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In this study, numerical manifold method (NMM) coupled with non-uniform rational B-splines (NURBS) and T-splines in the 
context of isogeometric analysis is proposed to allow for the treatments of complex geometries and local refinement. Computa-
tional formula for a 9-node NMM based on quadratic B-splines is derived. In order to exactly represent some common 
free-form shapes such as circles, arcs, and ellipsoids, quadratic non-uniform rational B-splines (NURBS) are introduced into 
NMM. The coordinate transformation based on the basis function of NURBS is established to enable exact integration for the 
manifold elements containing those shapes. For the case of crack propagation problems where singular fields around crack tips 
exist, local refinement technique by the application of T-spline discretizations is incorporated into NMM, which facilitates a 
truly local refinement without extending the entire row of control points. A local refinement strategy for the 4-node mathemat-
ical cover mesh based on T-splines and Lagrange interpolation polynomial is proposed. Results from numerical examples show 
that the 9-node NMM based on NURBS has higher accuracies. The coordinate transformation based on the NURBS basis 
function improves the accuracy of NMM by exact integration. The local mesh refinement using T-splines reduces the number 
of degrees of freedom while maintaining calculation accuracy at the same time. 
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1  Introduction 

The presence of discontinuities such as joints, weak planes, 
weakness zones, and faults in a rock mass makes it different 
from other engineering materials. The mechanical behav-
iour of a rock mass is mainly controlled by discontinuities 
within the rock mass. Therefore, the capability to model 
discontinuities for a numerical method is crucial to produce 
satisfactory results. Numerical manifold method (NMM) 
proposed by Shi provides a unified mathematical frame-
work for modelling the transition of rock masses from con-
tinuum state to discontinuum state [1, 2]. It has been widely 
used in geotechnical engineering for the small deformation 

analysis and large discontinuous displacement analysis 
[3–6]. 

The level of approximation of NMM can be improved in 
three ways [7]: Adopting higher order functions as its cover 
function, increasing the order of its weight function (known 
as p-refinement), and splitting the elements into smaller 
ones (known as h-refinement). The original NMM has only 
first-order accuracy, leading to dissatisfaction in simulating 
problems that need high accuracy in displacement represen-
tation [8]. Chen et al. [9] derived a high-order NMM for-
mulation by using higher degree polynomials as the local 
approximations. However, this approach leads to the rank 
deficiency of the stiffness matrix and thus causes failure in 
solving the system of equations. With regard to the 
h-refinement, a cover refinement strategy is necessary when 
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simulating crack propagation in NMM. One traditional so-
lution is to refine the entire mesh which can lead to a sig-
nificant decrease in the computational efficiency. Tesay et 
al. [10], Chiou et al. [11], and Yang et al. [12] investigated 
triangular mesh-based local refinement algorithms and 
achieved better results. However, when meshes are refined 
using regular rectangle-based NMM, hanging nodes exist 
which are difficult to handle. 

On the other hand, there is still a gap for NMM to be 
used in industrial applications which utilize Computer Aid-
ed Design (CAD) as a basic tool. The CAD representations 
of objects are composed of a collection of complex curves 
and surfaces which can not be directly and exactly imported 
into the NMM program. Errors occur when the solution is 
sensitive to geometry description such as shell buckling. 
Isogeometric analysis, proposed by Hughes et al. [13–16] in 
2005, is a numerical analysis method, which combines CAD 
with computer aided engineering (CAE). Its basic idea is to 
apply the same basis function for geometric modelling and 
unknown variables. The most common basis function is the 
non-uniform rational B-splines (NURBS), which show 
many advantages [17]: Modelling for any surface and pos-
sessing superior mathematical characteristics, including 
non-negativity, partitioning of unit, linear independence of 
basis function, local support, etc. However, NURBS do not 
support local refinement which limits their use. The refine-
ment using NURBS requires the insertion of an entire row 
(or column) of control points. This means that a large per-
centage of control points is redundant because they need 
only to satisfy the topological constraint. To overcome this 
limitation, Sederberg invented T-splines [18,19]. T-splines 
[18] are an extension of NURBS. Apart from the advantages 
of NURBS, T-splines present typical advantages; they are 
more suitable for local mesh refinement and can remove the 
interval or overlap from the junction between surfaces. Ba-
zilevs et al. [20] explored isogeometric analysis based on 
the basis function of T-splines and applied this method to 
simple calculations in fluid and structural mechanics. 

