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Abstract: Geomechanical parameters are complex and uncertain. In order to take this complexity and uncertainty into account, a 
probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine (LS-SVM) 
technique was proposed. The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters, and an 
LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters. The proposed 
approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the 
permanent ship lock within the Three Gorges project in China. The results indicate that the proposed method presents the 
uncertainties in the geomechanical parameters reasonably well, and also improves the understanding that the monitored information 
is important in real projects. 
 
Key words: geotechnical engineering; back analysis; uncertainty; Bayesian theory; least square method; support vector machine 
(SVM) 
                                                                                                             

 

 
1 Introduction 
 

Numerical models are used to study the geometry of 
the failure mechanisms and analyze the geotechnical 
engineering stability and design problems [1]. The 
accurate knowledge of the geomechanical parameters of 
the rock mass is a key factor in the numerical simulation. 
This is one of the most challenging tasks, and yet 
laboratory testing is an established method of 
determining the geomechanical parameters and it is 
limited by the relatively small scale of the laboratory test 
specimens [2]. In addition, the laboratory test results may 
be affected by sample disturbances [3]. Due to the 
complexity of the geomaterials, in situ testing techniques 
have been developed in order to overcome these 
limitations [4], but these techniques are often difficult to 
implement, costly and time-consuming. 

The displacement of rock masses induced by an 
excavation can be measured relatively easily and reliably. 
The displacement-based back analysis is frequently used 
as a practical engineering tool to estimate the unknown 

geomechanical parameters. Many back-analysis 
approaches have been developed in the past 30 years 
[5–17]. However, the values obtained in this way are 
deterministic and do not interpret their uncertainty. In 
order to consider these uncertainties, the probabilistic 
back analyses have also been reported [18–20]. 

Probabilistic back analysis is a logical way of 
incorporating information from other sources, but it is 
more difficult to implement than traditional back- 
analysis methods [21]. In the present work, the Bayesian 
probability was combined with the displacement back 
analysis to provide a probabilistic back-analysis 
framework, which integrates the monitored displacement 
data and the uncertainty of the geomechanical parameters. 
The Bayesian approach has been applied to geotechnical 
engineering in past studies [21–26]. However, the 
Bayesian probability has rarely been incorporated into 
previous back analyses. 

A detailed formulation of the LS-SVM algorithm is 
presented. Then, the probabilistic back analysis 
procedure incorporating the Bayesian probability and 
LS-SVM is presented. Finally, a case study is used to  
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verify the proposed method. 
 
2 Least squares support vector machine (LS- 

SVM) 
 

The least squares support vector machine (LS-SVM) 
[27] is an alternative form of SVM regression. For a 
given training set of N data points {xk, yk} (k = 1, 2, …, 
N) with the input data xk  RN and output yk  r, where 
RN is an N-dimensional vector space, and r is a 
one-dimensional vector space, the LS-SVM algorithm 
describes the model as  
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N

k
kk  

1

,                        (1) 

 
where K(x, xk) is the kernel function, in which the 
general kernel function is the polynomial K(X, Y)= 
((X·Y)+1)d, d=1, 2, 3, …; the radial kernel function is  
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(RBF) is K(X, Y)=tanh(f(X·Y)+θ); αk are Lagrange 
multipliers; b is the scalar threshold. The values of αk and 
b are obtained by   
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where y=[y1, … , yN]; I=[1, … , 1], α=[α1, … , αN]; 
Mercer’s theorem is applied within the Ω matrix, 
Ω=φ(xk)

Tφ(xl)=K(xk, xl), k, l=1, … ; and N.  is the 
tolerance error. The analytical of α and b is then given by  
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The algorithm was implemented with Excel Visual 

basic for Applications (VBA) software. 
 
3 Probabilistic back analysis based on 

Bayesian probability and support vector 
machine 

 
The numerical models and optimal methods are the 

key components of displacement back analysis. However, 
numerical modeling is time-consuming for large-scale 
projects. In this work, the LS-SVM represents the 
numerical model for mapping the relationship between 
the displacements and geomechanical parameters. A 
Microsoft Solver was used to search the geomechanical 
parameters as an optimizing method. The Bayesian 
method was used to present the probabilistic distribution 

law of the uncertainty of the geomechanical parameters. 
Figure 1 shows a flowchart of the proposed method. 
 

