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Abstract Salt precipitation can occur in saline aquifers

when the pore-fluid concentration exceeds saturation during

carbon dioxide sequestration, especially in the dry-out

region closest to the wellbore. Results from uniaxial and

triaxial compression tests, creep tests, and poromechanical

tests indicate that NaCl crystallization in pores enhances the

compressive strength and bulk modulus under the given

confining pressure, and reduces creep. In addition, it makes

the pore liquid pressure in the sandstone less sensitive to

changes in the hydrostatic stress under undrained condi-

tions. A poro-viscoelastic model with crystals in the pores is

proposed to quantitatively estimate the influence of in-pore

NaCl crystallization on the long-term mechanical behavior

of sandstone. By considering the thermodynamics of crys-

tallization, a geometrical model of a crystal in a pore space is

applied to the quasi-static equilibrium state of the crystal-

lization. The solid–liquid interfacial energy is introduced to

provide a convenient approach to couple the mechanical

properties of sandstone (as a porous material) and the ther-

mochemistry of the in-pore NaCl crystallization. By adding

the solid–liquid interfacial energy, the Clausius–Duhem

inequality for the skeleton is established for the viscoelas-

ticity based on the proposed geometrical model of a crystal

in the pore space. The constitutive equations are deduced

from the free energy balance relationship to evaluate the

influence of crystallization on the effective stress in terms of

the solid–liquid interfacial energies and the pore-size dis-

tribution. By comparing the model’s output with the test

results, it is found that the poro-viscoelastic model describes

the influence of in-pore NaCl crystallization on the long-

term mechanical behavior of the sandstone reasonably well.
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List of Symbols

A Pore surface area (lm2)

Ae Elastic change of pore surface area (lm2)

Av Viscous change of pore surface area (lm2)

B Skempton coefficient for sandstone without

in-pore NaCl crystals

B
0

Skempton coefficient for sandstone with in-

pore NaCl crystals

bC
ij , bL

ij
Crystal or liquid Biot’s tangent tensor

bJ Biot’s coefficient scalars

C Concentration of solution (mol/L)

C0 Equilibrium solubility (mol/L)

Cijkl Tangent elastic stiffness modulus tensor of

the rock skeleton

c Mass fraction in NaCl solution

eij Deviator strain tensor (MPa)

ee
ij Elastic deviator strain tensor

ev
ij Viscous deviator strain tensor

_ev
ij Viscous deviator strain rate tensor

FD Dissipation function

FS Helmholtz free energy of the skeleton (J)

Gs Gibbs free energy (J)

G0 Instantaneous shear modulus of the

skeleton (MPa)

G? Delayed shear modulus of the skeleton

(MPa)
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K Drained bulk modulus of sandstone without

in-pore NaCl crystals (MPa)

K
0

Drained bulk modulus of sandstone with

in-pore NaCl crystals (MPa)

KS Solid matrix bulk modulus of sandstone

without in-pore NaCl crystals (MPa)

K 0S Solid matrix bulk modulus of sandstone

with in-pore NaCl crystals (MPa)

Ku Bulk modulus of sandstone without in-pore

NaCl crystals (MPa)

K 0u Bulk modulus of sandstone with in-pore

NaCl crystals (MPa)

K0 Instantaneous bulk modulus of the skeleton

(MPa)

K? Delayed bulk modulus of the skeleton (MPa)

k Permeability (dm)

L Cylinder length of pore structure model (lm)

Dm Pore liquid mass change (g)

NJK Biot’s tangent modulus: subscript J or K

standing for C (crystal) or L (liquid)

l, m, n Cosine of h1, h2, h3 in Fig. 8

PC Crystal pressure (MPa)

PL Pore liquid pressure (MPa)

PS The total normal stress on cylinder pore

surface (MPa)

Qi Normal row vector

Qj Normal column vector

R Ideal gas constant (JK-1 mol-1)

Rij Pore stress distribution tensor

rp Average pore radius of pore structure

model (lm)

rca Pore canal radius (lm)

rth Pore throat radius (lm)

Ss Entropy of the skeleton (JK-1)

S0
s

Initial skeleton entropy (JK-1)

sij Stress deviator tensor (MPa)

s0
ij

Initial deviator stress (MPa)

T Fahrenheit temperature (K)

T0 Initial temperature (K)

t Centigrade temperature (�C)

U Viscous deformation energy (J)

_u Deformation rate of the specimen in the

creep test (ms-1)

Vi Pore space position vector

mC Molar volume of a crystal (cm3 mol-1)

Ws Elastic work (J)

a Skeleton thermal dilation coefficients scalars

a1, a2, a3 Angles between O
0
A and the three

projection axes O
0
r01, O

0
r02, O

0
r03 in Fig. 8

aij Tangent thermal dilation coefficients tensor

of the rock skeleton

3aC
u, 3aL

u Volumetric thermal dilation coefficient for

crystal and liquid in pore

b Ratio coefficient of viscous porosity variation

cSL, cSC, cCL Liquid–solid, solid–crystal, crystal–liquid

interfacial energy, respectively (mJ/m2)

c0
SL

Initial liquid–solid interfacial energy (mJ/m2)

d Thickness of the thin liquid film

dij Kronecker delta function

eij Strain tensor (MPa)

ee
ij Elastic part of strain tensor (MPa)

ev Volumetric strain

ee
v Elastic volumetric strain of the rock

skeleton

ev
v Viscous volumetric strain of the rock

skeleton

_ev
v Viscous volumetric strain rate of the rock

skeleton

ev
vs Viscous volumetric strain of the rock solid

matrix

1 Viscous shear modulus (MPa)

g Coefficients of dissipation function

h Contact angle between crystal and pore

surface (�)

h1, h2, h3 Angles between the principal stress

coordinates and the vector O0H in Fig. 8

j Viscous drained bulk modulus (MPa)

jCL Curvature of crystal/liquid interface (1/lm)

f Coefficients of dissipation function

rc, rl Stress exerted on crystal or liquid by pore

surface, rc ? rl = PS

rij Stress tensor (MPa)

rm Hydrostatic (mean normal) stress (MPa)

r0
m

Initial mean stress (MPa)

r1, r2, r3 Major, intermediate, and minor principal

stresses, respectively (MPa)

/1, /2, /3 Angles between the pore space position

vector OO0 and the three orthogonal

principal stress axes in Fig. 8

u Porosity

ue Elastic porosity variation

uv Viscous porosity variation

u0 Initial porosity

uC, uL Porosity occupied by crystal and liquid,

respectively

uC
e , uL

e Elastic change of porosity occupied by

crystal and liquid, respectively

vij The deviator part of pore stress distribution

tensor

v The product of deviator part of pore stress

distribution tensor and pore stress

distribution tensor v = Rijvij
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1 Introduction

In the process of carbon dioxide sequestration in saline

aquifers, CO2 can become trapped in the aquifer by dis-

solution in the water and by carbonization in rock minerals.

Vaporization of water, as the result of the CO2 dissolution

and chemical reactions, will increase the concentration of

salt in the pore fluid (Zeidouni et al. 2009). A special case

is the dry-out region closest to the wellbore where freshly

injected CO2 may transport the vaporized water outwards

thus causing an increased salt concentration in the pores.

As a result of the high salinity of the brine, when the salt

concentration exceeds its critical value, it causes precipi-

tation of salt crystals in the pore fluid. This process not

only affects pore properties but also exerts crystallization

pressure on the reservoir rocks, which are porous. Crys-

tallization pressure has an important influence on the

mechanical properties of porous materials, which may lead

to serious deterioration. For example, delayed ettringite

formation may damage the mass concrete after hardening

(Taylor et al. 2001) and salt crystallization may cause

degradation of the porous sedimentary rocks used for

building in coastal regions (Winkler and Singer 1972).

Previous studies (Lewin 1982; Evans 1970) regarded salt

crystallization in the pore spaces of such porous materials

as a potential safety hazard. This is because it can damage

or even destroy the porous material when the salt crystal-

lization pressure exceeds the admissible value of the pore

pressure. As the main component of the pore liquid in a

saline aquifer is NaCl solution, and saline aquifers are

long-term emission reservoirs for carbon dioxide, whether

NaCl crystallization has a long-term effect on the

mechanical properties of the reservoir’s rocks needs to be

investigated.

