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Abstract: Geomechanical parameters are complex and uncertain. In order to take this complexity and uncertainty into account, a
probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine (LS-SVM)
technique was proposed. The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters, and an
LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters. The proposed
approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the
permanent ship lock within the Three Gorges project in China. The results indicate that the proposed method presents the
uncertainties in the geomechanical parameters reasonably well, and also improves the understanding that the monitored information

is important in real projects.
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(SVM)

1 Introduction

Numerical models are used to study the geometry of
the failure mechanisms and analyze the geotechnical
engineering stability and design problems [1]. The
accurate knowledge of the geomechanical parameters of
the rock mass is a key factor in the numerical simulation.
This is one of the most challenging tasks, and yet
laboratory testing is an established method of
determining the geomechanical parameters and it is
limited by the relatively small scale of the laboratory test
specimens [2]. In addition, the laboratory test results may
be affected by sample disturbances [3]. Due to the
complexity of the geomaterials, in situ testing techniques
have been developed in order to overcome these
limitations [4], but these techniques are often difficult to
implement, costly and time-consuming.

The displacement of rock masses induced by an
excavation can be measured relatively easily and reliably.
The displacement-based back analysis is frequently used
as a practical engineering tool to estimate the unknown

geomechanical ~ parameters. Many  back-analysis
approaches have been developed in the past 30 years
[5-17]. However, the values obtained in this way are
deterministic and do not interpret their uncertainty. In
order to consider these uncertainties, the probabilistic
back analyses have also been reported [18-20].

Probabilistic back analysis is a logical way of
incorporating information from other sources, but it is
more difficult to implement than traditional back-
analysis methods [21]. In the present work, the Bayesian
probability was combined with the displacement back
analysis to provide a probabilistic back-analysis
framework, which integrates the monitored displacement
data and the uncertainty of the geomechanical parameters.
The Bayesian approach has been applied to geotechnical
engineering in past studies [21-26]. However, the
Bayesian probability has rarely been incorporated into
previous back analyses.

A detailed formulation of the LS-SVM algorithm is
presented. Then, the probabilistic back
procedure incorporating the Bayesian probability and
LS-SVM is presented. Finally, a case study is used to

analysis
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verify the proposed method.

2 Least squares support vector machine (LS-
SVM)

The least squares support vector machine (LS-SVM)
[27] is an alternative form of SVM regression. For a
given training set of N data points {x;, y;} (k=1, 2, -,
N) with the input data x, € R"and output y, € r, where
R" is an N-dimensional vector space, and r is a
one-dimensional vector space, the LS-SVM algorithm
describes the model as

N
y(x)zZakK(x,xk)+b (D
k=1

where K(x, x;) is the kernel function, in which the
general kernel function is the polynomial K(X, Y)=
(X-Y)+1)%, d=1, 2, 3, ---; the radial kernel function is

-of
i

o

K (X Y ): expy — ; the radial function kernel
(RBF) is K(X, Y)=tanh(#X Y)+6); a, are Lagrange
multipliers; b is the scalar threshold. The values of oy and
b are obtained by

RS HEN

where y=[y;, -, ynl; IF[1, ==, 1], a=[ay, ***, oy];
Mercer’s theorem is applied within the £ matrix,
Q=p(x) 9(x)=K(x, x)), k, =1, *+; and N. y is the
tolerance error. The analytical of @ and b is then given by

Mg >

where

0 1"
D= 4
L .(2+7/11} @

The algorithm was implemented with Excel Visual
basic for Applications (VBA) software.

