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Although the constant strain mode of blocks assumed in the conventional discontinuous deformation
analysis is sufficient for most applications in geotechnical engineering, a false volume expansion will
occur in the presence of large block rotation. By introducing higher-order approximation to the displace-
ments, the existing remedies can mitigate the false volume expansion to a limited extent; however, large
acceleration variation or large rotation can still produce great errors. By fixing a local frame onto each
block that moves and rotates with the block, the incremental strain components at the end of each time
step are transformed to the local frame, which are then added to the total strain components with regard
to the local frame. The false volume expansion is completely overcome with this method.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

After numerous verifications and enhancements, as described in
Refs. [1,2], discontinuous deformation analysis (DDA) [3] is now
recognized as an efficient tool for solving the various discontinu-
ities in geotechnical problems. Because it is effective in simulating
the dynamic mechanic behavior of block systems [4], DDA has
been used to address diverse problems in various types of struc-
tures, such as the stability assessment of rock slopes [5]; the path
tracking of rockfalls [6]; the blasting effect evaluation [7]; the sim-
ulation of landslides [8,9]; the construction of rock-fill dams [10],
stacked block piles [11], and masonry structures [12]; and the
analysis of coupled hydromechanical processes [13]. With the
modification of the cohesion effect in sliding [14], DDA is expected
to be used in the stability analysis of soil slopes.

With its extensive application in engineering, DDA has increas-
ingly matured to solve problems that are more complicated. To
obtain a more exact stress distribution, for example, the
sub-block method [15] and higher-order displacement functions
[16] have been introduced into DDA. Coupled with the finite ele-
ment method (FEM) [17], the displacement precision of DDA has
been improved. To simulate progressive failure, Jiang et al. intro-
duced a viscous damping component to absorb the kinetic energy
of discrete blocks [18]. To alleviate the sensibility of the penalty
parameters, in addition to the Lagrange multiplier method [19],
the complementarity method [20] and the variational inequality
theory [21] have been successfully applied to reconfigure DDA
without requiring penalty parameters. Recently, DDA has been
reformulated as a linear complementarity problem [22], which fur-
ther enhanced the convergence and solution efficiency.

The implementation of three-dimensional (3D) DDA is crucial to
the analysis of practical problems. Many researchers have been
devoted to this task. Since Shi [23] proposed a cutting procedure
for 3D blocks, some contact algorithms and contact patterns have
been suggested, such as the incision body method [24] and the
common plane method [25]. Although all of these efforts improved
3D DDA, building a 3D program as robust as a two-dimensional
(2D) program is still highly challenging. Recently, Shi published
new contact theory [26], and it is believed that the difficulties in
3D DDA programming will be significantly simplified.

An unreasonable volume expansion is observed in the original
DDA after the blocks undergo large rotation. This is considered to
result from the errors accumulated by the first-order approxima-
tion of sin h � h and cos h � 1. Here, h is a small rotation angle.
To restrain the false volume expansion, MacLaughlin and Sitar
[27] adopted the second-order approximation of sin h and cos h
to account for the effects of finite rotation. Ke [28] and Koo and
Chern [30] proposed the use of a post-adjustment once the
open–close iteration converges. By considering the trigonometric
function transformations, Cheng and Zhang [29] introduced a
new displacement variable and deformation matrix. To some
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degree, these remedies alleviated the false volume expansion due
to large rotation; however, the best precision has not yet been
achieved.

Because the incremental strain components at each time step,
defined in the global frame, are not additive in the presence of
finite rotation, a local frame is fixed onto each block, and the local
frame is moved and rotated with the block. After the open–close
iteration converges, the incremental strain components are trans-
formed to the local frame, which are then added to the total strain
components that are defined in the local frame. The displacement
components at any point in the block can be accurately calculated
through the displacement formula for finite rotation. As a result, no
false volume expansion is observed, regardless of the degree of
block rotation.

2. Review on the existing remedies for false volume expansion

On assuming a constant block strain mode, a typical block in the
original DDA [1] is found to possess the following degrees of free-
dom vector:

dT ¼ u0 v0 r0 ex ey cxy

� �
; ð1Þ

where u0 and v0 represent the incremental displacement compo-
nents of a reference point x0; y0ð Þ of the block in the horizontal
and vertical direction, respectively; r0 is the incremental rigid rota-
tion angle of the block around point x0; y0ð Þ; and ex; ey, and cxy are
the incremental strain components based on the small deformation
assumption.

