Hicks and Spencer [14] showed how simple probabi-
listic theory could be used to predict the reliability of longer
slopes based on the detailed stochastic analysis of shorter slopes.
� Mode 3: for hh > L/2 the mechanism reverts to along the length

of the slope. Although it is similar in appearance to Mode 1, it
is a fundamentally different mechanism. In this case, failure
propagates along weaker layers and there is a wide range of
possible solutions that depend on the locations of these layers.
The solution for this mode is analogous to a 2D stochastic
analysis.

Fig. 11(a) suggests similar findings to Hicks and Spencer [14], as
does Fig. 11(b) which shows the results for D = 3.0 m. Note the
rapid increase in reliability for Mode 1 (hh < H; i.e. n < 5) as the
curve passes through F � 1.0. For Mode 2 (H < hh < L/2; i.e.
5 < n < 50), there is a decrease in reliability (for a given F) as hh

increases, with the weakest result being for hh � L/4 (i.e. for n �
25). For Mode 3 (hh > L/2; i.e. n > 50), the solution tends towards
the plane strain solution as n ?1. The value of hh/L at which the
dominant failure mode changes from 2 to 3 is rather subjective,
but hh/L � 1/2 seems reasonable, as for larger values it becomes dif-
ficult for complete mechanisms to form without some interaction
with the mesh ends [14].

However, Figs. 12 and 13 use the methodology developed in
Section 4.2 to present a more detailed evaluation of the results,
for D = 0.0 m and D = 3.0 m, respectively. In both figures, parts
(a–i) show the individual reliability curves for each value of n
(and thereby hh) and, for each case, the computed slide volumes
of all realisations (as a percentage of the total mesh volume) are
presented, along with all slide lengths (as a percentage of the total
slope length). The significance of the slides in individual realisa-
tions can be assessed by comparing with volumes of 46.9% and
35.3%, for D = 0.0 m and D = 3.0 m respectively, these being the
estimated slide volumes for a homogeneous slope based on
Fig. 9. In each plot, the slide volumes and lengths are denoted by
points relative to the values of F at which slope failure occurred.
As can be seen, for each value of hh there is a wide range of possible
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volumes. However, there is also a clear trend as hh increases and
this is reinforced by Fig. 14 which highlights the influence of n
(and thereby hh) on mean slide volume and mean slide length.

Focussing first on D = 0.0 m, Fig. 12(a) shows the distributions
of reliability, slide volume and slide length, for hh = hv = H/5 (i.e.
n = 1). All distributions indicate the dominance of Mode 1 failure.
That is, R increases rapidly from 0–100% at F � 1.0, most slide vol-
umes are relatively large (Vs � 30–50%), and most slide lengths are
large (Ls � 70–100%), indicating failure along most of the slope
length. As hh increases Mode 2 becomes dominant, as indicated
by a greater range of slide volumes and slide lengths, a reduction
in mean slide volume and mean slide length, and the possibility
of localised slides (for example, as in Fig. 12(c) for hh = 6hv = 1.2H
(i.e. n = 6)). Fig. 15 shows typical failure mechanisms for hh = 6hv,
which include small and large discrete failures, multiple discrete
failures and interacting failures. The computed slide volumes are
seen to be consistent with the out-of-face displacement contours,
indicating that the method of estimating slide volumes is working
well. Fig. 12(a–f) also shows that, as hh increases, there is an
increasing tendency for smaller slide volumes at larger factors of
safety. This suggests that, for some problems, it may not be neces-
sary to design to very small probabilities of failure, due to the vol-
umes of material associated with potential slides then being
inconsequential [14]. Indeed, this finding is supported by previous
simpler probabilistic studies based on ‘‘first crossing’’ techniques,
which investigated the likelihood and expected length of unstable
zones as a function of increasing slope length, and thereby pro-
vided a theoretical explanation for the expected reduction of slide
volumes as the failure probability reduces (e.g. [19,31]).

Fig. 14(a) shows that the mean slide volume and mean slide
length reach a minimum when hh � L/4 (i.e. when n � 25), which
also corresponds to the weakest reliability curve (Fig. 11(a)). At first
this seems counter-intuitive, since it might be expected that dis-
crete failures become larger as hh increases. However, some of the
larger volumes and lengths recorded for lower values of hh (that
are greater than H) are the integrated volume and length arising
from multiple failures, whereas, for Mode 2 failures at larger values
of hh, there is a decreased likelihood of multiple failures due to the
constraints imposed by the slope length. In any event, the results in
Fig. 14 are only indicative of trends, due to it not differentiating
between the number of slope failures in a given realisation.