 
Fig. 1 Flowchart of probabilistic back analysis 

 
3.1 LS-SVM based relationship between displacement 

and geomechanical parameters 
The LS-SVM was used to map the nonlinear 

relationship between the geomechanical parameters, such 
as elastic modulus, cohesion, geostress coefficients, and 
monitored displacements. The mathematical model of the 
least squares support vector machine, fLSSVM(X) is as 
follows: 

 
fLSSVM(X): Rn→R                             (5) 
 
Y=fLSSVM(X)                                 (6) 
 
X=(x1, x2, …, xn)                             (7) 
 
Y=(y1, y2, …, yn)                             (8) 
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where xi (i=1, 2, …, n) represent the geomechanical 
parameters (deformation modulus, friction angle, 
geostress coefficients, etc); and yi (i=1, 2, …, n) are the 
displacements at the monitored sites. 

A training process based on the known data set was 
needed in order to obtain fLSSVM(X). The rock mass 
displacement at monitored sites, corresponding to the 
given set of the supposed geomechanical parameters, 
was calculated by numerical analysis (e.g., FEM model). 
The geomechanical parameters were adopted as the 
LS-SVM input, and the LS-SVM output was the 
displacement. The training process has been described by 
ZHAO [28]. 
 
3.2 Bayesian back analysis based on LS-SVM 

In order to estimate the geomechanical parameters 
from the observed monitored displacements Ymon1, 
Ymon2, … , Ymonk, the likelihood that the predicted 
displacements y1, y2, … , yk are equal to the 
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corresponding measured displacement is a conditional 
probability density function (PDF) of θ [21]: 

 
) , ,,|( mon1mon2mon11 kk YyYyYyL    
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where θ represents the estimated geomechanical 
parameter; δ1(θ), δ2(θ), … , δk(θ) are the predicted 
displacements at each monitored site using LS-SVM; Nk 
is the PDF of a multivariate normal distribution with a 
mean vector [μθ]=[μ1, μ2, … , μk,] and a covariance 
matrix as 
 























22
2

2
1

2
2

2
22

2
21

2
1

2
12

2
11

][

kkkk

k

k














C                   (11) 

 
where Cθ is covariance matrix; 2

21kk  is the covariance 
between 1k  and θk2, ,21

2
21 kkkk   and ρθ is the 

correlation coefficient between the two model bias 
factors θk1 and θk2. The posterior PDF of θ updated with 
the monitored displacement is obtained by [29] 
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where mk is the normalization factor that guarantees a 
unity for the cumulative probability over the entire range 
of θ. 
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where k is the number of monitored sites; y is the 
predicted displacement; μθ are the mean values of the 
mean vector of the geotechnical parameters; and μd are 
the mean values of the mean vector for the displacements 
at the monitored sites; Cy is a covariance matrix of the 
monitored displacement at the different monitored sites; 
and .21

2
21 ykykykyk    

The posterior distribution in the Bayesian statistics 
is obtained either by optimization or sampling techniques. 

In this work, optimization using Microsoft Excel Solver 
software was chosen. As the posterior mean was obtained, 
the posterior standard variation can also be calculated by 
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From Eq. (1) and Eq. (9), the first-order partial 

derivatives of the fLSSVM(θ) is calculated as [28]  
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where θj is the jth variation of θ, and ∂K/∂θj is the first 
partial derivative of the kernel function. When the kernel 
function is known, the first-order partial derivatives of 
the LS-SVM model can be readily calculated. If the 
kernel function is a radial kernel function, the first- order 
partial derivatives of the kernel function can be 
calculated as 
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where θj is the jth variation of θ, and θij is the jth 
variation of θi. 