Then, the incremental displacement vector at point x; yð Þ in this
block is computed through

w ¼ Td; ð2Þ

with T being the 2 � 6 matrix,

T ¼
1 0 y0 � y x� x0 0 y�y0

2

0 1 x� x0 0 y� y0
x�x0

2

" #
; ð3Þ

and w being the incremental displacement vector of point x; yð Þ,

wT ¼ u;vð Þ: ð4Þ

Here, u and v are the incremental displacement components in the
horizontal and vertical direction, respectively.

Once vector d is obtained through the open–close iteration, via

DDA, it is added to the total degrees of freedom vector di of the last
time step i by

diþ1 ¼ di þ d; ð5Þ

with diþ1 being the total degrees of freedom vector of the current
time step (i + 1).

It is worth noting that Eq. (2) is derived by assuming a small
deformation and a small rotation, where the following geometrical
equations of small deformation are used:

ex ¼
@u
@x
; ey ¼

@v
@y

; and cxy ¼
@u
@y
þ @v
@x

; ð6Þ

and the first-order approximation to sin r0 and cos r0 results in

sin r0 � r0 and cos r0 � 1: ð7Þ

Because block displacement is mainly caused by its movement, and
its deformation is usually small, assuming a small deformation will
cause large errors even if the blocks are displaced to a great extent.
In general, however, the total rotation cannot always be guaranteed
to be small. If the block undergoes a large rotation, such as rock fall-
ing along slopes, its volume is greatly overestimated by the conven-
tional DDA. This phenomenon is now referred to as false volume
expansion. Several researchers have investigated solutions for this
issue.

If only the small deformation is assumed, the displacement of a
block is actually composed of two parts: the deformation of the
block and the displacement due to rigid movement, leading to
the displacement formula for finite rotation:

u¼ u0 þ x� x0ð Þ cos r0 � 1ð Þ� y� y0ð Þsin r0 þ x� x0ð Þex þ
y� y0

2
cxy

v ¼ v0 þ x� x0ð Þsin r0 þ y� y0ð Þ cos r0 �1ð Þ þ y� y0ð Þey þ
x� x0

2
cxy:

ð8Þ

MacLaughlin and Sitar [27] noted that the first approximation
to sin r0 and cos r0 resulted in an order of error by 0 r3

0

� �
and

0 r2
0

� �
, respectively; therefore, the false volume expansion was

mainly because cos r0 � 1 was assumed. As a result, they proposed
representing the term cos r0 in Eq. (8) by 1� r2

0=2, but keeping
sin r0 � r0. When Eq. (8) is directly applied, a stiffness matrix is
produced with trigonometric functions that cannot be integrated
easily; however, the procedure proposed by MacLaughlin and
Sitar [27] still leads to the nonlinearity of this stiffness matrix,
and the difficulties in convergence increase.

To avoid this issue, Ke [28] proposed that, after vector d is
obtained through the open–close iteration, formula (8) can be used
to obtain the incremental displacements u and v. Koo and Chern
[30] also proposed a similar method. However, the error in each
step accumulates so much so that the block is still noticeably dis-
torted after undergoing a large rotation.

By means of the identity

cos r0 � 1 ¼ � sin2 r0= 1þ cos r0ð Þ ; ð9Þ

Cheng and Zhang [29] wrote Eq. (8) as the form

w ¼ T 0d0; ð10Þ

with

d0T ¼ u0 v0 sin r0 ex ey cxy

� �
; ð11Þ

and

T 0 ¼
1 0 x0 � xð Þ sin r0

1þcos r0
� y� y0ð Þ x� x0 0 y�y0

2

0 1 y0 � yð Þ sin r0
1þcos r0

þ x� x0ð Þ 0 y� y0
x�x0

2

2
4

3
5:
ð12Þ

Because r0 is unknown, Cheng and Zhang suggested taking r0 in
matrix T 0 as the value of the last time step. In fact, this implicitly
assumes that all time steps are made equal and the angular
acceleration is constant during the whole rotation.

3. New remedies for false volume expansion

Although some of the methods stated previously can alleviate
false volume expansion, recently, all of them were observed to
introduce large errors in the calculation of stresses, which are
believed to result from the sum of the degrees of freedom vectors
defined by Eq. (5). This can be explained as follows.