In this paper, non-uniform rational B-splines (NURBS) 
under the context of isogeometric analysis are introduced 
into NMM. The coordinate transformation based on the 
basis function of NURBS is established to enable exact in-
tegration for the manifold elements containing those shapes. 
For the problems of crack propagation where singular fields 
around crack tips exist, local refinement technique by the 
application of the T-spline discretizations is incorporated 
into NMM, which facilitates a truly local refinement. This 
paper is organized as follows. In Section 2, basic theories of 
NMM are briefly reviewed. Section 3 illustrates B-Splines 
and NURBS. In Section 4, NURBS are introduced into 
NMM. The coordinate transformation based on NURBS is 
established in Section 5. Section 6 discusses local refine-
ment based on T-Splines. In Section 7 three numerical ex-
periments are carried out. Finally, Section 8 provides some 
concluding remarks. 

2  Basic theories of NMM 

2.1  The finite cover system in NMM 

NMM is established on the basis of three important con-
cepts: mathematical cover (MC), physical cover (PC), and 
manifold element (ME). The MC system is the union of 
patches which overlap partially or completely and it must be 
large enough to cover the whole problem domain. Each 
patch is defined as a MC, denoted by Mi (i = 1–nM, where 
nM is the number of MCs for the problem). The PC system 
is formed by intersecting MCs with different types of 
boundaries such as material boundaries, cracks, external 
boundary and internal discontinuities. PCs are denoted by pi

j 
(j = 1–np, where np is the number of MCs for the problem). 
The common area of several PCs forms a ME. 

To clearly explain the three concepts, an example is giv-
en (Figure 1). For the irregular polygon plate containing one 
crack in Figure 1, the MC system adopts a regular rectan-
gular mesh; four rectangles with common node i form a MC, 
which is denoted by Mi. M1 and the crack intersect to con-
stitute two physical covers p1

1 and p1
2. M2, M3, M4, and M5, 

without intersection with physical meshes, form PCs p2, p3, 
p4 and p5 separately. Thus, PCs and MCs are identical. As 
shown by the shaded area in Figure 1, manifold element 
E(p2, p3, p4,p5) is the common part of p2, p3, p4, and p5 while 
element E(p6, p7, p8, p9) denotes the common part of p6, p7, 
p8, and p9. The shape of ME is arbitrary while the corre-
sponding PC is unique. 

2.2  The mathematical cover based on rectangle mesh 

On each Mi, a weight function i(x) is defined to specify the 
interpolation which satisfies the following properties: 

 0 ( , ) 1, ( , ) ,i ix y x y M    (1) 

 ( , ) 0, ( , ) ,i ix y x y M    (2) 
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Eqs. (1) and (2) indicate that the weight function has non- 

 

Figure 1  Covers and elements in NMM. 
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zero values inside Mi, and zero values outside. Eq. (3) is the 
partition of unity property which constructs the global ap-
proximation by pasting the local approximation spaces.  

Theoretically any shape of MCs can be used in NMM 
because MCs are independent of the physical domain. The 
only requirement is that their union must be large enough to 
cover the entire problem domain. However, for the sake of 
simplicity in constructing the weight functions and imple-
menting the computer code, a triangular or quadrilateral 
mesh is usually adopted to define MC for 2-dimensional 
problems. In this study, a regular and fixed rectangular 
mesh is used considering its convenient meshing procedures. 
In this case, a MC is composed of four rectangular elements, 
as shown in Figure 1. The common node of the four rec-
tangular elements is regarded as a star. For the case of rec-
tangular MC whose edges are parallel to the axes in global 
coordinate system, as shown in Figure 2, the weight func-
tion can be defined as [21] 
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with relative coordinates to the centre of the rectangle being 
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2.3  Displacement function and modelling of disconti-
nuities in NMM 

On each PC, a local displacement function is defined. The 
displacement function can be constant, linear, high-order 
polynomials or a local series. In the original NMM, a con-
stant cover function is defined as 
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where di
j is the vector of unknowns. 