For NaCl crystallization in the pores of reservoir rocks,

the driving force is related to supersaturation of the pore

liquid depending on the solution concentration (Scherer

1999). Compared with a saturated solution, the solute in a

corresponding supersaturated solution has a higher chemical

potential. This excess chemical potential can bring to bear a

crystallization pressure against an external restraint (Niels

and Sadananda 2004). NaCl crystallization in pores thus

changes the effective stress and the mechanical properties of

the reservoir rocks because the crystals exert a pressure on

the pore walls. Poromechanical and crystallization theories

are attractive approaches to figuring out the acting mecha-

nisms. Based on early poromechanical theory (Biot 1941;

Cheng 1997; Coussy 1995); Wei and Muraleetharan (2002a,

b) and Borja (2005) studied multi-phase, fluid-saturated or

unsaturated porous media with a particular emphasis on the

macroscopic properties and conservation equations in the

pore fluid. Coussy (2007) later analyzed the role of freezing

water as the crystal form playing a role in the poroelastic

properties. However, the crystallization pressure of freezing

water is determined by supercooling, while the determinant

governing crystallization pressure in NaCl crystals is

supersaturation, as well as the interfacial energies and pore

size (Scherer 1999). In addition, Brice (2010) studied the

influence of the stress field on the orientation of crystals

growing in the pore network of an elastic porous medium

with emphasis on the crystal shape under the far-field stress.

The work, however, didn’t include the effect of crystalli-

zation on the porous materials’ mechanical constitution.

According to the mechanism of in-pore crystallization,

macroscopic deviatoric stress affects the in-pore crystalli-

zation orientation which, in turn, affects the mechanical

properties of the porous material. Besides this, NaCl crys-

tallization during the process of carbon dioxide sequestra-

tion in saline aquifers has been considered using a TOUGH2

simulator to figure out the evolution of the porosity and

permeability of the reservoirs (Pruess and Spycher 2007).

Nevertheless, this simulator is incapable of analyzing the

effects of crystallization on the mechanical behavior of the

reservoir rock material.

This paper investigates the influence of in-pore NaCl

crystallization on the long-term mechanical behavior of the

sandstone acting as the rock matrix of saline aquifers. Uni-

axial and triaxial compressive tests, creep tests, and poro-

mechanical tests have been conducted to investigate the

effect of NaCl crystallization on the mechanical properties

of sandstone (such as compressive strength, creep proper-

ties, and poromechanical properties). Based on porome-

chanical and crystallization theory, a viscoelastic model for

the skeleton of the sandstone with crystallization in its pores

is established. The Helmholtz free energy of the sandstone

skeleton associated with the effect of NaCl crystallization in

the pores, including crystallization pressure and surface free

energy during material deformation, has been included in

the viscoelastic constitutive model thus established. The

parameters in the constitutive model of the sandstone skel-

eton are obtained from empirical formulae and the test

results. The results indicate that the established model can

capture the nature of the influence of in-pore NaCl crystal-

lization on the long-term mechanical behavior of sandstone.

2 Experimental Methods

Three types of laboratory test have been used to investigate

the influence of crystallization on the rock’s mechanical

behavior. The first involves uniaxial and triaxial com-

pressive tests on sandstone specimens with and without in-

pore NaCl crystallization to obtain the peak strength. This

reflects the short-term mechanical properties of the sand-

stone with and without in-pore crystallization. The test

results on peak strength are used to determine the axial
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loading level of the creep test. Secondly, creep tests of

sandstone specimens with and without in-pore NaCl crys-

tallization have also been conducted to investigate the

influence of in-pore NaCl crystallization on the long-term

mechanical behavior of sandstone. Thirdly, poromechani-

cal tests have been conducted to obtain the poromechanical

parameters of sandstone specimens with and without in-

pore NaCl crystal.

2.1 Preparation of the Sandstone Specimens

The sandstone specimens used in these three tests were

sampled at the same location and have similar physical

properties. The mean porosity of sandstone is 22.15 %. The

specimens were prepared according to the methods sug-

gested by the International Society for Rock Mechanics

(ISRM) for uniaxial and triaxial compressive tests. To

reduce the discreteness of the rock’s physical and

mechanical properties, specimens having wave velocities

in the range of ±5 % of the average are accepted. The

sizes, wave velocities, and saturation conditions of the

specimens after oven-drying for 48 h at a temperature

below 100 �C are shown in Table 1.

To obtain sandstone with in-pore NaCl crystallization,

dry sandstone specimens are saturated with saturated NaCl

solution at 30 �C using the vacuum suction method sug-

gested by the ISRM. Since the solubility of NaCl increases

with increasing temperature, this saturated solution will

enter a supersaturated state at the test temperature of 25 �C.

The difference in solubility of NaCl at 25 and 30 �C is

1.517 g/L and its supersaturation results in the formation

and growth of NaCl crystals. Then, to maintain the same

test temperature and minimize the effect of NaCl concen-

tration on in-pore fluid properties, sandstone without in-

pore NaCl crystallization is saturated with saturated NaCl

solution at 25 �C as control experiments. In this way, at

25 �C, the sandstone specimens saturated with saturated

NaCl solution consist of a solid skeleton and a crystal-free

pore liquid while sandstone specimens saturated with an

oversaturated NaCl solution consist of a solid skeleton,

pore liquid, and pore crystals.

2.2 Uniaxial and Triaxial Compressive Strength Tests

Uniaxial and triaxial compressive tests on sandstone speci-

mens with and without in-pore NaCl crystals were conducted

using different confining pressures of 0, 10, 20, and 30 MPa,

respectively. The specimen in the pressure cell is connected

to the NaCl solution, in a sealed cavity, by tubes, which

guaranteed supersaturation for NaCl crystal growth by the

temperature difference between the pressure cell and the seal

cavity. All tests were conducted isothermally at 25 �C. At

least three specimens were used for each test. After the

compressive tests, the failed specimens were drained of pore

liquid using nitrogen to facilitate SEM and EDX processing.

The results in Fig. 1 indicate that NaCl crystals exist in the

sandstone saturated with supersaturated NaCl solution but the

sandstone saturated with saturated NaCl solution was free of

in-pore NaCl crystals. As seen in Fig. 2, at the same confining

pressure, the average peak strength of the sandstone without

in-pore NaCl crystals is lower than that with in-pore NaCl

crystals. Furthermore, the linear Mohr–Coulomb envelope

Table 1 Size and wave velocities of the sandstone specimens

No. Diameter

(mm)

Height

(mm)

Wave velocity

(m/s)

Saturation condition

of solution at 25 �C

No. Diameter

(mm)

Height

(mm)

Wave velocity

(m/s)

Saturation condition

of solution at 25 �C

1 49.23 100.11 1,487 Saturation 17 49.20 100.20 1,487 Supersaturation

2 49.15 98.14 1,363 Saturation 18 49.22 100.08 1,433 Supersaturation

3 49.11 100.04 1,370 Saturation 19 49.04 100.10 1,375 Supersaturation

4 49.01 99.99 1,449 Saturation 20 49.02 100.20 1,378 Supersaturation

5 48.25 100.18 1,431 Saturation 21 49.18 99.96 1,489 Supersaturation

6 48.15 100.03 1,409 Saturation 22 48.32 100.08 1,419 Supersaturation

7 49.10 100.21 1,373 Saturation 23 48.10 100.18 1,377 Supersaturation

8 49.09 100.10 1,494 Saturation 24 49.12 99.96 1,494 Supersaturation

9 49.11 100.13 1,361 Saturation 25 49.14 100.52 1,399 Saturation

10 49.02 100.53 1,377 Saturation 26 49.10 99.72 1,434 Supersaturation

11 48.99 99.64 1,423 Saturation 27 49.06 99.58 1,387 Saturation

12 49.02 98.10 1,393 Saturation 28 49.00 99.80 1,493 Saturation

13 48.16 100.06 1,370 Supersaturation 29 49.20 99.70 1,426 Saturation

14 48.24 100.02 1,449 Supersaturation 30 49.25 99.91 1,486 Supersaturation

15 49.00 100.22 1,431 Supersaturation 31 48.99 99.94 1,415 Supersaturation

16 49.10 100.04 1,364 Supersaturation 32 49.15 100.02 1,394 Supersaturation

H. Zheng et al.

123



for sandstone with and without in-pore NaCl crystals is shown

in Fig. 3: the apparent cohesion and angle of internal shearing

resistance of sandstone without in-pore NaCl crystals are also

lower than those with in-pore NaCl crystals. In other words,

due to the improved ‘‘gluing effect’’ and attraction between

the solid grains, in-pore NaCl crystallization increases the

shear strength of the sandstone specimens.