In the presence of finite rotation, the six components of vector d
fall under two categories. The first two components, u0 and v0, rep-
resent the horizontal and vertical displacements with regard to the
global coordinate system, and r0 denotes the rigid rotation angle of
the block. The three components have additivity regardless of the
extent of block rotation. The latter three components, ex; ey, and
cxy, are based on the small deformation assumption, and they do
not have the property of additivity in the case of finite rotation.
In fact, even if the differential element associated with
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ex; ey; cxy

� �
underwent a small rotation, the direct addition of

incremental strain components would lead to a small but tangible
error.

However, all DDA programs, conventional and improved,

employ Eq. (5) to obtain the degrees of freedom vector diþ1 of
the (i + 1)-th step, implying

eiþ1
x ¼ ei

x þ ex; eiþ1
y ¼ ei

y þ ey and ciþ1
xy ¼ ci

xy þ cxy: ð13Þ

Most conventional DDA codes are updated in terms of stresses
rather than strains. The update for stresses and strains is equivalent
in the case of linear small deformation. If the material nonlinearity
of blocks is considered, however, only strains can be added. The
total stresses can be obtained only through the constitution integra-
tion over the total strains. This explains why strains rather than
stresses are updated. When the approximations to block displace-
ments are carried out in the framework of the numerical manifold
method (NMM), the material nonlinearity of blocks is easy to imple-
ment. The structure of NMM codes is almost the same as DDA. The
concept in this study can be applied to NMM.

The addition in Eq. (13) is always carried out in the global sys-
tem, while the block is rotated by an angle of ri

0 after the i-th step is
finished. Unless ri

0 is small enough, the accumulative error by Eq.
(13) becomes very large even if the increment angle r0 between
any two consecutive time steps is small.

To overcome the false volume expansion and to correct the
stress calculation, a local frame is fixed to each block at the refer-
ence point x0; y0ð Þ, as shown in Fig. 1. The two axes of the local
frame are denoted by x̂ and ŷ. At the start, axis-x̂ and axis-ŷ were
parallel to the global axis-x and axis-y, respectively, as shown in
the left side of Fig. 1; however, the local frame would later move
and rotate with the block. For example, after the (i + 1)-th step fin-
ished, the reference point x0; y0ð Þ moved by the displacements

uiþ1
0 ¼ ui

0 þ u0 and v iþ1
0 ¼ v i

0 þ v0; ð14Þ

and axis-x̂ rotated to the orientation angle

riþ1
0 ¼ ri

0 þ r0; ð15Þ

as shown in the right side of Fig. 1. In addition, the strain compo-
nents could be additive only in the local frame, leading to

êiþ1
x ¼ êi

x þ êx; êiþ1
y ¼ êi

y þ êy and ĉiþ1
xy ¼ ĉi

xy þ ĉxy: ð16Þ
1+i
xyγ̂

1+i
xε̂1+i

yε̂

1
xε̂

1
yε̂ x̂ŷ

x̂

ŷ

x

y

Fig. 1. Local frame attached to one block.
Here, the following notation convention is used: a variable with no
cap, for example, uiþ1

0 , is a variable under the global system, whereas
a variable with a cap ‘‘^’’, for example, êi

x, is a variable under the
local frame; a variable with a superscript, for example, ui

0, is a vari-
able at the i-th step, whereas a variable with no superscript, for
example, ĉxy, is an incremental variable. Therefore, êx; êy, and ĉxy

in Eq. (16) are the incremental strain components in terms of the
current local frame with axis-x̂ making an angle of riþ1

0 with the glo-
bal axis-x, as shown in the right side of Fig. 1. After the i-th incre-
ment finished, the incremental strain components, ex; ey and cxy,
calculated by DDA with regard to the global system need to be
transformed into the local frame, leading to

êx ¼
ex þ ey

2
þ ex � ey

2
cos 2riþ1

0 � 1
2
cxy sin 2riþ1

0 ;

êy ¼
ex þ ey

2
� ex � ey

2
cos 2riþ1

0 þ 1
2
cxy sin 2riþ1

0 ;

ĉxy ¼ ex � ey
� �

sin 2riþ1
0 þ cxy cos 2riþ1

0 :

ð17Þ

Having obtained the total strain components êiþ1
x ; êiþ1

y , and ĉiþ1
xy in

terms of the local frame via Eq. (16), the total strain
components in terms of the global coordinate system are derived
as follows:

eiþ1
x ¼

êiþ1
x þ êiþ1

y

2
þ

êiþ1
x � êiþ1

y

2
cos 2riþ1

0 þ 1
2
ĉiþ1

xy sin 2riþ1
0 ;

eiþ1
y ¼

êiþ1
x þ êiþ1

y

2
�

êiþ1
x � êiþ1

y

2
cos 2riþ1

0 � 1
2
ĉiþ1

xy sin 2riþ1
0 ;

ciþ1
xy ¼ êiþ1

y � êiþ1
x

� �
sin 2riþ1

0 þ ĉiþ1
xy cos 2riþ1

0 :