The second-order partial derivatives of the LS-SVM 
model and kernel function can then be calculated from 
Eq. (19) and Eq. (20) as 
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3.3 Computation procedure 

The detailed procedure is as follows: 
Step 1: The engineering information (geological 

conditions, dimensions, etc) was collected. 
Step 2: From this information, the range of the 

parameters to be recognized was determined, and the 
input of training samples for the LS-SVM was built. 

Step 3: The displacement of each sample was 
calculated from a numerical model. 

Step 4: A sample set for the LS-SVM process was 
built. The tentative geomechanical parameters sets were 
estimated as follows. The displacement for each sample 
set, which had been previously found using a numerical 
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model (e.g., finite element method), was determined for 
the LS-SVM model. The sample sets of the 
displacements at points on the numerical model 
corresponding to the measured displacements at the 
monitored sites, enabled the LS-SVM model in Eq. (1) to 
be obtained as the solution of Eq. (3). 

Step 5: The Bayesian updating model was built  
(Eq. (12)). 

Step 6: The posterior means of the recognized 
parameters were back-calculated using Excel Solver 
software. 

Step 7: The posterior standard variation was 
computed using Eq. (16) to obtain the geomechanical 
parameters, as well as their uncertainty values. 
 
4 Application examples 
 

A permanent ship lock is one of the major 
components of the Three Gorges Project in China. It is 
one of the world’s largest artificial navigational 
structures excavated in a rock mass. A single lock 
measuring 280 m34 m5 m deep was excavated in the 
granite. The vertical sidewall of the lock was 40 to 50 m 
high. The excavation was approximately 170 m at it 
deepest point. Both sides of the lock were high, with 
steep granite slopes. Section 17–17 is located at the head 
of the third lock (Fig. 2), and this is where the highest 
slope of the permanent ship lock area is located. The 
design and stability analysis of this slope were crucial for 
the construction of the lock. Obtaining the correct rock 
mass geomechanical parameters was a significant 

problem. 
Some reports have suggested the use of regression 

equations [30] for calculating the stress fields from in 
situ measurements in the region. Another investigation 
on this project utilized a determistic back analysis, which 
is detailed in Ref. [14]. In the present work, a proposed 
probabilistic back analysis method was used. The 
parameters to be back-identified were the coefficients ax 
and ay for the geostress equation, and the deformation 
modulus for the four rock mass zones (moderately 
weathered rock; slightly weathered or fresh rock; 
unloading deformation; and damaged rock zones). The 
data for the deformation modulus, Poisson ratio, and 
weight for the strongly weathered zone, were provided 
by the Yangtze River Water Conservancy Committee. 
The rock masses in all the zones were considered to 
deform plastically. Their cohesion c and friction angle  
were determined directly from the engineering tests and 
previously monitored data [30]. 

In all, 50 sets of training samples were built using 
the FLAC established by ZHAO and YIN [14]. Each of 
the samples consisted of 6 LS-SVM inputs, which were 
the deformation modulus for the four rock mass zones 
defined above. The geostress coefficients ax and ay, and 6 
LS-SVM outputs, which were displacements of six 
monitored sites, are listed in Table 1. Based on the 
LS-SVM algorithm described above, the LS-SVM code 
was written using Excel Visual Basic. The LS-SVM 
model was built, and its parameters αi and bi were 
obtained by using the training based on the training 
samples, as listed in Table 1. The first row is the b 

 

 
Fig. 2 Different rock zones and locations of monitored sites of Section 17–17 
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value of the LS-SVM model, and the other rows are the a 
value in the last six columns of Table 1. The values of the 
deformation modulus for the four rock mass zones 
defined above, and the geostress coefficients ax and ay 

were obtained by the LS-SVM model based on the 
observations at the six monitored sites, as listed in  
Table 2. The comparison of the calculated displacement 
and monitored displacement is illustrated. The six 
monitored sites are: TP/BM10GP01, TP/BM11GP01, 
TP/BM26GP02, TP/BM27GP02, TP/BM28GP02, and 
TP/BM29GP02, and their location is shown in Fig. 2. 