3 Probabilistic back analysis based on
Bayesian probability and support vector
machine

The numerical models and optimal methods are the
key components of displacement back analysis. However,
numerical modeling is time-consuming for large-scale
projects. In this work, the LS-SVM represents the
numerical model for mapping the relationship between
the displacements and geomechanical parameters. A
Microsoft Solver was used to search the geomechanical
parameters as an optimizing method. The Bayesian
method was used to present the probabilistic distribution

law of the uncertainty of the geomechanical parameters.
Figure 1 shows a flowchart of the proposed method.

| Collect engineering informationl
(]
I Numerical model (FEM etc) |

| Building samples |

SVM

Nonlinear relationship

|| between displacement

and uncertainty

ki Microsoft
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Uncertainty of
geomechancal parameters

Monitored
displacement

End
Fig. 1 Flowchart of probabilistic back analysis

3.1 LS-SVM based relationship between displacement
and geomechanical parameters

The LS-SVM was used to map the nonlinear
relationship between the geomechanical parameters, such
as elastic modulus, cohesion, geostress coefficients, and
monitored displacements. The mathematical model of the
least squares support vector machine, fissym(X) is as
follows:

Sissvm(X): R"—R Q)

Y=fssvm(X) (6)

X=(x1, x2, ***, X,) @)

Y:(yls Y2, % yn) (8)
N

fLSSVM(X):ZakK(XﬂXk)J’_bi 9
k=1

where x; (i=1, 2, **+, n) represent the geomechanical
parameters (deformation modulus, friction angle,
geostress coefficients, etc); and y; (i=1, 2, **, n) are the
displacements at the monitored sites.

A training process based on the known data set was
needed in order to obtain f{ssym(X). The rock mass
displacement at monitored sites, corresponding to the
given set of the supposed geomechanical parameters,
was calculated by numerical analysis (e.g., FEM model).
The geomechanical parameters were adopted as the
LS-SVM input, and the LS-SVM output was the
displacement. The training process has been described by
ZHAO [28].

3.2 Bayesian back analysis based on LS-SVM

In order to estimate the geomechanical parameters
from the observed monitored displacements Yioni,
*, Yuomr» the likelihood that the predicted
*, y» are equal to the

Y, mon2»
displacements y;, 1y,
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corresponding measured displacement is a conditional
probability density function (PDF) of  [21]:

L(6|yl mon17y2 Ymonla‘”ayszmonk)

= Nk[ monl /51 (‘9)9 YmonZ /52 (‘9): Tt
Yinonk / 64 (0)] (10)

where 6 represents the estimated geomechanical
parameter; 0,(6), 0,(@), -, J(f) are the predicted
displacements at each monitored site using LS-SVM; N,
is the PDF of a multivariate normal distribution with a
mean vector [mgl=[ui, w2, ***, m,] and a covariance

matrix as
0'121 0'122 0'12k

(€)= o2 ou (11)
0'131 0'132 O-lgk

where Cj is covariance matrix; 0'131 > s the covariance
between 6, and B Ofips = Pollitiyr»and py is the
correlation coefficient between the two model bias
factors 6, and 6;,. The posterior PDF of 8 updated with
the monitored displacement is obtained by [29]

SOy =

mon17y2 Ymonlﬂ'”’yk:Ymonk):
mka[ monl /51 (0)’ YmonZ /52 (‘9),»

Ynon / 6 (0)]- 1 (6) (12)

where my is the normalization factor that guarantees a
unity for the cumulative probability over the entire range
of 6.

e(f(afug)c;‘(e—ugf)
fO)=—— (13)

(2m)2 \[det(C,)

(5 e (L)
Ha Ha

e
Ni(p) = - (14)
(2m)?2/det(C))
#511 ﬂilz e /u}%lk
yz yz ﬂz
ﬂikl ﬂikz ﬂ;kk

where k is the number of monitored sites; y is the
predicted displacement; uy are the mean values of the
mean vector of the geotechnical parameters; and u  are
the mean values of the mean vector for the displacements
at the monitored sites; C, is a covariance matrix of the
monitored displacement at the different monitored sites;
and Lz = Py by k-

The posterior distribution in the Bayesian statistics
is obtained either by optimization or sampling techniques.