2.3 Creep Properties of Sandstone with and Without

In-Pore NaCl Crystals

To explore the effect of in-pore NaCl crystallization on the

long-term mechanical behavior of sandstone, a series of

isothermal creep tests under undrained conditions using

5 MPa confining pressure and three levels of deviator stress

(10, 15, and 20 MPa) were conducted on specimens with and

without in-pore crystals. The loading cell temperature was

also controlled at 25 �C, i.e., the temperature at which the

uniaxial and triaxial compressive tests were conducted. As in

the compressive tests, the specimen in the pressure cell was

also connected to the NaCl solution in a sealed cavity with

inter-connecting tubes. Besides this, the solution in the seal

cavity can be supplied using a pump during creep testing to

provide the necessary supersaturation required for growth of

in-pore NaCl crystals. At each deviator stress level, if the

deformation rate is _u B 10-7 m/s (Jun 1999), it can be con-

sidered that the specimen will reach its stable creep stage.

Then, the next deviator stress level is loaded. As indicated in

(b)(a)

Element Wt% At%

O K 23.94 36.73

FeL 11.41 05.01

NaK 06.69 07.14

AlK 13.48 12.26 

SiK 44.47 38.86 

(c) 

Element Wt% At%

NaK 34.68 45.02

ClK 65.32 54.98

(d)

1.0 

779 

623 

467 

311 

155 

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10
0 

Na 
Fe

O 

Si 

Al 

Na 

Cl
1.6 

1.3 

1.0 

0.6 

0.3 

0.0 
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.011.0

Fig. 1 SEM pictures at 600

times magnification for

a sandstone saturated with

saturated NaCl solution, and

b sandstone saturated with

oversaturated NaCl solution

after triaxial compressive tests,

and c microanalysis result of

EDAX on the surface point in

(a), and d microanalysis result

of EDAX on the crystals point

in (b)
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Fig. 4, there are NaCl crystals precipitated in the pores of the

sandstone saturated with oversaturated NaCl solution while

there are no NaCl crystals adhering to the surface of the

mineral particles in sandstone saturated with saturated NaCl

solution. As can be seen from Fig. 5, the difference between

initial and final values of the axial strain during each creep

level and the time taken to reach stable creep in the sandstone

without in-pore NaCl crystals are larger than those for

sandstone with in-pore NaCl crystals. This means that in-pore

NaCl crystallization reduces creep.

2.4 Poromechanical Parameters of Sandstone

with and Without In-Pore NaCl Crystals

In order to investigate the effect of NaCl crystallization on

the poromechanical properties of sandstone with and

without in-pore NaCl crystals, three kinds of isothermal

isotropic compression tests were conducted. The loading

cell temperature was also controlled at the same 25 �C as

before. The test results are summarized in Table 2.

(1) Undrained isotropic compression tests (UHP)

The sandstone specimens with and without in-pore NaCl

crystals were loaded under undrained conditions. All tests had

the same loading path process, i.e., the axial stress and con-

fining pressure was increased up to 10 MPa at the same

loading rate and in the same stress state keeping

r1 = r2 = r3 = rm. Curves showing the pore liquid pres-

sure and hydrostatic stress and curves of the hydrostatic stress

and volumetric strain for specimens with and without in-pore

NaCl crystals were thus obtained, as shown in Fig. 6.

Skempton coefficients, B0 and B, for the sandstone with and

without in-pore NaCl crystals, respectively, can be obtained

by calculating B ¼ � DPL

Drm
. The bulk moduli K 0u and Ku for both

cases can also be obtained using Ku ¼ Drm

Dev

h i
Dm¼0

; where the

pore liquid mass is unchanged (i.e., Dm = 0).

(2) Drained isotropic compression tests (DHP)

The sandstone specimens with and without in-pore NaCl

crystals had the same loading process here as in the UHP

tests but without the pore liquid pressure increment. The

drained bulk modulus K
0

and K for the sandstone with and

without in-pore NaCl crystals can be obtained from Fig. 7a

by using the formula K ¼ Drm

Dev

h i
DPL¼0

, where the pore

liquid pressure is invariant (i.e., DPL = 0).

(3) Uniform loading rate tests (ULR)

Hydrostatic stress for the sandstone specimens with and

without in-pore NaCl crystals followed the same loading

process as UHP tests. Meanwhile, pore pressure was

increased at the same rate as the hydrostatic stress during

these tests. The solid matrix bulk modulus, KS and K 0S, are

calculated from the curves in Fig. 7b by using the formula

KS ¼ Drm

Dev

h i
Drm¼DPL

.

Table 2 shows the different poromechanical parameters

of the sandstones with and without in-pore NaCl crystals.

All the poromechanical parameters of the sandstones with

in-pore NaCl crystals, except the Skempton coefficient, are

larger than those without crystals. Due to the NaCl crys-

tallization in the pores, solid cementation of the sandstones

with in-pore NaCl crystals is enhanced and its bulk mod-

ulus then improved. Skempton coefficients are porome-

chanical parameters reflecting pore compressibility. As a

result of the smaller porosity and poorer pore connectivity

in sandstones with in-pore NaCl crystals (due to the crys-

tals filling and cementing the pores), its Skempton coeffi-

cient is smaller than in sandstone without crystals. Besides,

the skeleton of sandstones with in-pore NaCl crystals is
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Fig. 2 The mean peak strength and confining pressure of sandstone

with and without in-pore NaCl crystals
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Fig. 3 The linear Mohr–Coulomb envelopes for a sandstone with in-

pore NaCl crystals, and b sandstone without in-pore NaCl crystals
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harder than these without crystals, which makes the spec-

imens less compressible.

The results of the compressive tests, creep tests, and

poromechanical tests indicate that NaCl crystallization in

the pores can enhance the compressive strength and bulk

modulus under a given confining pressure. It can also mask

the creep characteristics (such as the difference between

initial and final value of axial strain during each creep level

and the time taken to reach stable creep) of the sandstone.

Further, it also makes the pore liquid pressure in the

sandstone less sensitive to the hydrostatic stress.

3 Viscoelasticity Model for Porous Materials

with Crystallization

Based on thermochemistry and poromechanics, a viscoelastic

mechanical model for porous materials with NaCl crystalli-

zation in pores is established to describe the long-term

mechanical behavior of sandstone with NaCl crystallization.

For a sandstone skeleton, taking the interfacial energy as the

non-volume work in the laws of thermodynamics (Coussy

2004; Adamson 1990), the state equation for the rock skeleton

can be expressed in a Clausius–Duhem inequality:

(a)

(d)

(b)

Element Wt% At%

O K 35.09 48.69

SiK 64.91 51.31 

(c)

Element Wt% At%

NaK 31.27 40.32

AlK 04.19 04.60 

SiK 07.65 08.08 

ClK 50.90 42.57

CaK 05.99 04.43
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0 

Fig. 4 SEM pictures at 600

times magnification for

a sandstone saturated with

saturated NaCl solution, and

b oversaturated NaCl solution

after the creep tests, and

c microanalysis result of EDAX

on the surface point in (a), and

d microanalysis result of EDAX

on the surface point in (b)
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rijdeij þ PCd uC þ PLd uL � SsdT þ cSLdA� dFs� 0; ð1Þ

where rijdeij is the infinitesimal element of strain work

done by the surroundings on the entire porous material, PC

and PL are the pressure in crystal and liquid. When the pore

is filled by crystal and liquid, the porosity u can be divided

into partial uC and uL, which are occupied by crystal and

liquid, respectively. Ss and T are the entropy of the skeleton

and temperature, respectively. cSLdA is the infinitesimal

interfacial energy increment at the fluid–solid interface

with an infinitesimal area increment of the pore surface,

and FS is the Helmholtz free energy of the skeleton.