The results obtained by the probabilistic and 
deterministic back analysis are compared in Table 2, in 
which the 2 monitored sites were TP/BM10GP01 and 
TP/BM11GP01; 4 monitored sites were TP/BM10GP01, 
TP/BM11GP01, TP/BM26GP02 and TP/BM27GP02; 
and six monitored sites were TP/BM10GP01, TP/ 

BM11GP01, TP/BM26GP02, TP/BM27GP02, TP/ 
BM28GP02, and TP/BM29GP02. A decrease in the 
standard deviation (s.d.) accompanying the increasing 
number of monitored sites was indicated. This illustrated 
the fact that the increased prior knowledge improves the 
understanding of the uncertainty of the geomechanical 
parameters. A comparison of the method based on SVM 
and the particle swarm optimization (PSO) [14] showed 
that the geomechanical parameters obtained by the 
deterministic methods were within the range of the 
proposed method, and suggested that the probabilistic 
back analysis provided considerable information 
regarding the geomechanical parameters, as well as 
providing a reasonable indication of the uncertainty of 
such parameters. The probabilistic back analysis 
considers that the uncertainty is more rational than the 
deterministic methods, and is consistent with the 

 

Table 1 Training samples and LS-SVM model 

Training sample Model of LSSVM 

No. 

Updated parameter Displacement of mointored sites/mm 

α1i α2i α3i α4i α5i α6i Elastic modulus/GPa  CSS TP/BM 
10GP01 

TP/BM 
11GP01 

TP/BM
26GP02

TP/BM
27GP02

TP/BM
28GP02

TP/BM
29GP02MWZ DZ UDZ SWZ  ax ay

1 6.0 8.0 15.0 25.0 3.0 0.8 13.11 13.84 17.87 13.47 11.60 11.37 –153.14 –147.68 –188.75 –117.44 –124.02 –137.34

2 6.0 10.0 18.0 28.0 4.0 1.2 16.44 16.98 21.96 15.98 14.29 14.37 –48.08 –47.74 –60.92 –46.42 –39.70 –41.04

3 6.0 12.0 20.0 30.0 5.0 1.6 19.79 20.21 26.51 18.97 17.12 17.37 –12.97 –13.46 4.58 –25.03 –3.65 1.16

4 6.0 15.0 23.0 32.0 6.0 1.8 23.00 23.38 30.51 22.18 19.79 20.03 36.08 37.41 51.80 22.90 28.91 35.25

5 6.0 18.0 25.0 35.0 7.0 2.0 24.94 25.26 33.14 24.52 21.46 21.56 83.65 82.73 98.87 88.85 71.80 67.99

6 8.0 8.0 18.0 30.0 6.0 2.0 23.58 23.92 31.19 22.56 20.14 20.60 38.59 36.78 39.64 20.10 36.29 41.23

7 8.0 10.0 20.0 32.0 7.0 0.8 26.28 26.62 35.16 25.94 22.43 22.73 67.21 71.79 102.21 97.89 60.28 52.30

8 8.0 12.0 23.0 35.0 3.0 1.2 9.56 10.02 13.18 9.63 8.23 8.30 –65.09 –63.12 –94.12 –53.81 –56.19 –62.10

9 8.0 15.0 25.0 25.0 4.0 1.6 18.70 19.17 23.96 17.79 16.07 16.26 –68.18 –69.50 –113.39 –77.77 –68.26 –60.46

10 8.0 18.0 15.0 28.0 5.0 1.8 20.92 21.40 28.45 19.93 17.89 18.23 –55.69 –55.41 –62.97 –65.66 –43.04 –37.97

11 10.0 8.0 20.0 35.0 4.0 1.8 12.81 13.17 17.74 12.33 10.84 11.23 –42.43 –44.71 –56.94 –59.81 –35.92 –33.09

12 10.0 10.0 23.0 25.0 5.0 2.0 23.15 23.45 30.17 21.79 19.89 20.22 –90.26 –93.48 –103.68 –102.43 –74.03 –71.20

13 10.0 12.0 25.0 28.0 6.0 0.8 25.47 25.78 33.86 24.73 21.94 22.13 42.32 42.53 89.95 51.01 45.24 40.19