In this work, optimization using Microsoft Excel Solver
software was chosen. As the posterior mean was obtained,
the posterior standard variation can also be calculated by

oy =4/diag(Cyy) (16)

where
Cys =(G'C/'G+C ! 17)
and
0? 0
[G]= M (18)
00,00,

From Eq. (1) and Eq. (9), the first-order partial
derivatives of the fi ssym(0) is calculated as [28]

aJ‘LSSVM (0) — iai a_K (1 9)
00 i1 99

where 0 is the jth variation of 0, and 0K/80; is the first
partial derivative of the kernel function. When the kernel
function is known, the first-order partial derivatives of
the LS-SVM model can be readily calculated. If the
kernel function is a radial kernel function, the first- order
partial derivatives of the kernel function can be
calculated as

oK _ 0,-9, -6/
— = exp| — 20
00, o N 20 20

where 6, is the jth variation of 6, and 6; is the jth
variation of 8,.

The second-order partial derivatives of the LS-SVM
model and kernel function can then be calculated from
Eq. (19) and Eq. (20) as

a fLSSVM (9) Z

21
00,00, = (@1)

lo-af (22)
exp| —
P 20
3.3 Computation procedure

The detailed procedure is as follows:

Step 1: The engineering information (geological
conditions, dimensions, etc) was collected.

Step 2: From this information, the range of the
parameters to be recognized was determined, and the
input of training samples for the LS-SVM was built.

Step 3: The displacement of each sample was
calculated from a numerical model.

Step 4: A sample set for the LS-SVM process was
built. The tentative geomechanical parameters sets were
estimated as follows. The displacement for each sample
set, which had been previously found using a numerical

Y aak

azK _ (9/ - ‘94‘;)(‘91{ B 911()
00,00, 4
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model (e.g., finite element method), was determined for
the LS-SVM model. The sample sets of the
displacements at points on the numerical model
corresponding to the measured displacements at the
monitored sites, enabled the LS-SVM model in Eq. (1) to
be obtained as the solution of Eq. (3).

Step 5: The Bayesian updating model was built
(Eq. (12)).

Step 6: The posterior means of the recognized
parameters were back-calculated using Excel Solver
software.

Step 7: The posterior standard variation was
computed using Eq. (16) to obtain the geomechanical
parameters, as well as their uncertainty values.

4 Application examples

A permanent ship lock is one of the major
components of the Three Gorges Project in China. It is
one of the world’s largest artificial navigational
structures excavated in a rock mass. A single lock
measuring 280 mx34 mx5 m deep was excavated in the
granite. The vertical sidewall of the lock was 40 to 50 m
high. The excavation was approximately 170 m at it
deepest point. Both sides of the lock were high, with
steep granite slopes. Section 17—17 is located at the head
of the third lock (Fig. 2), and this is where the highest
slope of the permanent ship lock area is located. The
design and stability analysis of this slope were crucial for
the construction of the lock. Obtaining the correct rock
mass geomechanical parameters was a significant

TP/BM10GPO1
North slope —

TP/BM11GPO

Damaged zone

eavy weathered zone .
AMdeerate weathered zone ” -
Slightly weathered or fresh zone

Unloading
deformation zone
ZaS | ==

problem.

Some reports have suggested the use of regression
equations [30] for calculating the stress fields from in
situ measurements in the region. Another investigation
on this project utilized a determistic back analysis, which
is detailed in Ref. [14]. In the present work, a proposed
probabilistic back analysis method was used. The
parameters to be back-identified were the coefficients a,
and a, for the geostress equation, and the deformation
modulus for the four rock mass zones (moderately
weathered rock; slightly weathered or fresh rock;
unloading deformation; and damaged rock zones). The
data for the deformation modulus, Poisson ratio, and
weight for the strongly weathered zone, were provided
by the Yangtze River Water Conservancy Committee.
The rock masses in all the zones were considered to
deform plastically. Their cohesion ¢ and friction angle ¢
were determined directly from the engineering tests and
previously monitored data [30].