After defining the weight functions i (x) and the cover 
functions, the function for the overall displacement of the 
whole material is expressed as 
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Figure 2  A rectangular element from Figure 1 with its four MCs repre-
sented by their centre point. 

where n is the number of PCs sharing the ME e, i (x) is the 
weight function corresponding to the PC pi

j, which is the 
same as that defined on Mi. 

When modelling strong discontinuity problems where 
singularities exist at crack tips, polynomials can not accu-
rately represent the local characteristics and thus lead to a 
poor approximation of the solution. Hence, a prior known 
knowledge about the solution can be adopted to customize 
the cover functions. As shown in Figure 3, M1, M2, M3, and 
M4 containing the crack tip forms only one whole PC re-
spectively. These PCs are called singular PC in ref. [22]. 
The common area of these PCs forms the element E(p1, p2, 
p3, p4). For these singular PCs the cover functions are en-
riched in a similar manner mentioned in ref. [23]. The dis-
placement approximation in eq. (7) can be enriched as 
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where the additional cover function Uj for singular PCs is 

 ,j jU c  (9) 

where cj is the array of additional unknowns, and ns is the 
number of singular PCs associated with the ME e.  is the 
matrix of singular basis shown as 
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where (r, ) are the polar coordinates in the local system 
with the origin located at the crack tip. It is noted that the 
four basis functions can construct arbitrary displacement 
field near the crack tip. Based on the enriched technique, 
crack tips can locate at arbitrary positions in a manifold 
element, and the stress intensity factors (SIFs) can be accu-
rately evaluated with a regular and relatively coarse MC 
system [24]. 
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Figure 3  Singular PCs at crack tip in 4-node NMM. 

3  Introduction of B-splines and NURBS 

Owing to the basis function of NURBS being linear combi-
nation of the basis functions of B-splines, the basis function 
of B-splines is first described. 

3.1  B-splines 

The basis function of B-splines is defined on a knot vector 
whose parameter space is known. Let U = {u1, u2,···, un+p+1} 
be a non-decreasing real sequence, namely, uiui+1, i = 1, 
2,···,n + p + 1, where ui is defined as the knot; p refers to its 
order; n is the number of basis functions for constructing 
B-splines curve; and U is a knot vector. When knot vector U 
is given, the basis function of B-splines is defined by the 
Cox-de Boor recurrence formula [25,26]. 
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The basis function of the B-splines is characterised by: 
(1) B-splines basis functions constitute a partition of 

unity, namely,  
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(2) Each basis function is non-negative, 
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(4) Compact support.  
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(5) Differentiability. If the multiplicity of one knot value 
is k (i.e., ui=ui+1=···=ui+k+1), the basis function at this point is 
Cp-k continuous. 

By defining ds as a space dimension, the B-splines curve 
in space Rds is linearly defined by the basis function of 
B-splines 
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0

( ) ( ) ,
n

i p i
i

C u N u
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where Bi refers to the control point and i = 1, 2,···, n; Ni,p 
denotes the p order basis function of the B-splines which is 
defined on knot vector U={u1, u2,···, un+p+1} and i = 1, 2,···, 
n: the polygon constructed by Bi is the control polygon. 

The B-splines surface is defined by the control point 
mesh in two directions, two knot vectors, and the tensor 
product of the single variable of the basis function of the 
B-splines. When one control point mesh {Bi,j} (i=1, 2,···, n 
and j=1, 2,···, m), two knot vectors U={u1, u2,···, un+p+1} and 
V={v1, v2,···, vn+p+1} are known, the B-splines surface is ex-
pressed as 
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where Ni,p(u) and Nj,p(v) are the basis functions of the 
B-splines surface. 