ð18Þ

The total displacements at point x; yð Þ of the block could be calcu-
lated by

u ¼uiþ1
0 þ x� x0ð Þ cos riþ1

0 � 1
� �

� y� y0ð Þ sin riþ1
0

þ x� x0ð Þeiþ1
x þ y� y0

2
ciþ1

xy ;

v ¼ v iþ1
0 þ x� x0ð Þ sin riþ1

0 þ y� y0ð Þ cos riþ1
0 � 1

� �
þ y� y0ð Þeiþ1

y þ x� x0

2
ciþ1

xy :

ð19Þ

The stress vector of the block at the (i + 1)-th step is calculated by

riþ1 ¼ Eeiþ1; ð20Þ

with E being the 3 � 3 elastic matrix and

riþ1 ¼ riþ1
x ;riþ1

y ; siþ1
xy

� �T
and eiþ1 ¼ eiþ1

x ; eiþ1
y ; ciþ1

xy

� �T
ð21Þ

representing the stress vector and the strain vector in the global
system.

4. Implementation

Based on the above analysis, the false volume expansion in DDA
is overcome by the following implementation:

(1) Through the open–close iteration, the incremental strain
components, ex; ey, and cxy, in the global system are obtained.

(2) Using Eq. (15), the local frame orientation of the block at the
end of this step is obtained.

(3) Using Eq. (17), the incremental strains, êx; êy, and ĉxy, in
terms of the local frame are obtained.

(4) Using Eq. (16), the total strains êiþ1
x ; êiþ1

y ; and ĉiþ1
xy , in terms of

the local frame are obtained.
(5) Using Eqs. (18) and (20), the total strain vector eiþ1

and the total stress vector riþ1 in the global system are
obtained.
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(6) Using
Table 1
The are

Time

Step
Max

Initia

Origi
Ke
Chen
Prop

⁄RE = Re
€u0 ¼
2
D2 u0 �

2
D

_ui
0; . . . ;

€̂ex ¼
2
D2 êx �

2
D

_̂ei
x; . . . ;

the accelerations within this step are calculated. Here, _ui
0 is

the initial horizontal speed at this step, _̂ei
x is the initial strain

rate at this step, and D is the length of the time interval
[ti; tiþ1].
(7) Using
_uiþ1
0 ¼ _ui

0 þ D€u0; . . . ;

_̂eiþ1
x ¼ _̂ei

x þ D€̂ex; . . . ;

the rates of change of these quantities at the end of this step
are calculated.
(8) By replacing êiþ1
x ; êiþ1

y , and ĉiþ1
xy in Eq. (18) with _̂eiþ1

x ; _̂eiþ1
y , and

_̂ciþ1
xy , respectively, _eiþ1

x ; _eiþ1
y , and _ciþ1

xy are calculated, which will
contribute to the generalized force vector of this block in the
next step.

(9) The rate vector v iþ1, composed of _uiþ1
0 ; _v iþ1

0 ; _riþ1
0 ; _eiþ1

x ; _eiþ1
y , and

_ciþ1
xy , is regarded at the end of this step as the initial rate vec-

tor v0 of the next step, which contributes to the generalized
force vector q of this block by
2
D0

Mv0 ! q;

with D0 ¼ tiþ2 � tiþ1,

M ¼
Z

X
qTT TdX;

v0 ¼ _uiþ1
0 ; _v iþ1

0 ; _riþ1
0 ; _eiþ1

x ; _eiþ1
y ; _ciþ1

xy

� �T
;

q ¼ qu0
; qv0

; qr0
; qex

; qey
; qcxy

� �T
:

Fig. 2. Rockfall problems: (a) the initial stat

a change of the falling rock by the original DDA, Ke’s modification, the Cheng and Zhang m

-step M 0.01 s

s 400
imum displacement ratio per step 0.01

l area of falling rock 0.707107 m2

Area (m2) RE (%)

nal DDA 0.834560 18.025
0.707120 0.002

g and Zhang 0.708365 0.178
osed 0.707119 0.002

lative error.
Here, qex
is the dual force to the strain component, ex, etc.

riþ1 will be regarded as the initial stress r0 of the block at the
next step, which will contribute to the generalized forces as
follows:

�Sriþ1
x ! qex

;�Sriþ1
y ! qey

; and � Ssiþ1
xy ! qcxy

:

Here, S is the area of the block.
5. Numerical examples

In this section, two typical examples are designed to demon-
strate the effect of the proposed modification on the false volume
expansion.