Here, compressive stress is defined as a positive quan-

tity. The state equation includes the effect of the mechan-

ical deformation of the porous solid on the part of the

Helmholtz free energy associated with the evolution of the

fluid–solid interface. The equality in Eq. 1 applies to

elastic, i.e., reversible, processes.

In order to deduce the viscoelastic constitutive equations

for the porous material with NaCl crystallization, the

relationships between the parameters in the state equation,

Eq. (1), are first investigated (Sect. 3.1). The relationship

between the pore surface area A and the total porosity u

(including uL and uC) is established on the basis of a

geometrical model which describes the equilibrium shape

of the NaCl crystal and a cylindrical pore. The relation-

ships between cSL, PC, and PL in the state equation are

established by using crystal growth theory. PS, the total

normal stress on the pore surface, is introduced to describe

the relation with PL and the stress field rij in the porous

material. Based on these relations, the viscoelastic consti-

tutive equations are then established in Sect. 3.2.

3.1 Determination of the Relationships Between

Parameters

3.1.1 Determination of the Relationship Between A and u

Porous materials are complex in terms of pore geometries,

pore space position, and solid grain properties, etc. To

quantify the pore geometry and connected space vector in

the given space coordinate system, the pore network is

described by an average pore radius rp (Fig. 8) and a pore

space position vector Vi (OO
0

in Fig. 8). A cylindrical pore

structure model in each representative volume element is

considered here (for uniformity just like the ‘‘tubes-in-series’’
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Fig. 6 a Pore liquid pressure (PL) versus hydrostatic stress (rm), and

b the hydrostatic stress (rm) versus volumetric strain (ev) of the

sandstone specimens with and without in-pore NaCl crystals under

undrained conditions

Table 2 Parameters in each hydrostatic stress test for sandstone

specimens with and without in-pore NaCl crystals

Sandstone

specimen

Components Test

type

Parameters

Without in-

pore NaCl

crystals

Solid matrix, pore

liquid

UHP Ku = 1,970.29 MPa;

B = 0.2681

DHP K = 1,526.20 MPa

ULR KS = 10,151.30 MPa

With in-pore

NaCl

crystals

Solid matrix, pore

liquid, and pore

crystal

UHP K 0u = 2,256.62 MPa;

B
0

= 0.2086

DHP K
0

= 1,871.28 MPa

ULR K 0S = 11,365.21 MPa
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model used in the TOUGH2 simulator for converging–

diverging pore channels). The size of the cylinder pore

model is specified to depend only on the average pore

radius, rp, while the cylinder length, L, is fixed as a con-

stant. In each representative volume element, the cylin-

drical pore volume and surface area are expressed as

u ¼ Lr2
pp and A = 2Lrpp, respectively. The partial and

total derivatives of u with respect to A are given by

ou
oA
¼ rp

2
;
du
dA
¼ rp: ð2Þ

As the pore shape includes the pore canal and pore

throat described in the structure of reservoir rock for

petroleum engineering, the average pore radius rp can be

obtained by calculating the average value of the pore canal

radius rca and pore throat radius rth using Eq. (3),

rp ¼
rca þ rth

2
; ð3aÞ

where, rca and rth are calculated by the following empirical

formulae (Pittman 1992; Yang and Wei 2004):

log rca ¼ �0:117þ 0:475 log k � 0:99 log u; ð3bÞ

rth ¼
20

7

ffiffiffiffi
k

u

s
: ð3cÞ

3.1.2 Determination of the Relationship Between PC

and PL

To determine the relationship between PC and PL, the shape

of the crystals in the pores is investigated. Similar in

essence to the reverse mechanism of the pressure-solution at

grain contact (Aharonov and Katsman 2009), the equilib-

rium shape of the crystal is formed by dissolution from the

high pressure surfaces and precipitation at lower pressures.

It is noted that, with the deformation of the porous matrix

and change in the stress field, the equilibrium state is dis-

turbed and a new equilibrium is established via ionic

transportation. Compared with the long-term process of

sandstone deformation, the relaxation time for ionic trans-

portation to establish a new equilibrium is much shorter.

Therefore, during long-term deformation of sandstone, the

crystallization state can be considered as a quasi-static

equilibrium state which satisfies the phase equilibrium of

the solute between solution and crystal with equilibrium

shape. In the quasi-static equilibrium state, the chemical

potentials are equal everywhere along the crystal surface,

and there is no phase change on the contact surface around

the crystal. For crystals in pores, the equilibrium shape is

restricted by the pore surface. In this case, the stress on the

pore surface generated from crystallization depends on the

crystal equilibrium shape and pore structure.
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Fig. 8 Cylinder pore structure model for each representative volume

element
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The crystallization pressure can be expressed in terms

of solution activity (Scherer 1999; Flatt and Scherer 2008)

as:

PC ¼ PL þ
RT

mC

ln
a

a0

� �
; ð4Þ

where R is the ideal gas constant, a is the activity of the

solution, a0 is the equilibrium activity of the solution, and

mC is the molar volume of the crystal.

According to Laplace’s equation (Adamson 1990), an

alternative formulation for crystallization pressure using

cCL and jCL can be written as:

PC ¼ PL þ cCLjCL: ð5Þ

The interfacial energy and interface curvature are rep-

resented as:

cCS ¼ cLS � cCL cos h; ð6aÞ

jCL ¼ �
2 cos h

rp

; ð6bÞ

where h is the contact angle between the crystal and the

pore surface shown in Fig. 9.

To investigate the effect of crystallization pressure on

the mechanical behavior in the porous material, the maxi-

mum pressure in the crystal is suggested to be in the quasi-

static equilibrium state, i.e., that at the contact angle

h = 180�. In that case, a thin liquid film with thickness d
(d � rp) exists between the crystal and the pore surface, as

shown in Fig. 10.

As Fig. 11 shows, along with the pressure in the crystal,

the pressure in the liquid and the capillary pressure from

the crystal-liquid surface, the mechanical equilibrium at the

tip of the crystal can be established as:

PC ¼ PL þ
2cCL

rp � d
: ð7Þ

Considering the pressure in the crystal, the pressure in

the liquid, the stress exerted on the crystal’s side by pore

surface rc, and the capillary pressure from the crystal–

liquid surface, the mechanical equilibrium at the cylindri-

cal sides of the crystal can be established as:

PC ¼ PL þ
cCL

rp � d
þ rc: ð8Þ

3.1.3 Determination of the Relationship Between PS, PL,

and rij

By considering contributions from rc, the pressure in the

liquid, and the capillary pressure from the solid–liquid

interface, the total normal stress on the cylinder pore sur-

face can be expressed as:

PS ¼ PL þ rc �
cSL

rp

: ð9Þ

PS is both exerted on the crystal and liquid and is related to

the stress field in the rock.

According to the Cauchy formula, PS at the random

point H on the pore surface in Fig. 8 with the normal row

vector Qi and the normal column vector Qj is defined as:

PS ¼ QirijQj; ð10aÞ

Qi ¼ Q0j ¼ O0H ¼ ðl;m; nÞ; ð10bÞ

where Q0j is the transposed matrix of Qj. Other quantities

are l = cosh1 = cosa1sin/1, m = cosh2 = cosa2sin/2,

Rock solid

Liquid 

pr

Rock solid

θ
Crystal

Fig. 9 Shape of a salt crystal in a cylindrical pore with radius rP. The

contact angle between the crystal and the pore wall is h

Crystal

Liquid 

Rock solid

Rock solid

pr

δ

δ−

Fig. 10 Pore structure model of the porous material subjected to in-

pore crystallization when a thin liquid film of thickness d exists

between the crystal and pore inner wall
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CP

LP

C 

L 
CP

SP

δ

Fig. 11 a A cross-section of the surface of the pore structure, and

b the tip of the crystal in the pore
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n = cosh3 = cosa3sin/3, and /1, /2, and /3 are the angles

between the pore space position vector OO0 and the three

orthogonal principal stress axes r1, r2, and r3, respec-

tively. Also, h1, h2, and h3 are the angles between the

principal stress coordinates and the vector O0H, and a1, a2,

and a3 are the angles between O
0
A and the three projection

axes O0r01, O0r02, and O0r03, respectively.