14 10.0 15.0 15.0 30.0 7.0 1.2 27.62 28.04 37.67 26.98 23.32 23.75 108.71 110.82 156.24 119.65 84.96 86.05

15 10.0 18.0 18.0 32.0 3.0 1.6 10.38 10.89 14.24 10.15 8.73 8.94 –122.54 –121.17 –188.27 –117.64 –113.71 –114.08

16 12.0 8.0 23.0 28.0 7.0 1.6 29.31 29.51 38.13 28.24 24.94 25.44 98.40 95.17 101.64 99.71 78.69 82.23

17 12.0 10.0 25.0 30.0 3.0 1.8 10.87 11.37 14.66 10.59 9.17 9.40 –108.66 –107.25 –161.51 –102.82 –101.21 –103.38

18 12.0 12.0 25.0 32.0 4.0 2.0 13.80 14.26 19.34 13.39 11.66 12.02 –6.27 –2.98 16.39 –14.19 –15.45 –9.98

19 12.0 15.0 28.0 35.0 5.0 0.8 16.31 16.73 23.62 16.51 14.11 14.33 –25.03 –24.22 5.71 –15.83 –21.07 –19.66

20 12.0 18.0 20.0 25.0 6.0 1.2 28.17 28.47 37.48 26.95 24.17 24.39 134.23 126.80 182.71 120.99 120.20 119.24

21 15.0 8.0 25.0 32.0 5.0 1.2 17.49 17.88 24.09 17.17 15.11 15.48 9.17 8.17 13.34 4.94 17.34 17.12

22 15.0 10.0 15.0 35.0 6.0 1.6 19.39 19.82 27.55 19.17 16.42 16.95 4.26 4.00 5.01 0.38 0.74 4.15

23 15.0 12.0 18.0 25.0 7.0 1.8 32.12 32.48 42.73 30.70 27.36 27.77 187.62 186.52 241.28 174.27 158.59 158.99

To be continued 
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Continued 

Training sample Model of LS-SVM 

No. 

Updated parameter Displacement of mointored sites/mm 

α1i α2i α3i α4i α5i α6i Elastic modulus/GPa  CSS TP/BM 
10GP01 

TP/BM 
11GP01 

TP/BM
26GP02

TP/BM
27GP02

TP/BM
28GP02

TP/BM
29GP02MWZ DZ UDZ SWZ  ax ay 

24 15.0 15.0 20.0 28.0 3.0 2.0 11.45 12.05 15.58 11.22 9.66 9.85 –125.61 –123.66 –181.48 –119.65 –114.40 –115.96

25 15.0 18.0 23.0 30.0 4.0 0.8 14.85 15.40 20.58 14.98 13.00 13.00 –7.16 –6.03 –13.04 3.84 7.26 –2.18

26 6.0 8.0 15.0 32.0 7.0 1.8 26.28 26.63 34.85 25.67 22.25 22.69 145.84 144.12 177.20 146.19 118.29 121.62

27 6.0 10.0 18.0 35.0 3.0 2.0 9.56 9.98 13.05 9.19 7.97 8.20 –103.70 –105.69 –143.95 –111.88 –95.74 –94.94

28 6.0 12.0 20.0 25.0 4.0 0.8 18.65 19.29 24.48 18.36 16.39 16.22 –44.10 –37.01 –60.71 –15.87 –29.30 –42.46

29 6.0 15.0 23.0 28.0 5.0 1.2 21.51 21.99 28.41 20.76 18.75 18.80 –2.82 –0.72 12.05 –1.62 5.58 3.22

30 6.0 18.0 25.0 30.0 6.0 1.6 24.75 25.16 32.44 23.81 21.39 21.50 80.09 79.92 90.99 62.65 67.16 69.37

31 8.0 8.0 18.0 25.0 5.0 1.6 23.00 23.43 30.34 21.76 19.86 20.20 98.17 94.60 129.01 67.52 83.90 95.50

32 8.0 10.0 20.0 28.0 6.0 1.8 25.50 25.79 33.48 24.26 21.80 22.19 47.23 43.63 55.86 35.54 35.02 38.44