5.1. Rockfall problem

Rockfalls are a frequently occurring geologic hazard in moun-
tain areas, which pose a threat to life and property. DDA is an effi-
cient tool for analyzing this problem. To compare the effectiveness
of different modifications in restraining the false block expansion, a
rockfall problem is investigated, as shown in Fig. 2(a). The follow-
ing parameters are used in the analysis: unit weight = 28 kN/m3,
Young’s modulus = 2 GPa, and Poisson’s ratio = 0.25. In this model,
the slope is composed of fixed blocks, and the falling rock is a reg-
ular octagon with a unit diameter. The friction angle and cohesion
strength between blocks are taken to be 0. Different time steps are
considered in this problem, and the results are listed in Table 1.
Fig. 2(b) displays the final configuration of the system.

For 2D problems discussed in this paper, the volume expansion
of the rotating rock could be measured by its area. From Table 1,
the area error of the original DDA is found to be markedly influ-
enced by the time step: a longer time period results in a larger non-
linear block expansion. The Cheng and Zhang modification has a
clear effect on the false expansion when the time step is kept con-
stant, whereas the modification hardly adapts to the changing time
step. The modifications proposed both in this study and by Ke have
e and (b) the final state.

odification, and the proposed modification.

0.02 s 0.01 s and 0.02 s alternately

300 300
0.02 0.02

Area (m2) RE (%) Area (m2) RE (%)

1.264527 78.831 1.132795 60.201
0.707114 0.001 0.707113 0.001
0.731127 3.397 0.742573 5.016
0.707116 0.001 0.707119 0.002



Fig. 3. A swing regular octagon fixed at an off-center point.

22 W. Jiang, H. Zheng / Computers and Geotechnics 70 (2015) 18–23
a clear effect on the false volume expansion, with the maximum
relative error within 0.002% under different settings.

Therefore, the original DDA code must be modified to overcome
the false volume expansion when simulating large rotation.
Although the numerical errors in the Cheng and Zhang modifica-
tion are larger than those in Ke’s and the current study, all of them
seem to be acceptable in engineering analysis. However, the accu-
racy of the accumulated strains of those modifications is still
uncertain, and this problem is discussed in the next example.
Table 2
The length changes of four segments on the swing octagon in Fig. 3 by Ke’s modification,

Time steps 200

Length Strain

Ke AE 9.9969 �3.12E�04
BF 10.0009 8.85E�05
CG 10.0035 3.49E�04
DH 9.9997 �2.68E�05

Cheng and Zhang AE 9.9987 �1.29E�04
BF 10.0025 2.50E�04
CG 10.0052 5.17E�04
DH 10.0015 1.53E�04

Proposed AE 9.9993 �6.57E�05
BF 9.9994 �5.93E�05
CG 10.0000 �7.43E�08
DH 10.0001 1.24E�05

Table 3
Principal strains by Ke’s modification, the Cheng and Zhang modification, and the propose

Time steps ex ey

Methods Ke
200 4.27 E�05 1.62E�05
2000 8.02E�05 2.74E�05
5000 3.36E�05 �7.05E�06

Methods Cheng and Zhang
200 3.94E�05 1.84E�05
2000 2.97E�06 2.95E�07
5000 �2.83E�05 1.32E�04

Methods The proposed
200 4.49E�05 1.40E�05
2000 8.35E�05 2.52E�05
5000 3.97E�05 �8.35E�06
5.2. Rotation of one regular octagon problem

Fig. 3 shows a single block fixed at an off-center point. In this
problem, the block is a regular octagon with a diameter of 10.
The coordinate of point A is (0, 0), and the coordinate of point E
is (10, 0). The fixed point is at (9.5, 0.0). The block has the following
material properties: unit weight = 28 kN/m3, Young’s
modulus = 2 GPa, and Poisson’s ratio = 0.25. Because this block is
not fixed at its centroid, it will swing back and forth. By recording
the length deformation of AE, BF, CG, and DH, we investigate
whether the accumulated strains could be corrected by Ke’s mod-
ification, the Cheng and Zhang modification, and the proposed
modification.