According to the trigonometric function relations, if the

pore space position vector (Vi) is given, a1, a2, and a3 can

be reduced to one independent variable. The partial

derivative of PS with respect to rij in Eq. (10) is written as:

oPS

orij

¼ QjQi ¼
l2 ml nl

lm m2 nm

nl mn n2

0
@

1
A: ð11Þ

At a given pore space position case, PS changes with the

variation of the position of point H. On the basis of a small

deformation assumption, the pore geometry keeps cylindrical

and the stress distributes uniformly around the pore surface.

Therefore, the integral average of the normal stress PS is used:

PS ¼
1

2p

Z2p

0

QirijQjda1 ¼
Z2p

0

QjQi

2p
da1rij ¼ Rijrij; ð12Þ

where Rij ¼
R 2p

0

QjQi

2p da1 is defined as the pore stress dis-

tribution tensor.

3.2 Establishment of the Viscoelastic Constitutive

Equations for the Porous Material

A viscoelastic model for the porous material with crystal-

lization is established to describe the influence of crystal-

lization on the long-term mechanical behavior on the basis

of the Clausius–Duhem inequality, Eq. 1. The constitutive

equations for the porous material with crystallization con-

sist of an elastic model and a viscous model which are

established in the following sub-sections, respectively.

3.2.1 Elastic Model of the Constitutive Equations

for the Porous Material with Crystallization

To investigate the elastic constitutive equations for the

porous material with crystallization, Eq. (1) representing

the Helmholtz free energy is transformed into the Gibbs

free energy Gs as:

Gs ¼ Fs � PCue
C � PLue

L; ð13Þ

where �PCue
C � PLue

L is the elastic expansion work

resulting from the variation of the pore volume in the

crystal and liquid.

Substituting Eq. (13) into Eq. (1) in the elastic phase gives

rijdee
ij � ue

CdPC � ue
LdPL � SsdT þ cSLdAe � dGs ¼ 0: ð14Þ

As a function of ee
ij, PC, PL, T, and Ae, the partial dif-

ferential forms of Gs ¼ Gs ee
ij;PC;PL; T ;A

e
� �

in Eq. (14)

are derived as:

rij ¼
oGs

oeij

; ue
C ¼ �

oGs

oPC

; ue
L ¼ �

oGs

oPL

; Ss ¼ �
oGs

oT
;

cSL ¼
oGs

oAe
: ð15Þ

According to Eqs. (2), (9), and (12), the following

relationships can be deduced from Eq. (15) (see

‘‘Appendix A’’) as:

orij

oAe
¼ ocSL

oee
ij

¼ �rpRklCijkl;
orij

oPJ

¼ � oue
J

oee
ij

¼ �bJ
ij; ð16aÞ

oue
J

oT
¼ oSs

oPJ

¼ �3aJ
u;

orij

oT
¼ � oSs

oee
ij

¼ �Cijklakl; ð16bÞ

oSs

oAe
¼ � ocSL

oT
¼ �rpRklCijklaij;

ocSL

oAe
¼ r2

pRijRklCijkl: ð16cÞ

On the basis of Eq. (16), the incremental forms of the

elastic constitutive equations are represented by:

drij¼
orij

oee
kl

dee
klþ

orij

oPC

dPCþ
orij

oPL

dPLþ
orij

oT
dTþorij

oAe
dAe

¼Cijkldeij�bC
ij dPC�bL

ijdPL�CijklakldT�rpRklCijkldAe;

ð17aÞ

due ¼ due
C
þ due

L

¼
X

J¼C;L
K¼C;L

oue
J

oee
ij

dee
ij
þ

oue
J

oPK

dPK þ
oue

J

oT
dT þ

oue
J

oAe
dAe

 !

¼
X

J¼C;L
K¼C;L

bJ
ijdee

ij
þ 1

NJK

dPK � 3aJ
udT

� �
þ rp

2
dAe;

ð17bÞ

dSs ¼
oSs

oee
ij

dee
ij
þ oSs

oPC

dPC þ
oSs

oPL

dPL þ
oSs

oT
dT þ oSs

oAe
dAe

¼ Cijklakldee
ij
� 3aC

udPC � 3aL
udPL þ

C

T
dT

� rpRklCijklaijdAe; ð17cÞ

dcSL ¼
ocSL

oee
ij

deij þ
ocSL

oPC

dPC þ
ocSL

oPL

dPL þ
ocSL

oT
dT þ ocSL

oAe
dAe

¼ �rpRklCijkldee
ij
� rp

2
dPL þ rpRklCijklaijdT þ r2

pRijRklCijkldAe:

ð17dÞ

Restricting consideration to isothermal changes and

materials with isotropic linear poroelasticities, the effect

of temperature is removed and Biot’s tensor bJ
ij is isotropic

and makes no contribution to the deviator stress sij. Since

the tangential properties are constant, substituting the total
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derivatives of u with respect to A in Eq. (2) allows the

isothermal, isotropic linear poroelasticity constitutive

equations to be deduced from Eq. (17) (see ‘‘Appendix

B’’) as:

rm � r0
m ¼ Kev � bC þ bL

� �
PL � P0

L

� �
� K u� u0ð Þ; ð18aÞ

sij � s0
ij ¼ 2Geij � vij u� u0ð Þ; ð18bÞ

1

2
u�u0ð Þ¼ bCþbL

� �
evþ PL�P0

L

� �
� 1

NLL

þ 2

NLC

þ 1

NCC

	 

;

ð18cÞ

cSL � c0
SL ¼ �rp Kev þ vijeij

� �
� rp

2
PL � P0

L

� �

þ rp K þ vð Þ u� u0ð Þ; ð18dÞ

where r0
m, s0

ij, u0, P0
L and c0

SL stand for the initial mean

stress, deviator stress, porosity, liquid pressure, and inter-

facial energy, respectively.

3.2.2 Viscous Model of the Constitutive Equations

for Porous Materials with Crystallization

To establish the viscous constitutive equations for a porous

material with crystallization under isothermal conditions,

the viscous deformation energy (U) as an energy that is

irrecoverable but not dissipated during instantaneous elas-

tic unloading, is introduced. The viscous deformation

energy is stored in the rock skeleton by the viscous strain of

the rock skeleton ev
ij, the viscous change of porosity uv, and

the viscous change of pore surface area Av, i.e., U = U(ev
ij,

uv, Av).

To simplify the relationship between the viscous change

in porosity uv and the viscous volumetric strain of the rock

skeleton, ev
v, the relation suggested by Coussy (2004) is

adopted, namely,

uv ¼ bev
v; ð19Þ

where the coefficient of viscous porosity variation, b, is a

number from 1 to u0. b = 1 applies to a solid matrix

exhibiting volumetric strain only instantaneously (with

zero viscous component), while b = u0 corresponds to the

case where the solid matrix experiences a viscous volu-

metric strain, which is equal to that of the skeleton (i.e.,

ev
v = ev

vs).

On the basis of Eqs. (2) and (19), uv and Av are all

represented by ev
v. Therefore, the viscous deformation

energy depends on ev
v and the viscous deviatoric strain in

the rock skeleton ev
ij only, i.e., U = U(ev

v, ev
ij).