3.2  NURBS 

Although the B-splines can express curves and surfaces, 
they cannot accurately express many common geometries in 
engineering design, such as arcs, hyperbolae, and ellipses. 
To overcome this shortfall, rational B-splines are used. 
NURBS in n dimensional space are obtained by means of 
the projection of the B-splines in n+1 dimensional space. 
The establishment of rational B-splines is discussed below. 
By defining {Bi

w} as the set of the control points in Rds+1 of 
the B-splines curve and its knot vector as U, the control 
points in Rds of the NURBS curve are obtained according to 
eqs. (16) and (17): 
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where (Bi)j is the jth component of vector Bi; and wi denotes 
the ith weight. The basis functions of the rational B-splines 
and NURBS curve are expressed as follows: 
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Likewise, the basis function of the rational B-splines 
surface is 
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The basis function of NURBS shows many characteris-
tics of the basis function of B-splines, including normalisa-
tion, differentiability, compact support, etc. When the 
weights of the basis function are equal, NURBS degrade to 
B-splines. 

4  Nine-node NMM based on quadratic NURBS 

The higher order displacement function can be established 
by improving the order of the weight function. Owing to the 
weight function being defined on the MC, if the weight 
function is changed, the structural form of MC also needs to 
be changed to satisfy eqs. (1)−(3). The basis function of 
quadratic NURBS is taken as the weight function and the 
MC system adopts regular rectangular meshes, as illustrated 
in Figure 4. The adjacent nine rectangular meshes form a 
MC, as shown in Figure 5. For the sake of convenience, the 
mid-point of MC is deemed to represent the entire MC. ME 
marked in Figure 4 is the common part of the PCs formed 
by the nine MCs (as marked by black dots). 

 

Figure 4  MC system in 9-node NMM. 

 

Figure 5  An MC in 9-node NMM. 

For MCs shown in Figure 5, {x1, x2, x3, x4} and {y1, y2,  
y3, y4} are non-decreasing real sequences in the x- and 
y-directions respectively; the corresponding weight func-
tions are derived according to eqs. (12), (13), and (20) 
where the values of m and n are 2, and the value of weight 
w is 1. The weight function is 
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The weight function has the following properties. 
(1) Any point (x, y) in ME satisfies the partition of unit, 

shown as eq. (3). 
(2) Each weight function, in its coverage area, is 

non-negative. 

 ( , ) 0, ( , ) .i ix y x y M    (24) 

(3) The weight function is C1 continuous. 
For NMM based on the basis function of quadratic 

NURBS, each ME is the common part of the corresponding 
nine PCs. The cover of the same mathematical mesh is real-
ised by taking the common Lagrange interpolation function 
in FEM as the weight function in NMM. MC is shown in 
Figure 1 and ME formed is the common part of the corre-
sponding four physical covers. The two aforementioned 
methods are named the 9-node NMM and 4-node NMM 
respectively. The weight distributions in the respective MC 
domain of the two methods are demonstrated in Figure 6. 

Compared with the 4-node NMM when modeling strong 
discontinuity problems, difference exists as shown in Figure 
7. Nine MCs containing crack tip, marked by black dots, 
forms one singular PC respectively. The cover function of 
these PCs is enriched in the same way described in Section 
2.3. It is obvious that the domain affected by the enriched 
function in the 9-node NMM, under the same mathematical 
mesh, is bigger than that in the 4-node NMM. 
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Figure 6  (a) Distribution of weights in an MC of 9-node NMM with 
{x1,x2,x3,x4}={0,1,2,3} {y1,y2,y3,y4}={0,1,2,3}; (b) distribution of weights 
in an MC of 4-node NMM. 

 

Figure 7  Singular PCs at crack tip in 9-node NMM. 

5  Handling of the arc-contained boundary 
problem using NMM 

According to traditional numerical analysis methods, inte-
gration points are arranged through coordinate transfor-
mation based on Lagrange, Legendre, or Hermite polyno-
mial interpolation functions. However, these polynomial 
interpolation functions fail to accurately describe the curves 
of an arc, hyperbola, ellipse, etc. For boundary problems 
containing such curves, traditional numerical analysis 
methods need to simplify the actual geometry, thereby in-
ducing error. 