In all, 50 sets of training samples were built using
the FLAC established by ZHAO and YIN [14]. Each of
the samples consisted of 6 LS-SVM inputs, which were
the deformation modulus for the four rock mass zones
defined above. The geostress coefficients a, and a,, and 6
LS-SVM outputs, which were displacements of six
monitored sites, are listed in Table 1. Based on the
LS-SVM algorithm described above, the LS-SVM code
was written using Excel Visual Basic. The LS-SVM
model was built, and its parameters o; and b; were
obtained by using the training based on the training
samples, as listed in Table 1. The first row is the b

TP/BM28GP02

TP/BM29GP02

— \,

I/ lFault I B IWeathered zone Excavation boundary

Fig. 2 Different rock zones and locations of monitored sites of Section 17-17
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value of the LS-SVM model, and the other rows are the a
value in the last six columns of Table 1. The values of the
deformation modulus for the four rock mass zones
defined above, and the geostress coefficients a, and a,
were obtained by the LS-SVM model based on the
observations at the six monitored sites, as listed in
Table 2. The comparison of the calculated displacement
and monitored displacement is illustrated. The six
monitored sites are: TP/BM10GP01, TP/BM11GPO1,
TP/BM26GP02, TP/BM27GP02, TP/BM28GP02, and
TP/BM29GP02, and their location is shown in Fig. 2.
The results obtained by the probabilistic and
deterministic back analysis are compared in Table 2, in
which the 2 monitored sites were TP/BM10GP0O1 and
TP/BM11GPO1; 4 monitored sites were TP/BM10GPO1,
TP/BM11GP0O1, TP/BM26GP02 and TP/BM27GP02;
and six monitored sites were TP/BM10GPO1, TP/

Table 1 Training samples and LS-SVM model

BM11GP0O1, TP/BM26GP02, TP/BM27GP02, TP/
BM28GP02, and TP/BM29GP02. A decrease in the
standard deviation (s.d.) accompanying the increasing
number of monitored sites was indicated. This illustrated
the fact that the increased prior knowledge improves the
understanding of the uncertainty of the geomechanical
parameters. A comparison of the method based on SVM
and the particle swarm optimization (PSO) [14] showed
that the geomechanical parameters obtained by the
deterministic methods were within the range of the
proposed method, and suggested that the probabilistic
back provided considerable information
regarding the geomechanical parameters, as well as
providing a reasonable indication of the uncertainty of
such parameters. The probabilistic back analysis
considers that the uncertainty is more rational than the
deterministic methods, and is consistent with the

analysis

Training sample Model of LSSVM
Updated parameter Displacement of mointored sites/mm
No. Elastic modulus/GPa  CSS  TpspM TP/BM TP/BM TP/BM TP/BM TP/BM i i i O Osi i

MWZ DZ UDZ SWZ a, a,

10GP01 11GP0O1 26GP02 27GP02 28GP02 29GP02

1 60 80 150 250 3.008 13.11 13.84  17.87  13.47
2 6.0 100 18.0 28.0 40 1.2 1644 1698 2196 1598
3 6.0 120 20.0 30.0 50 1.6 19.79 2021  26.51 18.97
4 6.0 150 23.0 320 6.0 1.8 23.00 2338 3051 22.18
5 6.0 180 25.0 350 7.0 2.0 2494 2526 33.14 2452
6 80 8.0 180 300 6020 2358 2392 31.19 2256
7 80 10.0 20.0 32.0 7.0 0.8 2628 26.62 35.16 2594
8 8.0 12.0 23.0 350 3.0 1.2 9.6 10.02  13.18 9.63
9 80 150 250 250 40 1.6 1870 19.17 2396 17.79
10 8.0 18.0 150 28.0 5.0 1.8 2092 2140 2845 19.93
11 10.0 8.0 20.0 35.0 4.0 1.8 12.81 13.17 17.74 1233
12 10.0 10.0 23.0 25.0 5.0 2.0 23.15 2345 30.17 21.79
13 10.0 12.0 25.0 28.0 6.0 0.8 2547 2578 3386 24.73
14 10.0 15.0 150 30.0 7.0 1.2 27.62 28.04 37.67 2698
15 10.0 18.0 18.0 32.0 3.0 1.6 1038 10.89 1424 10.15
16 12.0 80 230 28.0 7.0 1.6 2931 2951 38.13 28.24
17 12.0 10.0 25.0 30.0 3.0 1.8 10.87 11.37 14.66 10.59
18 12.0 12.0 25.0 32.0 4.0 2.0 13.80 1426 1934 13.39
19 12.0 15.0 28.0 35.0 5.0 0.8 16.31 16.73  23.62 16.51
20 12.0 18.0 20.0 25.0 6.0 1.2 28.17 2847 3748 2695
21 150 80 250 320 5012 1749 1788 24.09 17.17
22 15.0 10.0 150 350 6.0 1.6 1939 19.82  27.55 19.17
23 15.0 12.0 18.0 25.0 7.0 1.8 32.12 3248 4273  30.70