33 8.0 12.0 23.0 30.0 7.0 2.0 28.35 28.54 36.92 27.24 24.13 24.51 85.99 80.83 74.98 80.47 62.76 64.54

34 8.0 15.0 25.0 32.0 3.0 0.8 10.58 11.14 14.62 11.21 9.46 9.21 –144.60 –141.39 –184.13 –100.57 –111.18 –128.05

35 8.0 18.0 15.0 35.0 4.0 1.2 13.13 13.62 18.59 13.01 11.23 11.41 –53.74 –53.21 –61.89 –50.27 –40.19 –43.09

36 10.0 8.0 20.0 30.0 3.0 1.2 10.77 11.32 14.79 10.65 9.20 9.37 –128.61 –124.18 –159.45 –110.31 –112.04 –117.39

37 10.0 10.0 23.0 32.0 4.0 1.6 14.17 14.55 19.12 13.62 12.06 12.41 0.46 –1.60 –4.36 –14.25 0.94 6.38

38 10.0 12.0 25.0 35.0 5.0 1.8 16.69 16.98 22.79 16.05 14.29 14.72 29.97 25.32 22.60 –0.26 27.27 36.98

39 10.0 15.0 15.0 25.0 6.0 2.0 28.10 28.49 37.46 26.54 23.92 24.30 109.60 106.67 138.89 85.81 90.88 94.94

40 10.0 18.0 18.0 28.0 7.0 0.8 29.90 30.24 40.13 29.02 25.44 25.70 111.83 112.23 148.40 124.80 89.60 85.45

41 12.0 8.0 23.0 35.0 6.0 0.8 19.95 20.27 27.42 19.93 17.05 17.42 42.46 43.43 61.73 63.82 37.26 33.18

42 12.0 10.0 25.0 25.0 7.0 1.2 32.97 33.19 42.63 31.60 28.19 28.55 248.28 245.48 298.42 239.25 210.07 209.96

43 12.0 12.0 15.0 28.0 3.0 1.6 11.41 12.01 15.71 11.13 9.60 9.82 –176.51 –176.67 –256.23 –172.60 –159.53 –159.93

44 12.0 15.0 18.0 30.0 4.0 1.8 14.92 15.39 20.46 14.44 12.68 13.00 –40.14 –40.21 –56.39 –40.31 –28.73 –27.60

45 12.0 18.0 20.0 32.0 5.0 2.0 18.10 18.42 24.97 17.36 15.41 15.82 23.22 17.65 44.55 –0.04 19.84 28.92

46 15.0 8.0 25.0 28.0 4.0 2.0 15.59 16.07 21.00 15.07 13.34 13.66 –119.09 –116.55 –146.49 –116.88 –101.34 –101.93

47 15.0 10.0 15.0 30.0 5.0 0.8 18.26 18.87 26.34 18.28 15.79 16.08 –33.26 –27.93 –1.42 –15.95 –14.68 –18.64

48 15.0 12.0 18.0 32.0 6.0 1.2 21.38 21.77 30.00 21.02 18.23 18.65 26.68 24.74 45.49 22.83 25.39 24.54

49 15.0 15.0 20.0 35.0 7.0 1.6 23.37 23.66 32.48 23.08 19.76 20.26 73.75 72.58 94.27 77.41 57.05 58.99

50 15.0 18.0 23.0 25.0 3.0 1.8 12.86 13.59 17.29 12.74 11.00 11.16 –156.11 –148.34 –203.71 –141.52 –137.94 –135.44

Note: b1=19.32, b2=19.85, b3=26.28, b4=19.18, b5=16.67, b6=16.80; MWZ—Moderately weathered zone; DZ—Damaged zone; UDZ—Unloading deformation 
zone; SWZ—Slightly weathered or fresh zone; CSS—Coefficient of in-situ stress. 
 