Figs. 12(e–h) and 14 show that, as hh increases beyond L/4, the
mean slide volume and mean slide length increase, and the ten-
dency for smaller slide volumes at higher F reduces. There is also
a gradual transition from Mode 2 to Mode 3 failure as the solution
moves towards plane strain at higher values of hh. Fig. 11(a) shows
the reliability solution has converged to plane strain by the time
hh = 1000.0 m = 10L (i.e. n = 1000), whereas Fig. 12(h) shows that
most slide volumes are relatively large (30–50%). Note that,
although the spread of solutions is still quite large, the slope is
found to be at, or near to, failure along the entire length in most
instances. Fig. 12(i) shows that, when an infinite horizontal scale
of fluctuation is modelled (that is, by using a 1D random field gen-
erator), the slide volumes and lengths converge towards those
expected for a homogeneous slope.

Figs. 13 and 14(b) show comparable trends in the results for
D = 3.0 m. The main difference is in the results for the case of
hh =1. As expected, for both D = 0.0 m and D = 3.0 m, all slope fail-
ures extend along nearly the full slope length. However, whereas
the slide volumes tend towards the homogenous solution for
D = 0.0 m, there is still a wide range of solutions for D = 3.0 m.
The reason for this difference may be explained with reference to
the earlier results for homogeneous slopes. Figs. 2 and 3 show that,
for the mean cu considered in this investigation, the factor of safety
decreases only slightly as D increases from 1.0 m to 3.0 m. This
implies that, whereas the critical slide for a homogeneous slope
will extend to the base of the layer, for a heterogeneous slope a
wide range of slide depths is likely, regardless of the length of
the slide. In contrast, for the D = 0.0 m case, the failure mechanism
is more strongly influenced by the firm base, because of the slope
angle being less than 53�, as previously discussed. Hence, the range
of slide volumes is much less in the case of D = 0.0 m.

5. Conclusions

The automatic computation of slide volumes for heterogeneous
slopes in 3D is difficult, due to the complexity of the underlying
failure mechanism. Instead, a simple but effective way of estimat-
ing the slide volume based on computed out-of-face displacements
has been presented. This is based on defining a threshold displace-
ment, above which the soil volume is deemed to have slipped. The
value for this threshold displacement has been estimated by cali-
brating the out-of-face displacements against the slide volume
per metre run at L/2 for a homogeneous 3D slope of length L, in
which the slide volume may be accurately determined from the
shear strain invariant contours using a ridge-finding technique.
This gave slide volume estimates that were accurate enough to
enable a detailed evaluation of the role of the scale of fluctuation
on the performance of heterogeneous slopes.

Previously, Hicks and Spencer [14] analysed a similar slope, but
with no foundation layer and with no detailed evaluation of the fail-
ure volumes and slide lengths. This investigation has reinforced the
previous finding that there are 3 distinct categories of failure mode
and that the likelihood of each is a function of the horizontal scale of
fluctuation relative to the slope geometry (as defined by the slope
height H and length L). Moreover, it has demonstrated the influence
of a foundation layer. The new results highlight that, for a given
value of the horizontal scale of fluctuation hh, there is a wide range
of possible slide geometries, and that the previously proposed
ranges of hh used to identify the occurrence of the three failure
modes, while being a reasonable first approximation and a useful
aid to understanding the factors influencing slope failure in hetero-
geneous soils, are not definitive. In particular, Mode 2 (i.e. 3D) fail-
ures are possible for almost any value of hh and, while they are less
likely for hh < H, it is apparent that they can occur even for values of
hh that are large compared to L. Indeed, the results in this paper
have highlighted just how difficult it is to compute a 2D slope fail-
ure in a heterogeneous soil, even one in which the heterogeneity
takes on a ‘‘near layered’’ appearance. Whilst it has been shown that
the likelihood of Mode 3 failures increases for hh > L/2, it has also
been shown that Mode 2 failures remain the prevailing failure
mode for horizontal scales of fluctuation up to and even beyond
the slope length, especially for slopes that have a foundation layer.

Although this investigation has used a simplified model of soil
behaviour, in order to focus on the uncertainty in slope response
associated with geometric considerations, in particular relating to
soil heterogeneity and slope dimensions, the same methodology
can (and will, in due course) be extended to include more advanced
aspects of soil behaviour and model uncertainty. In the meantime,
the developed techniques will be important in benchmarking sim-
pler 2D and 3D solutions used in design (e.g. Li et al. [20] and Li and
Hicks [21]), as there is a need to quantify slide geometries when
benchmarking simpler methods based on predefined failure
mechanisms.
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