11.60  11.37 -153.14 —147.68 —188.75 —117.44 —124.02-137.34
14.29 1437 -48.08 —47.74 -60.92 -46.42 -39.70 —-41.04
17.12 1737 -12.97 -13.46 4.58 -25.03 -3.65 1.16
19.79  20.03 36.08 3741 51.80 2290 2891 3525
2146 2156 83.65 82.73 9887 88.85 71.80 67.99
20.14  20.60 3859 36.78 39.64 20.10 3629 41.23
2243 2273 6721 71.79 10221 97.89 60.28 52.30
8.23 830 -65.09 -63.12 -94.12 -53.81 -56.19 —62.10
16.07 16.26 -68.18 —69.50 —113.39 —77.77 —68.26 —60.46
17.89 1823 -55.69 -55.41 -62.97 —65.66 —43.04 -37.97
10.84 1123 4243 4471 -56.94 -59.81 -35.92 -33.09
19.89 2022 -90.26 -93.48 -103.68 —102.43 -74.03 —-71.20
2194 2213 4232 4253 8995 51.01 4524 40.19
2332 23775 108.71 110.82 156.24 119.65 84.96 86.05
8.73 894 —122.54 -121.17 —-188.27 —-117.64 —113.71 -114.08
2494 2544 9840 95.17 101.64 99.71 78.69 82.23
9.17 9.40 -108.66 —107.25 -161.51 —102.82 -101.21-103.38
11.66 1202 -6.27 298 1639 -14.19 -1545 -9.98
14.11 1433 -25.03 2422 571 -1583 -21.07 -19.66
24.17 2439 134.23 126.80 182.71 120.99 120.20 119.24
15.11 1548  9.17 817 1334 494 1734 17.12
16.42 1695 426  4.00 5.01 0.38 0.74 4.5
2736 2777 187.62 186.52 241.28 174.27 158.59 158.99

To be continued
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Continued
Training sample Model of LS-SVM
Updated parameter Displacement of mointored sites/mm
No. Elastic modulus/GPa CSS o i 03; o Os; Olsi