Let the time step length D be 0.02 s, and let the maximum
allowable step displacement ratio be 0.1. The data are recorded
at steps of 200, 2000, and 5000. Table 2 lists the results from the
three modifications.

The major principal strain and the minor principal strain corre-
spond to the accumulated strains:

emax ¼
ex þ ey

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ex � ey

2

� �2
þ c2

xy

r

emin ¼
ex þ ey

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ex � ey

2

� �2
þ c2

xy

r ð22Þ

Table 3 lists the principal strains at different time steps com-
puted by the three modifications. On analyzing the data in Tables
2 and 3, the principal strains by neither Ke’s modification nor
Cheng’s modification are not in the interval of emin; emax½ � specified
by Eq. (22).
the Cheng and Zhang modification, and the proposed modification.

2000 5000

Length Strain Length Strain

10.0013 1.27E�04 10.0039 3.93E�04
10.0045 4.54E�04 10.0102 1.02E�03

9.9996 �3.83E�05 9.9962 �3.84E�04
9.9965 �3.46E�04 9.9901 �9.89E�04

9.9984 �1.64E�04 10.006 5.99E�04
10.0039 3.88E�04 10.0129 1.29E�03
10.0052 5.24E�04 10.0089 8.88E�04

9.9999 �6.92E�06 10.0022 2.24E�04

9.9998 �1.85E�05 10.0000 �3.60E�06
10.0012 1.18E�04 10.0004 4.07E�05
10.0009 8.75E�05 10.0002 1.61E�05

9.9997 �2.94E�05 9.9999 �9.97E�06

d modification.

cxy emax emin

�9.71E�05 1.27E�04 �6.86E�05
1.72E�04 2.28E�04 �1.21E�04
2.31E�05 4.40E�05 �1.75E�05

�9.68E�05 1.26E�04 �6.84E�05
�2.85E�05 3.01E�05 �2.69E�05
6.42E�05 1.54E�04 �5.09E�05

�9.54E�05 1.26E�04 �6.73E�05
1.72E�04 2.29E�04 �1.20E�04
2.56E�05 5.08E�05 �1.94E�05
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Ke’s modification can be taken as an example. The major princi-
pal strain at step-200 was 1.27 � 10�4 (see Table 3), which is less
than the strain of line CG (3.49 � 10�4) (see Table 2). The major
strain at step-5000 is 4.40 � 10�5 in Table 3, which is less than
the strain of line BF (1.02 � 10�3) in Table 2 by up to two orders
of magnitude. The same is true for the minor principal strain.
The minor principal strain at step-200 is �6.86 � 10�5 in Table 3,
which is lower in magnitude than the strain of line AE
(�3.12 � 10�4) in Table 2. The minor principal strain at
step-5000 is �1.75 � 10�5 in Table 3, which is lower in magnitude
than the strain of line DH (�9.89 � 10�4) in Table 2.

The Cheng and Zhang modification has more serious limita-
tions. For example, at step-200, the major principal strain is
1.26 � 10�4 (see Table 3), which is less than the strain of line CG
(5.17 � 10�4) (see Table 2). The minor principal strain is
�6.84 � 10�5 in Table 3, which is lower in magnitude than the
strain of line AE (�1.29 � 10�4). At step-5000, the major principal
strain is 1.54 � 10�4, which is less than the strain of line BF
(1.29 � 10�3). Another serious limitation of the Cheng and Zhang
modification is that the strain values of the four lines, AE, BF, CG,
and DH, turn positive at step-500, which is clearly abnormal. As
stated previously, the Cheng and Zhang modification holds only
when the angular acceleration is kept invariant. However, the
angular acceleration of the swing always varies - it accelerates as
it rotates downward but decelerates as it rotates upward. This phe-
nomenon explains why the Cheng and Zhang modification pro-
duces a large error while analyzing this example.

For all of the cases, all of the strain values of the four lines in
Table 2 evaluated by the proposed modification are in the range
of the principal strains in Table 3. Therefore, it is safe to state that
the accumulated strain from the proposed modifications is the
most reasonable.

6. Conclusions

By accumulating strains in the local frame of each block that
moves and rotates with the block, the false volume expansion of
blocks in DDA is effectively overcome even in the case of very large
rotation or drastic variation in acceleration. The original DDA is not
required to modify the deformation matrix T or the degree of free-
dom vector d.
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