By introducing the viscous drained bulk modulus j and

the viscous shear modulus 1 which are analogous to the

drained bulk modulus K and the shear modulus G in the

elastic work equation, the viscous deformation energy U

can be defined, in a manner similar to the elastic defor-

mation energy, by:

Uðev
v; e

v
ijÞ ¼

1

2
jev2

v þ fev2

ij : ð20Þ

As the total strain eij and porosity u consist of the elastic

components and viscosity components, respectively,

eij ¼ ee
ij þ ev

ij; ð21aÞ

u ¼ ue þ uv: ð21bÞ

The free energy of the rock skeleton, Fs, split into elastic

work Ws and viscous energy U can thus be expressed as

Fs ¼ Ws ee
v; e

e
ij;u

e;Ae
� �

þ U ev
v; e

v
ij

� �
; ð22aÞ

Ws ee
v; e

e
ij;u

e;Ae
� �

¼ Ws ev � ev
v; eij � ev

ij;u� bev
v;A� Av

� �

¼ 1

2
rmee

v þ
1

2
sije

e
ij þ

1

2
PLDue þ 1

2
cSLDAe:

ð22bÞ

According to Eq. (2), Ae is related to ue. The elastic work

Ws depends on ev
e, eij

e and ue for a linear isotropic material

and can be written as

Ws ee
v; e

e
ij;u

e
� �

¼ 1

2
rmee

v þ
1

2
sije

e
ij þ

1

2
PL ue � u0ð Þ

þ cSL

2rp

ue � u0ð Þ: ð23Þ

Substituting Eqs. (18), (20), (22) and (23) into Eq. (1) gives

the state equation for the isothermal and isotropic rock

skeleton in the following form (see ‘‘Appendix C’’):

rmdevþ sijdeij þPCduC þPLduLþ cSLdA� dFs

¼ rm þ bPLþ
cSL

rP

b� jev
v

� �
dev

vþ sij� 21ev
ij

� �
dev

ij � 0:

ð24Þ

In order to deduce the constitutive equations from Eq. (24),

the following dissipation function is defined to express the

right-hand side of Eq. (24) as the dissipation part in this

inequality:

FD ¼ rm þ bPL þ
cSL

rp

b� jev
v

� �
_ev
v þ sij � 21ev

ij

� �
_ev
ij: ð25Þ

The partial derivative of FD with respect to _ev
v and _ev

ij are

represented, respectively, as

rm þ bPL þ
cSL

rp

b� jev
v

� �
¼ oFD

o _ev
v

; ð26aÞ

sij � 21ev
ij

� �
¼ oFD

o _ev
ij

: ð26aÞ

Similar to U in Eq. (20), FD as a function of _ev
v and _ev

ij can

also be given as
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FD _ev
v; _ev

ij

� �
¼ 1

2
f _ev2

v þ g _ev2
ij � 0; ð27Þ

where f and g are the coefficients of the dissipation func-

tion which are positive and can be identified as the volu-

metric viscous coefficient and the shear viscous coefficient,

respectively.

Substituting Eq. (27) into Eq. (26), the viscoelastic

constitutive equations for isothermal changes and isotropic

porous materials with crystallization are expressed as

rm þ bPL þ
cSL

rp

b ¼ jev
v þ f _ev

v; ð28aÞ

sij ¼ 21ev
ij þ 2g _ev

ij; ð28bÞ

where the coefficients j, f, 1 and g are to be determined.

4 Determination of the Parameters

in the Viscoelasticity Model

To determine the parameters in Eq. (28), we consider a

process under constant stress. The strain versus time rela-

tionship in Eq. (28) is then first deduced in the form:

ev
v ¼ rm þ bPL þ

cSL

rp

b

� �
1

j
1� e�

j
ft

� �
; ð29aÞ

ev
ij ¼ sij

1

21
1� e�

21
g t

� �
: ð29bÞ

The parameters in Eq. (28) can be determined according

to the empirical formulae and creep test results at every

deviator stress level in Sect. 2.3. For example, for the first

deviator stress level of the creep tests in Sect. 2.3, the

sandstone was under constant stress: r3 = 5 MPa and

r1 - r3 = 10 MPa. The process reached a steady state

where the strain rate was small enough for it to be assumed

that _ev
v ¼ _ev

ij ¼ 0 in Eq. (28). As the crystallization is in the

quasi-static equilibrium state which satisfies phase equi-

librium, the interfacial energy cSL is constant during the

small deformation. In the creep test, rm and sij are given; b
is from 1 to u0; PL can be calculated by using the Skempton

coefficients (Table 2) and rm = (r1 ? r2 ? r3)/3. The rest

of the parameters are determined by using the methods in

the following sub-sections.

4.1 Determination of
cSL

rp
b

For a NaCl solution with a mass fraction between 0.14 and

25.96 % and temperature between 0 and 30 �C, an

expression for the surface tension of the solution can be

obtained from the literature (Seawater desalination manual

1974) in the form,

cL ¼ 7:549� 10�2 þ 3:670� 10�2c� 1:485� 10�4t:

ð30Þ

According to Young’s equation (Adamson 1990):

cSL ¼ cS � cL cos w; ð31Þ

where w is the contact angle between the saturated NaCl

solution and sandstone (Table 3).

Since b is from 1 to u0, the range of
cSL

rp
b in Eq. (29) for

the sandstone specimen without in-pore NaCl crystals can

be deduced to be 0.01883 MPa B
cSL

rp
b B 0.08505 MPa.

For the sandstone with in-pore NaCl crystal, the

experimental formula Eq. (30) is not applicable (Table 4).

Substituting Eqs. (4), (7), and (8) into Eq. (9) gives

cSL

rp

¼ PL þ
RT

2vC

ln
a

a0

� �
� PS:

The corresponding range of
cSL

rp
b for samples with in-pore

NaCl crystals is calculated as 0.3037 MPa B
cSL

rp
b B 1.3710 MPa.

Table 3 Parameters to determine
cSL

rp
b for sandstone without in-pore NaCl crystals

Parameters Surface energy of

saturated NaCl

solution, cL (mJ/m2)

Surface energy of

rock, cS (mJ/m2)

Contact angle,

w (�)

Liquid–solid

interfacial energy,

cSL (mJ/m2)

Porosity, u0 Mean pore

radius, rp (lm)

Value 81.52 208.76 57.3 164.68 22.15 % 1.93639

Method Eq. (30) Tracer liquid and

contact angle meter

Contact angle

meter

Eq. (31) Saturation and

caliper techniques

Eq. (3)

Table 4 Parameters to determine
cSL

rp
b for sandstone with in-pore NaCl crystals

Parameters Pore liquid pressure,

PL (MPa)

Total normal stress on

pore surface, PS (MPa)

Activity of solution,

a (mol/L)

Equilibrium activity

of solution, a0 (mol/L)

Molar volume of NaCl

crystal, mC (cm3/mol)

Value 1.7233 8.3333 6.1149 5.2001 24.55

Method ‘‘Appendix D’’ ‘‘Appendix D’’ Cohen (1988) Cohen (1988) (Scherer 1999)
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4.2 Determination of the Model Coefficients

The relationships among the viscosity model parameters,

bulk modulus, and shear modulus are obtained from

Coussy (2004) as:

1

K0

þ 1

j
¼ 1

K1
;

1

G0

þ 1

1
¼ 1

G1
: ð32Þ

For the first deviator stress level used in the creep tests,

the total strain is divided into volumetric strain and deviator

strain. To determine the coefficients, plots of the volumetric

strain and axial deviator strain (i.e., e1 = e1 - ev/3) versus

time for the sandstones with and without in-pore crystals are

obtained as shown in Fig. 12. The corresponding coeffi-

cients derived from the creep test results are summarized in

Table 5.

According to the initial conditions _ev
v t ¼ 0ð Þ ¼

rm þ bPL þ cSL

rp
b

� �
1
f and _ev

1 t ¼ 0ð Þ ¼ s1
1
g from Eq. (29),

and so the coefficients f and g can be calculated. Using the

lower and upper bounds of b, the lower and upper bounds

of the dissipation function coefficient f for the sandstone

without in-pore NaCl crystals are 1.5755 9 106 and

2.0968 9 106 MPa h, respectively. The two bounds for the

sandstone with in-pore NaCl crystals are 1.5775 9 106 and

1.8930 9 106 MPa h, respectively. The dissipation func-

tion coefficients g for the saturated sandstones and the

oversaturated sandstones are 7.95391 9 105 and

2.15391 9 105 MPa h, respectively.

Model curves (Fig. 13) of the constitutive equation

Eq. (29) are created to compare with the visco-volumetric

strain versus time and axial visco-deviator strain versus

time data. The test result curves in Fig. 13 are obtained

from Fig. 12 by removing the instantaneous strain.

It can be seen from Fig. 13 that the established model is

quite acceptable. Also, the model results for the visco-

volumetric strain versus time of both sandstones are better

than those for the axial visco-deviator strain versus time.

The reason for this may be related to the hypothesis that the

material is isotropic. In reality, property parameters such as

the Biot tensor are anisotropic and make some contribution

to sij. Therefore, anisotropy should be taken into account in

further studies.