TP/BM TP/BM TP/BM TP/BM TP/BM TP/BM
10GP01 11GPO1 26GP02 27GP02 28GP02 29GP02

MWZ DZ UDZ SWZ a, a,

24 15.0 15.0 20.0 28.0 3.0 2.0 1145 12.05 1558 11.22 9.66 9.85
25 15.0 18.0 23.0 30.0 4.0 0.8 1485 1540 20.58 1498 13.00 13.00
26 6.0 80 150 32.0 7.0 1.8 2628 26.63 34.85 25,67 2225 22.69
27 6.0 10.0 18.0 35.0 3.0 2.0  9.56 9.98 13.05 9.19 7.97 8.20
28 6.0 12.0 20.0 25.0 4.0 0.8 18.65 1929 2448 1836 1639 1622
29 6.0 15.0 23.0 28.0 5.0 1.2 2151 2199 2841 20.76 18.75 18.80
30 6.0 18.0 25.0 30.0 6.0 1.6 2475 2516 3244 2381 2139 2150
31 80 80 18.0 250 5.0 1.6 2300 2343 3034 21.76 19.86 20.20
32 8.0 10.0 20.0 28.0 6.0 1.8 2550 2579 3348 2426 21.80 22.19
33 8.0 12.0 23.0 30.0 7.0 2.0 2835 2854 3692 2724 2413 2451
34 8.0 15.0 25.0 32.0 3.0 0.8 10.58 11.14 14.62 11.21 9.46 9.21
35 8.0 18.0 150 35.0 40 1.2 13.13 13.62 1859 13.01 11.23 11.41
36 10.0 80 20.0 30.0 3.0 1.2 1077 1132 1479  10.65 9.20 9.37
37 10.0 10.0 23.0 32.0 40 1.6 1417 1455 19.12 13.62 12.06 1241
38 10.0 12.0 25.0 35.0 5.0 1.8 16.69 1698 2279 16.05 1429 14.72
39 10.0 15.0 150 25.0 6.0 2.0 28.10 2849 3746 2654 2392 2430
40 10.0 18.0 18.0 28.0 7.0 0.8 29.90 3024 40.13 29.02 2544 25.70
41 12.0 8.0 23.0 350 6.0 0.8 1995 2027 2742 1993 17.05 17.42
42 12.0 10.0 25.0 250 7.0 1.2 3297 33.19 4263 31.60 28.19  28.55
43 12.0 12.0 15.0 28.0 3.0 1.6 1141 12.01 15.71 11.13 9.60 9.82
44 12.0 15.0 18.0 30.0 4.0 1.8 1492 1539 2046 1444 12.68 13.00
45 12.0 18.0 20.0 32.0 5.0 2.0 18.10 1842 2497 1736 1541 15.82
46 15.0 8.0 25.0 28.0 40 2.0 1559 1607 21.00 1507 1334 13.66
47 15.0 10.0 15.0 30.0 5.0 0.8 1826 18.87 2634 1828 1579 16.08
48 15.0 12.0 18.0 32.0 6.0 1.2 21.38 21.77 30.00 21.02 1823  18.65
49 15.0 15.0 20.0 350 7.0 1.6 2337 2366 3248 23.08 19.76  20.26
50 15.0 18.0 23.0 25.0 3.0 1.8 1286 13,59 17.29 1274 11.00 11.16

—125.61 —123.66 —181.48 —119.65 —-114.40 —115.96

-7.16 —6.03

145.84 144.12
-44.10 -37.01
-2.82 -0.72
80.09 79.92
98.17  94.60

47.23  43.63

-13.04 384 726 -2.18
17720 146.19 11829 121.62
—103.70 —105.69 —143.95 -111.88 -95.74 -94.94
—60.71 -15.87 -29.30 -42.46
12.05 -1.62 558 3.22
90.99 62.65 67.16 69.37
129.01 67.52 8390 95.50
55.86 35.54 35.02 38.44
7498 80.47 6276 64.54

8599 80.83

—144.60 —141.39 —184.13 —100.57 —-111.18 —128.05

-53.74 -53.21

-61.89

-50.27 -40.19 -43.09

—128.61 —124.18 —159.45 -110.31 -112.04 —117.39

046 -1.60

29.97 2532
109.60 106.67
111.83 112.23
4246 43.43

248.28 245.48

—4.36 -14.25 0.94 6.38

2260 -0.26 2727 36.98
138.89 85.81 90.88 94.94
148.40 124.80 89.60 85.45
61.73 63.82 3726 33.18
298.42 239.25 210.07 209.96

—-176.51 -176.67 —256.23 —172.60 —159.53 —159.93

—40.14 —40.21

2322 17.65

-56.39 —40.31

44.55 -0.04

—28.73
19.84

—27.60
28.92

—119.09 —-116.55 -146.49 —116.88 —101.34 —101.93

-33.26 -27.93

26.68 24.74

73.75  72.58

-142 1595 -14.68 -18.64
4549 2283 2539 24.54
9427 7741 57.05 58.99

—156.11 —148.34 —203.71 —141.52 —-137.94 —135.44

Note: b1=19.32, b,=19.85, b3=26.28, b,=19.18, bs=16.67, bs=16.80; MWZ—Moderately weathered zone; DZ—Damaged zone; UDZ—Unloading deformation

zone; SWZ—Slightly weathered or fresh zone; CSS—Coefficient of in-situ stress.