Based on isogeometric concepts, Section 5 suggests ex-

pressing a curved boundary with the NURBS curve. As 
mentioned in Section 2.2, NURBS can accurately describe 
arc, hyperbola, and ellipse by rationally arranging control 
points and adjusting their corresponding weights. Thus, the 
error caused by geometrical approximation of these curve 
boundaries is avoided. 

5.1  Arc description using NURBS curve 

Any minor arc in Figure 8 can be described by the NURBS 
curve (eq. (14)), where 

 2 2
0,2 1,2 2,2( ) (1 ) ( ) 2 (1 ) ( ) ,N u u N u u u N u u      (25) 

 0 1 21, cos ,   1. w w w    (26) 

Control points B0 and B2 are two endpoints on the arc, 
and B1 is the intersection point of the tangent lines to the 
two endpoints. 

5.2  Handling of manifold elements with an arc edge 

For ME with arc edge in Figure 9, the mid-point C is used 
to form triangles. For three triangles without arc edge, ordi-
nary isoparametric transformation is used for numerical 
integration [27]. 

(1) For the three triangles without arc edge, coordinate 
transformation is performed to arrange numerical integra-
tion points, as shown in Figure 10. 

 

Figure 8  Arc described by NURBS. 

 

Figure 9  Element containing arc boundary. 
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The equation is 

 

4

1
4

1

( , ) ,

( , ) .

i i
i

i i
i

x x

y y

  

  





 

 




 (27) 

(xi, yi) is the coordinate in the global coordinate system of 
triangle vertices, and the shape function i (, ) is 

 
1( , ) (1 )(1 ).
4i i i         (28) 

(i, i) are the coordinates of the four vertices of the quad-
rangle in - space. 

(2) The triangle ABC containing an arc edge is expressed 
by the NURBS surface, and the expression for its basis 
function is given by eq. (20). In the u-direction, the arc 
curve is expressed by the second order NURBS curve men-
tioned in Section 5.1 while in the v-direction, the arc is ex-
pressed by the first order NURBS curve. Numerical integra-
tion over the triangle is realised through two different coor-
dinate transformations, as illustrated in Figure 11. 

The transformation from parameter space to physical ar-
ea is expressed by 

 

2 1

, ,
0 0

2 1

, ,
0 0

( , ) ,

( , ) .

i j i j
i j

i j i j
i j
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 

 

 


 





 (29) 

The Jacobian matrix of the transformation is 
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J  (30) 

where the expressions for Ri,j (u, v) and Ni,n (u) are eqs. (20) 
and (25) respectively; xi,j and yi,j are the coordinates of the 
control point. The control point is shown in Figure 9(a). Nj,n 

(v) is expressed as follows: 

 0,1 1,1( ) 1 , ( ) .N v v N v v    (31) 

The transformation from parent element to parameter 
space is given by 

 

Figure 10  Coordinate transformation between triangular and quadrilat-
eral elements. 

 

Figure 11  Transformation from physical domain to parent element. (a) 
Physical domain; (b) parametric space; (c) parent element. 
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Jacobian matrix J, is 

 
1 .
4 J  (33) 

The binary function f (x, y) is taken as an example for 
subsequent discussion of the integration process. 
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where  is the physical area of triangle ABC, u denotes 
the parameter space, and  refers to the parent space. 

6  Local mesh refinement using the 4-node 
NMM 

With regard to classical mesh refinement in NMM, global 
refinement is required as shown in Figure 12(a). In this case, 
some refined elements are abundant. When local refinement 
shown in Figure 12(b) is adopted, T-junctions, correspond-
ing "hanging node" in FEM, are produced. Misconduct of 
such nodes results in inaccurate calculations of displace-
ment and stress. However, this problem can be solved by 
the proposed mathematical mesh refinement based on the 
T-splines concepts in this section. 