5 Discussion

The viscoelastic poromechanical model developed in this

paper is intended to describe the long-term mechanical

behavior of sandstone with NaCl crystallized in its pores

0.22

0.225

0.23

0.235

0.24

0 50 100 150 200 250 300V
ol

um
et

ric
 s

tr
ai

n 
(E

-2
m

m
/m

m
)

Time (hour)

(a)

0.18

0.185

0.19

0.195

0.2

0 25 50 75 100 125 150 175

Time (hour)

V
ol

um
et

ric
 s

tr
ai

n 
(E

-2
m

m
/m

m
)

(b)

0.61

0.62

0.63

0.64

0.65

0.66

0 50 100 150 200 250 300A
xi

al
 d

ev
ia

to
r 

st
ra

in
 (

E
-2

m
m

/m
m

)

Time (hour)

(c)

0.53

0.54

0.55

0.56

0.57

0.58

0 25 50 75 100 125 150 175

Time (hour)

A
xi

al
 d

ev
ia

to
r 

st
ra

in
 (

E
-2

m
m

/m
m

)

(d)

Fig. 12 Volumetric strain versus time for the first level creep tests

showing a sandstone without in-pore NaCl crystals, and b sandstone

with in-pore NaCl crystals. The axial deviator strain versus time plots

for the first level creep test are shown for c sandstone without in-pore

NaCl crystals, and d sandstone with in-pore NaCl crystals (confining

pressure r3 = 5 MPa; deviated stress r1-r3 = 10 MPa)
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based on thermochemistry. The model is restricted to iso-

thermal changes and isotropic materials. If the effect of

NaCl crystallization and interfacial energy in Eq. (1) is

ignored, the viscoelastic poromechanical model for an

isothermal process and linear isotropic material in Eqs. (18)

and (28) reduce to Eqs. (4.62) under isothermal conditions

and (9.14) in Coussy (2004), i.e.,

drm ¼ Kdee
v � bdP;

dsij ¼ 2Gdee
ij;

rm þ bPL ¼ jev
v þ f _ev

v;

sij ¼ 21ev
ij þ 2g _ev

ij:

Compared with the above model, Eq. (18) and (28)

can quantify the impact of crystallization on the

mechanical properties in terms of the pores’ geometric

sizes and the interfacial energy between the pore fluid

and rock solid. When crystallization occurs in porous

material, the crystallization pressure driven by supersat-

uration can exert itself on the pore surface. These

influences are embodied in the solid–liquid interfacial

energy
cSL

rp
¼ PL þ RT

2vC
ln C

C0

� �
� PS. Therefore, to describe

the influence of crystals on the poromechanical proper-

ties, it is reasonable to add in the interfacial energy

factor to the constitutive relations.

6 Conclusions

The influence of NaCl crystallization on the long-term

mechanical behavior of sandstone has been investigated

using laboratory isothermal tests and theoretical analysis. A

series of laboratory isothermal tests including uniaxial and

triaxial compressive tests, creep tests, and poromechanical

tests on sandstone with and without in-pore NaCl crystals

have been conducted. The test results indicate that NaCl

crystallization in pores enhances the compressive strength

and bulk modulus under a given confining pressure and

reduces creep (for example, the difference between initial

and final value of the axial strain during each creep level

and the time taken to reach stable creep). In addition, it

makes the pore liquid pressure in the sandstone less sen-

sitive to changes in hydrostatic stress under undrained

conditions. These test results are important for estimation

of the reservoir’s stability during carbon dioxide seques-

tration in saline aquifers, especially in the dry-out region

closest to the wellbore.

To estimate the effect of in-pore crystallization on the

long-term mechanical behavior of the reservoir, a poro-

viscoelastic model for isothermal changes and isotropic

porous materials with crystals in the pores is proposed in

this paper. Based on an assumed geometrical model for the

crystal-in-pore framework, a mechanical model is set up by

quantifying the influence of the interfacial energies and

pore size distribution on the effective stress in terms of

crystal pressure during deformation. The pore stress dis-

tribution tensor and the interfacial energy are used as the

link in a chemical–mechanical coupling of the porous

material with the crystallization in the pores. These

mechanical constitutive relationships are established under

the precondition of a quasi-static equilibrium state in the

crystal growth. Moreover, the maximal crystal pressure on

the pore surface is used for the quasi-static equilibrium

state on the basis of crystal growth theory and thermody-

namics to maximize the impact of crystallization. With the

relationship between pore volume and pore surface area

based on the geometrical model, the solid–liquid interfacial

energy on the pore surface area can be expediently inclu-

ded into the state equation. The viscoelastic constitutive

equations for isothermal changes and isotropic porous

materials with crystallization were thus established. This

model reduces to Eqs. (4.62) under isothermal conditions

and (9.14) in Coussy (2004) by ignoring the effect of NaCl

crystallization and interfacial energy.

By comparing the output of the model and test results, it

was shown that the poro-viscoelasitic model is acceptable.

The agreement between the output from the model of the

axial visco-deviator strain variation versus time for the

sandstone with and without crystals and the test results is a

little bit weaker than the model output for the visco-volu-

metric strain versus time. This is due to the hypothesis that

the material is isotropic. Thus, the effects of property

parameters (such as the Biot tensor) on the deviator strain,

is ignored. Therefore, anisotropy in these properties should

be taken into account in future studies. Furthermore, the

underground temperature gradient affects the porous rock

dilation and the supersaturation of the pore fluid. As the

result of this, anisothermal evolution should also be con-

sidered in future research.

Table 5 Bulk and shear moduli at the onset of creep and steady state creep for sandstone with and without in-pore NaCl crystals

K0 (MPa) K? (MPa) G0 (MPa) G? (MPa) j (MPa) 1 (MPa)

Sandstone without in-pore NaCl crystal 3,777.58 3,489.07 534.41 508.89 45,682.99 10,658.47

Sandstone with in-pore NaCl crystal 4,549.47 4,360.53 619.40 580.84 104,998.76 9,331.36
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The pore-size distribution is calculated from capillary

entry pressure and cumulative intrusion volume measure-

ments via mercury intrusion porosimetry experiments.

During in-pore crystallization, salt crystals grow prefer-

entially in the largest pores. When a coarse pore is filled

with crystals, crystallization continues in the smaller pores

connected to it (Pruess and Spycher 2007). So, the calcu-

lation method used for the pore radius in the geometrical

model within the crystal-in-pore framework could be fur-

ther improved in subsequent studies by considering the

pore-size distribution and the degree of crystallization at

the same time.
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Appendices

Appendix A: The Solution Process for Eq. (16)

According to Maxwell’s symmetry relations, the partial

differential of the variables in Eq. (14) are

orij

oPJ

¼ � oue
J

oee
ij

;
ouJ

oT
¼ oSs

oPJ

;
ouJ

oAe
¼ � ocSL

oPJ

;

orij

oT
¼ � oSs

oee
ij

;
orij

oAe
¼ ocSL

oee
ij

;
oSs

oAe
¼ � ocSL

oT
:

From Eqs. (9) and (12), the partial derivatives of PS with

respect to cSL and rij can be written as:

oPS

ocSL

¼ � 1

rp

;
oPS

orij

¼ Rij:

Other partial derivative can be expressed as follows:

orij

oAe
¼ ocSL

oee
ij

¼ ocSL

oPS

oPS

orkl

orkl

oee
ij

¼ �rpRklCijkl;

orij

oPJ

¼ � oue
J

oee
ij

¼ �bJ
ij;

oue
J

oT
¼ oSs

oPJ

¼ �3aJ
u;

orij

oT
¼ � oSs

oee
ij

¼ orij

oee
kl

oee
kl

oT
¼ �Cijklakl;

oSs

oAe
¼ � ocSL

oT
¼ � ocSL

oee
ij

oee
ij

oT
¼ �rpRklCijklaij;

ocSL

oAe
¼ ocSL

orij

orij

oAe
¼ ocSL

oPS

oPS

orij

orij

oAe
¼ r2

pRijRklCijkl;

oue

oAe
¼ oue

C

oAe
þ oue

L

oAe
¼ � ocSL

oPC

þ ocSL

oPL

� �
¼ rp

2
:
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Fig. 13 Visco-volumetric strain versus time and lower and upper

bound model curves of a sandstone without in-pore NaCl crystals, and

b sandstone with in-pore NaCl crystals. Also shown are the axial

visco-deviator strain versus time and model curves of c sandstone

without in-pore NaCl crystals, and d sandstone with in-pore NaCl

crystals (confining pressure r3 = 5 MPa; deviator stress r1-

r3 = 10 MPa)
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Appendix B: Main Formulas used to Deduce Eq. (18)