Table 2 Comparison of probabilistic and deterministic back analyses

Deformation Modulus/GPa

Coefficient of

Method Monitored Statistic in-situ stress
sites number parameter MWZ D7 UDZ SWZ a a,
5 Mean value 10.039 11.988 19.801 31.218 4.782 1.599
Standard deviation 2.990 3.582 5.553 2.290 0.486 0.479
Probabilistic back A Mean value 10.010 11.900 20.042 31.447 4.692 1.602
analysis Standard deviation 2252 3.444 3.047 0.874 0.133 0.161
Mean value 9.030 12.018 20.755 31.062 4.732 1.602
6 Standard deviation 0.424 0.933 0.665 0.300 0.046 0.106
Deterministic ‘ Mean value 6.000 9.498 17.313 29.253 4.355 1.370

back analysis [14] Standard deviation

Note: MWZ—Moderately weathered zone; DZ—Damaged zone; UDZ—Unloading deformation zone; SWZ—Slightly weathered or fresh zone.
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complexity and uncertainty of the geotechnical
engineering difficulties.

For this particular case study, the probability density
distribution of the geomechanical parameters based on
the non-observations and observations from the 2, 4, and
6 monitored sites, are shown in Fig. 3. In Fig. 3, it can be
seen that the certainty of the geomechanical parameters
increases with the increasing of the monitored
information, and the geomechanical parameters are close
to the real value. The displacement calculated by the
LS-SVM, based on the geomechanical parameters from

1.0
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the 2, 4, and 6 monitored sites, as well as the monitored
displacement are shown in Fig. 4. It is clear from Fig. 4
that the proposed back analysis method can produce high
accuracy results in this case study. Such results can be
used to guide the design of the geotechnical engineering
structures. The distributions of the calculated
displacement at the two monitored sites are shown in
Fig. 5. The uncertainty of the displacement values is
highlighted, and this indicates that a greater amount of
monitored information (prior knowledge) potentially
reduces the effect of this uncertainty.
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Fig. 3 Probability density distribution of geomechanical parameters based on different observation information: (a) Probability

density distribution of deformation modulus in MWZ; (b) Probability density distribution of deformation modulus in DZ;

(c) Probability density distribution of deformation modulus in UDZ; (d) Probability density distribution of deformation modulus in

SWZ; (e) Probability density distribution of coefficient of in-situ stress a,; (f) Probability density distribution of coefficient of in-situ

stress a,,
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Fig. 4 Comparison of calculated displacement by LS-SVM, and
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5 Conclusions

This work describes a proposed probabilistic back

analysis that combines the Bayesian probability with a
LS-SVM in order to illustrate the uncertainties in the
rock mass mechanical properties used for geotechnical
engineering purposes. A LS-SVM model implemented in
Microsoft Excel VBA is used in back-analysis of the
relationship between the geomechanical parameters and
displacement in the rock masses. Microsoft Solver
software is utilized to interrogate the geomechanical
parameters. The method is found to be easy to use and
was readily understood by the field engineers. The
proposed approach is applied to the geomechanical
parameter identification in a slope stability case study,
which is related to the permanent ship lock within the
Three Gorges project in China. These results are
compared with the deterministic results obtained earlier.

The probabilistic back analysis produces more
information than the deterministic back analysis, and
characterizes the behavior of the rock masses in the
geotechnical engineering problems reasonably well. The
distributions of the geomechanical parameters are
compared with the observed values of the deformation
measured at the different numbers within the monitored
sites. The uncertainties of the values of the
geomechanical parameters are reduced when more
measurement information is added. Therefore, the
probabilistic back analysis can be used in reliability-
based designs (RBD). The proposed method is useful and
assists in the stability analysis, slope design, and
construction safety.
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