6.1  Determination of MC after refinement 

Four T-junctions are formed by local refinement of the cen-
tral mesh, as presented in Figure 13(a). Each point in Figure 
13(a) represents a MC, including four T-junctions. After 
refinement, a MC is determined as follows: by extension 
from the representative point of MC in all the four (up, 
down, right and left) directions, the first orthogonal mesh 
line encountered is then the MC boundary. By taking MC 
marked by the black dots in Figure 13(b) as an example, the 
red area represents the mathematical cover area. After de- 
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Figure 12  (a) Global refinement of mathematical mesh; (b) local refine-
ment of mathematical mesh. 

 

Figure 13  (a) Local refinement for mathematical mesh and four 
T-junctions exist marked by green dots; (b) definition of a mathematical 
cover for refined mesh. 

termining MC, the PC and ME can be found accordingly. 

6.2  Weight function for the refined MC 

The weight distribution function on MC is defined by the 
basis function of the B-splines surface. For MC in Figure 14, 
{x1, x2, x3} and {y1, y2, y3} are non-decreasing real sequenc-
es in the x- and y-directions, respectively. According to eqs. 
(12) and (13), the weight distribution function is expressed 
as 

 1 3 1 3( , ) ( ) ( ), ( , ),x y X x Y y x x x y y y       (35) 
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The weight function shows interpolation property. It sat-
isfies the partition of the unit, and it is also non-negative 
within MC. 

7  Numerical examples 

7.1  Infinite plate with a central circular hole 

As shown in Figure 15(a), an infinite plate with a central  

 

Figure 14  One mathematical cover. 

 

Figure 15  (a) Infinite plate with a circular hole under unidirectional 
tension; (b) part of infinite plate with displacement and stress boundary. 

circular hole whose radius is 1, is subjected to a uniform 
tension in the x-direction. The distribution intensity of the 
tension is unity. The exact solution of the problem, in polar 
coordinates, is [28] 

 2 4 2

1 1 1 3 41 1 cos(2 ),
2 2r r r r

           
   

 (38) 

 2 4

1 1 1 31 1 cos(2 ),
2 2r r          
   

 (39) 

 4 2

1 3 21 sin(2 ).
2r r r      
 

 (40) 

Considering symmetry, one fourth of the infinite plate is 
taken for calculation. Model parameters include R = 1 and L 
= 3. Plane strain condition is assumed, and the Young’s 
modulus E is 1000, Poisson’s ratio v is 0.3. The boundary 
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condition of the left displacement is u = 0, and the boundary 
condition of the bottom displacement is v = 0. According to 
the theoretical solution, the stresses on the upper and right 
boundaries are obtained and the stress boundary conditions 
are applied on the two boundaries, as shown in Figure 
15(b). 

After inputting the geometric parameters of the problem, 
the arc edge cannot be described accurately and thus, geo-
metrical approximation is needed. The strategy for this 
problem replaces the arc by several line segments on the arc. 
And apparently this is an approximate method. Different 
numbers of points, shown in Figure 16, are arranged on the 
arc and the mathematical mesh which has 556 degrees of 
freedom (DOFs) for the 4-node NMM and 616 DOFs for 
the 9-node NMM, shown in Figure 20(a), is adopted.  

The stress x in the x-direction at the top point of the arc 
is ascertained and the result is shown in Figure 17: with 
more points arranged on the arc, the error in the two NMM 
methods gradually decreases; when the number of points 
increases to certain value, the error tends to be stable. It is 
noted that when the number of points in the arc is less than 
16, the error calculated by the 9-node NMM is almost 2  

 

Figure 16  Arc edge in Figure 16 represented by connecting adjacent 
points on the arc. (a) 6 points; (b) 11 points; (c) 16points; (d) 21 points; (e) 
31points. 

 

Figure 17  Relation between x at top of the arc and the number of point 
in the arc. 

times of that by the 4-node NMM. The reason is that: x at 
top of the arc is related to the unknowns of the correspond-
ing PCs. When using mathematical mesh with the same 
density, the affected area containing the approximate arc in 
the 9-node NMM is greater than that in the 4-node NMM. 
With increase in the number of points in the arc, the effect 
decreases. 