The pore stress distribution factor Rij is written as:

Rij ¼
R 2p

0
QjQida1

2p
¼ 1

2p

Z2p

0

l2 lm nl

ml m2 mn

nl mn n2

0
B@

1
CA

da1 ¼
r11 r12 r13

r21 r22 r23

r31 r32 r33

0
B@

1
CA;

where

l ¼ cos h1 ¼ cos a1 � sin/1; m ¼ cosh2 ¼ cosa2 � sin/2;

n ¼ cosh3 ¼ cosa3 � sin/3;

r11 þ r22 þ r33 ¼
R 2p

0
l2 þ m2 þ n2ð Þda1

2p

¼
R 2p

0
cos2 h1 þ cos2 h2 þ cos2 h3ð Þda1

2p
¼ 1:

For an isotropic linear poroelastic material, the elastic

stiffness modulus is written as:

Cijkl ¼

kþ 2G k k 0 0 0

k kþ 2G k 0 0 0

k k kþ 2G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

2
6666664

3
7777775
:

Accordingly,

where K ¼ kþ 2
3

G, and

vij ¼
2
3

2r11 � r22 � r33ð ÞG 2r12G 2r13G

2r12G 2
3

2r22�r11�r33ð ÞG 2r23G

2r13G 2r23G 2
3

2r33 � r22 � r11ð ÞG

2
4

3
5:

Therefore, RijCijklRkl = K ? Rijvij = K ? v. Here, v is

scalar and v = Rijvij.

For an isotropic linear poroelastic material, the crystal/

liquid Biot tangent tensor is isotropic and bJ
ij ¼ bJdij.

Because rij = rmdij ? sij, eij ¼ ev

3
dij þ eij, so

CijklRkle
e
ij ¼ CijklRkl

ee
v

3
dij þ ee

ij

� �
¼ Kee

v þ vije
e
ij:

Appendix C: The Solution Process for Eq. (24)

The elastic work Ws and viscous deformation energy U are

Ws ee
v; e

e
ij;u

e
� �

¼ Ws ev � ev
v; eij � ev

ij;u� bev
v

� �

¼ 1

2
rmev þ

1

2
sijeij þ

1

2
P � Duþ cSL

2rp

� Du

¼ 1

2
ee

v Kee
v � bC þ bL

� �
PL � K ue � u0ð Þ

� �

þ Gee
ij �

vij

2
ue � u0ð Þ

h i
ee

ij þ
1

2
PL ue

L � uL0

� �

þ 1

2
PL þ

2cCL

rp � d

� �
ue

C � uC0

� �

þ 1

2
�Kee

v � vije
e
ij

� �
� PL

2
þ K þ vð Þ ue � u0ð Þ

	 

ue � u0ð Þ

¼ 1

2
K ev � ev

v

� �2�K ue � u0ð Þ ev � ev
v

� �

� PL

2
ev � ev

v

� �
bC þ bL
� �

� 1

2
ue � u0ð Þ

	 

þ G eij � ev

ij

� �2

� vij eij � ev
ij

� �
ue � u0ð Þ þ 1

2
K þ vð Þ ue � u0ð Þ2

þ cCL

rp � d
ue

C � uC0

� �

¼ 1

2
K ev � ev

v

� �2þ 1

2 1
NLL
þ 2

NLC
þ 1

NCC

h i

� 1

2
ue � u0ð Þ � ev � ev

v

� �
bC þ bL
� �	 
2

þG eij � ev
ij

� �2

� K ue � u0ð Þ ev � ev
v

� �
� vij eij � ev

ij

� �
ue � u0ð Þ

þ 1

2
K þ vð Þ ue � u0ð Þ2þ cCL

rp � d
ue

C � uC0

� �
:

Uðev
v; e

v
ijÞ ¼

1

2
kev2

v þ fev2

ij

So, we get the incremental form of free energy, Fs:

dFs ¼ K ev � ev
v

� �
dev � dev

v

� �
� K ev � ev

v

� �
du� bdev

v

� �

� K dev � dev
v

� �
u� bev

v � u0

� �
þ 1

1
NLL
þ 2

NLC
þ 1

NCC

h i

� 1

2
ue � u0ð Þ � ev � ev

v

� �
bC þ bL
� �	 


� 1

2
du� bdev

v

� �
� bC þ bL
� �

dev � dev
v

� �	 


CijklRkl ¼
r11 þ r22 þ r33ð Þkþ 2r11G 2r12G 2r13G

2r12G r11 þ r22 þ r33ð Þkþ 2r22G 2r23G

2r13G 2r23G r11 þ r22 þ r33ð Þkþ 2r33G

2
64

3
75

¼ kþ 2

3
G

� �
dij þ

2
3

2r11 � r22 � r33ð ÞG 2r12G 2r13G

2r12G 2
3

2r22�r11�r33ð ÞG 2r23G

2r13G 2r23G 2
3

2r33 � r22 � r11ð ÞG

2
64

3
75

¼ Kdij þ vij;
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�vij dev�dev
v

� �
u�bev

v�u0

� �
�vij ev�ev

v

� �
du�bdev

v

� �

þ Kþvð Þ u�bev
v�u0

� �
du�bdev

v

� �

þ2G eij�ev
ij

� �
deij�dev

ij

� �
þjev

vdev
vþ21ev

ijdev
ij

þ cCL

rp�d
duC�duv

C

� �

¼K ev�ev
v

� �
dev�dev

v

� �
�K ev�ev

v

� �
du�bdev

v

� �

�K dev�dev
v
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u�bev

v�u0
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þPL

1

2
du�bdev

v
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v

� �	 


�vij deij�dev
ij

� �
u�bev

v�u0

� �

�vij eij�ev
ij

� �
du�bdev

v

� �

þ Kþvð Þ u�bev
v�u0

� �
du�bdev

v

� �

þ2G eij�ev
ij

� �
deij�dev

ij

� �
þjev

vdev
vþ21ev

ijdev
ij

þ cCL

rp�d
duC�duv

C

� �
:

Then, substitute the above relationship into Eq. (1) to

give

rmdev þ sijdeij þ PCduC þ PLduL þ cSLdA� dFs

¼ K ev � ev
v

� �
� bC þ bL
� �

PL � K u� bev
v � u0

� �� �
dev

þ 2G eij � ev
ij

� �
� vij u� bev

v �u0

� �h i
deij

þ PLduþ 2cCL

rP � d
duC þ �K ev � ev

v

� �
� vij eij � ev

ij

� �h

�PL

2
þ K þ vð Þ u� bev

v � u0

� �

du� dFs

¼ K ev � ev
v

� �
dev

v � Kb ev � ev
v

� �
dev

v �K u� bev
v � u0

� �
dev

v

þ 2G eij � ev
ij

� �
dev

ij � vij u� bev
v � u0

� �
dev

ij

� vij eij � ev
ij

� �
bdev

v � PL bC þ bL
� �

dev
v þ

b
2

PLdev
v

þ K þ vð Þ u� bev
v � u0

� �
bdev

v þ
cCL

rP � d
duC þ duv

C

� �

� jev
vdev

v � 21ev
ijde:

As NaCl is a pure ionic crystal, the crystal deformation

caused by the stress field can be small enough to be

ignored. Therefore, Eq. (1) is written as:

rmdev þ sijdeij þ PCduC þ PLduL þ cSLdA� dFs

¼ rm þ bPL þ
cSL

rP

b� jev
v

� �
dev

v þ sij � 21ev
ij

� �
dev

ij:

Appendix D: Determination of PL and PS in Sect. 4.1

In the creep tests, the stress field is r3 = 5 MPa,

r1 - r3 = 10 MPa, and the initial liquid pressure in the

sandstone is P0
L = 0, so:

PL = B
0�rm = 0.2068 9 (15 ? 5 ? 5)/3 = 1.7233 MPa,

and

PS ¼
1

2p

Z2p

0

cos2a1 � sin2 /1 � r1 þ cos2a2 � sin2 /2 � r2

�

þcos2a3 � sin2 /3 � r3

�
da1

¼ 1

3
r1 þ

1

3
r2 þ

1

3
r3

¼ 8:3333 MPa:
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