Table 2 Comparison of probabilistic and deterministic back analyses 

Method 
Monitored

sites number 
Statistic 

parameter 

Deformation Modulus/GPa  
Coefficient of 
in-situ stress 

MWZ DZ UDZ SWZ  ax ay 

Probabilistic back 
analysis 

2 
Mean value 10.039 11.988 19.801 31.218  4.782 1.599 

Standard deviation 2.990 3.582 5.553 2.290  0.486 0.479 

4 
Mean value 10.010 11.900 20.042 31.447  4.692 1.602 

Standard deviation 2.252 3.444 3.047 0.874  0.133 0.161 

6 
Mean value 9.030 12.018 20.755 31.062  4.732 1.602 

Standard deviation 0.424 0.933 0.665 0.300  0.046 0.106 

Deterministic 
back analysis [14] 

6 
Mean value 6.000 9.498 17.313 29.253  4.355 1.370 

Standard deviation — — — —  — — 

Note: MWZ—Moderately weathered zone; DZ—Damaged zone; UDZ—Unloading deformation zone; SWZ—Slightly weathered or fresh zone. 
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complexity and uncertainty of the geotechnical 
engineering difficulties. 

For this particular case study, the probability density 
distribution of the geomechanical parameters based on 
the non-observations and observations from the 2, 4, and 
6 monitored sites, are shown in Fig. 3. In Fig. 3, it can be 
seen that the certainty of the geomechanical parameters 
increases with the increasing of the monitored 
information, and the geomechanical parameters are close 
to the real value. The displacement calculated by the 
LS-SVM, based on the geomechanical parameters from 

the 2, 4, and 6 monitored sites, as well as the monitored 
displacement are shown in Fig. 4. It is clear from Fig. 4 
that the proposed back analysis method can produce high 
accuracy results in this case study. Such results can be 
used to guide the design of the geotechnical engineering 
structures. The distributions of the calculated 
displacement at the two monitored sites are shown in  
Fig. 5. The uncertainty of the displacement values is 
highlighted, and this indicates that a greater amount of 
monitored information (prior knowledge) potentially 
reduces the effect of this uncertainty. 

 

 
Fig. 3 Probability density distribution of geomechanical parameters based on different observation information: (a) Probability 

density distribution of deformation modulus in MWZ; (b) Probability density distribution of deformation modulus in DZ;         

(c) Probability density distribution of deformation modulus in UDZ; (d) Probability density distribution of deformation modulus in 

SWZ; (e) Probability density distribution of coefficient of in-situ stress ax; (f) Probability density distribution of coefficient of in-situ 

stress ay 
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Fig. 4 Comparison of calculated displacement by LS-SVM, and 

monitored displacement based on different observation 

information 

 

 
Fig. 5 Displacement distributions of monitored sites 

TP/BM11GP01 and TP/BM11GP01 based on different 

observation information: (a) TP/BM10GP01; (b) 

TP/BM11GP01 

 
5 Conclusions 
 

This work describes a proposed probabilistic back 

analysis that combines the Bayesian probability with a 
LS-SVM in order to illustrate the uncertainties in the 
rock mass mechanical properties used for geotechnical 
engineering purposes. A LS-SVM model implemented in 
Microsoft Excel VBA is used in back-analysis of the 
relationship between the geomechanical parameters and 
displacement in the rock masses. Microsoft Solver 
software is utilized to interrogate the geomechanical 
parameters. The method is found to be easy to use and 
was readily understood by the field engineers. The 
proposed approach is applied to the geomechanical 
parameter identification in a slope stability case study, 
which is related to the permanent ship lock within the 
Three Gorges project in China. These results are 
compared with the deterministic results obtained earlier. 

The probabilistic back analysis produces more 
information than the deterministic back analysis, and 
characterizes the behavior of the rock masses in the 
geotechnical engineering problems reasonably well. The 
distributions of the geomechanical parameters are 
compared with the observed values of the deformation 
measured at the different numbers within the monitored 
sites. The uncertainties of the values of the 
geomechanical parameters are reduced when more 
measurement information is added. Therefore, the 
probabilistic back analysis can be used in reliability- 
based designs (RBD). The proposed method is useful and 
assists in the stability analysis, slope design, and 
construction safety. 
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