31 points are arranged on the arc edge which is approxi-
mated and replaced by 30 line segments. Adopting the same 
regular rectangular mathematical meshes, stress (σx) is cal-
culated using the 4-node and 9-node NMMs separately, as 
shown in Figure 18. These indicate that the stress distribu-
tion calculated using the latter method is smoother. 

Two mesh refinement methods are adopted, as shown in 
Figure 19: (a) Entailed global refinement using the 4-node 
and 9-node NMMs respectively; (b) entailed local refine-
ment using the 4-node NMM based on the treatment men-
tioned in Section 6. ME containing the arc edge was han-
dled using the method presented in Section 5.2 so as to ac-
curately describe the arc. The NMM method adopting this 
method is called the 4-node NMM_(improved) or 9-node 
NMM_(improved). 

Figure 20 shows the calculation errors of several NMMs 
for different mathematical mesh densities. It reveals that 
with the denser mesh, the errors in these methods gradually 
decrease. The slopes of the six error curves are different: the 
slope of the 9-node NMM error curve is greater than that for 
the 4-node NMM; the reason is that the weight function of 
the former adopted the basis function of the quadratic 
NURBS while the weight function of the latter used a linear 
Lagrange interpolation function. Concerning the 4-node 
NMM, the slope of the error curve for local refinement is 
greater than that for global refinement. In addition, after 
processing ME including the arc edge, NMM demonstrates 
higher accuracy. 

7.2  Finite plate with a central edge crack under uniax-
ial tension 

As shown in Figure 21, a finite rectangular plate with a cen-
tral edge crack whose length is a, is subjected to uniform 
axial tension. The uniaxial tension (), the length (L) and 
width (W) of the plate are 4, 3, and 1 respectively. The the-
oretical solution for the problem is [29] 

 ,I
aK aF
w

     
 

 (41) 

where 

 2 3 4( ) 1.12 0.231 10.55 21.72 30.39 .F x x x x x      (42) 

The stress intensity factors (SIFs), for different values of 
a, are calculated. Two different mathematical meshes, as 
shown in Figures 22(a) and (b) which show global and local 
refinements in the crack area respectively, are used to the  
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Figure 18  Distribution ofx in plate for two methods. (a) 4-node NMM; (b) 9-node NMM. 

 

Figure 19  Mathematical mesh refinement for 'mode 1′. (a) Global refinement; (b) local refinement. 

 

Figure 20  Error in stress (x) at the top of the arc for different methods. 

4-node NMM. The global refinement of the mathematical 
mesh shown in Figure 22(a) is also used to the 9-node 
NMM. SIFs calculated by the 4-node and 9-node NMMs 
based on different crack length models are listed in Tables 1 
and 2. In terms of 4-node NMM, mesh 2 shows more ad-
vantages than mesh 1. Namely, under the same calculation 
accuracy, the number of degrees of freedom of mesh 2 is 
much less than that of mesh 1. Besides, under the conditions 
of the same MC mesh, the calculation accuracy of the  

 

Figure 21  Finite plate with crack. 

9-node NMM is higher than that of the 4-node NMM. 

7.3  Disc with a central crack under concentrated load 

As shown in Figure 23, for a disc with radius R and a cen-
tral crack of length 2a, two concentrated forces P are ap- 
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Figure 22  Mathematical mesh refinement for 'mode 2'. (a) Global re-
finement; (b) local refinement. 

Table 1  SIFs results for 4-node NMM 

ɑ/w 
Exact 

solution 
KI 

4-node NMM 

Mesh1 Mesh2 

DOFs KI 
Error 
(%) 

DOFs KI 
Error 
(%) 

0.1 0.8392 5126 0.8432 0.48 3926 0.8436 0.27

0.2 1.3743 5130 1.3707 0.26 3928 1.3711 0.23

0.3 2.0383 5134 2.0185 0.97 3930 2.0154 1.12

0.4 2.9827 5138 2.9652 0.58 3932 2.9640 0.63

0.5 4.4807 5142 4.4352 1.01 3934 4.4319 1.09

0.6 6.9925 5146 6.7887 2.91 3936 6.8121 2.58

Table 2  SIFs results for 9-node NMM 

ɑ/w 
Exact solution 

KI 

9-node NMM 

Mesh1 

DOFs KI Error (%) 

0.1 0.8392 5108 0.8378 0.17 
0.2 1.3743 5110 1.3764 0.15 
0.3 2.0383 5112 2.0366 0.23 
0.4 2.9827 5114 2.9740 0.29 
0.5 4.4807 5116 4.4532 0.61 
0.6 6.9925 5118 6.9663 0.37 

 
plied across a diameter which overlaps the crack. The ref-
erence solution of SIFs for this problem is obtained from the 
Chinese Aeronautical Establishment [30] 

 I ,aK F a
R

   
 

 (43) 

where 

 / ( ),P R    (44) 

 2 3 4

5 6 7

( )
(1 0.4964 1.5582 3.1818 10.0962

20.7782 20.1342 7.5067 ) / 1 .

F x
x x x x

x x x x

    

   

 (45) 

Model parameters include R = 1, a = 0.3, P = 1, a 
Young’s modulus E = 1000, and Poisson’s ratio v = 0.3. 
The global and local mesh refinements, as shown in Figures 
24(a) and (b), are used to the 4-node NMM. To the 9-node 
NMM, we also use global mesh refinements around the 
crack, shown in Figure 24(a), as the mathematical mesh. 
The arc edge problem is handled using two methods: ap-
proximate replacement of the arc edge, and exact integra-
tion over the manifold element containing the arc edge. 

Based on the aforementioned models, the reference solu-
tion of KI is 0.3507. Table 3 shows the calculated SIFs: this 
suggested that, with the same mathematical cover mesh, the 
9-node NMM was more accurate than the 4-node NMM. 
Through exact integration of ME with arc edge, the accura-
cy of both the 9-node NMM and 4-node NMM improves. 
The global and local refinements of the MC mesh show 
significantly different numbers of degrees of freedom while 
the calculated SIFs are slightly different. 

8  Conclusions and future prospects 

This research proposes an NMM based on isogeometric 
analysis and derives the computation formula for the 9-node 
NMM using quadratic NURBS. In addition, for problems 
with arc edge, it proposes a numerical integration method of 
coordinate transformation based on the basis function of the 
NURBS curve. With regard to the 4-node NMM, a local 
refinement method of the mathematical mesh is proposed. 

The results from three examples indicated that, compared 
with the 4-node NMM, the 9-node NMM based on the 

 

Figure 23  Circular plate with central crack. 
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Figure 24  Mathematical mesh refinement for 'mode 3'. (a) Global refinement; (b) local refinement. 

Table 3  SIFs results for different methods 

Method 4-node NMM 
4-node NMM (im-

proved) 
9-node 
NMM 

9-node 
NMM 

(improved)

Mesh Mesh1 Mesh2 Mesh1 Mesh2 Mesh1 Mesh1 

DOFs 1928 1168 1928 1168 2152 2152 

KI 0.3451 0.3450 0.3456 0.3457 0.3476 0.3481 

Error(%) 1.60 1.63 1.45 1.43 0.88 0.74 

 
 quadratic NURBS shows higher accuracies when solving 
both continuous and discontinuous problems. Besides, con-
cerning the arc-contained boundary problem, the numerical 
integration method of coordinate transformation according 
to the basis function of the NURBS curve presents higher 
accuracies. In addition, while maintaining calculation accu-
racy, local mesh refinement using the 4-node NMM reduces 
the number of degrees of freedom. 

Similar to the 9-node NMM, the 16-node NMM can be 
defined by changing the structural form of the mathematical 
cover so as to improve the order of the displacement func-
tion. For problems containing hyperbolae, ellipses, etc., 
methods for expressing the corresponding NURBS curves 
can be explored to define the corresponding coordinate 
transformation and therefore achieve exact integration for 
such problems. 
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