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In order to reach the best numerical properties with the numerical manifold method (NMM), uniform finite element meshes are 
always favorite while constructing mathematical covers, where all the elements are congruent. In the presence of steep gradi-
ents or strong singularities, in principle, the locally-defined special functions can be added into the NMM space by means of 
the partition of unity, but they are not available to those complex problems with heterogeneity or nonlinearity, necessitating 
local refinement on uniform meshes. This is believed to be one of the most important open issues in NMM. In this study mul-
tilayer covers are proposed to solve this issue. In addition to the first layer cover which is the global cover and covers the 
whole problem domain, the second and higher layer covers with smaller elements, called local covers, are used to cover those 
local regions with steep gradients or strong singularities. The global cover and the local covers have their own partition of uni-
ty, and they all participate in the approximation to the solution. Being advantageous over the existing procedures, the proposed 
approach is easy to deal with any arbitrary-layer hanging nodes with no need to construct super-elements with variable number 
of edge nodes or introduce the Lagrange multipliers to enforce the continuity between small and big elements. With no limita-
tion to cover layers, meanwhile, the creation of an even error distribution over the whole problem domain is significantly facil-
itated. Some typical examples with steep gradients or strong singularities are analyzed to demonstrate the capacity of the pro-
posed approach. 
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1  Introduction 

In order to solve in a unified way geotechnical problems 
from continua to discontinua, Shi laid out the framework of 
the numerical manifold method (NMM) [1] in 1991 after he 
developed the discontinuous deformation analysis (DDA) in 
1985. Since then, great progress has been made in both the-
ories and applications of NMM. 

Lin [2] discussed the relationship between NMM and 
other numerical methods that were also based on the parti-
tion of unity notion [3] but invented later such as the gener-
alized finite element method (GFEM) [4], the extended fi-
nite element method (XFEM) [5], and the element-free Ga-
lerkin method (EFG) [6]. 

Terada et al. [7] gave NMM an alias, the finite cover 
method (FCM), and successfully applied FCM to the analy-
sis of inclusion problems. 

One important attribute of NMM is that it is able to en-
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hance the degree of interpolation polynomials without add-
ing new nodes, see the works by Chen et al. [8] and Jiang et 
al. [9], which, however, incurs the same linear dependency 
issue as in GFEM. Tian et al. [10] gave a thorough review 
on this issue and proposed that the distorted quadrilateral 
elements be deployed along the essential boundary to over-
come the linear dependency. With the topological infor-
mation inherent in the finite element mesh, An et al. [11] 
developed an algorithm for predicting the rank deficiency of 
the stiffness matrix. Recently, they proved the linear inde-
pendency of the flat-top PU-based high-order polynomial 
approximation [12]. Cai et al. [13] suggested a configura-
tion of degrees of freedom free from the rank dependency 
issue, where incomplete quadratic polynomials excluding 
monomials of x2 and y2 were assigned to the stars of inner 
nodes, while constants to the patches of nodes on the dis-
placement boundary. 

NMM possesses excellent numerical properties. For ex-
ample, Terada and Kurumatani [14] tested a number of 
elasticity problems by FCM and FEM respectively, and 
concluded that the performance deterioration due to element 
distortion is less serious than that in FEM. Even for those 
problems with strong singularities, furthermore, NMM has 
been shown by Zheng and Xu [15] to be mesh independent. 

The major purpose for Shi to invent NMM is to solve in 
a unified way the problems involving continuous and dis-
continuous deformations. Wu and Wong [16], Kurumatani 
and Terada [17], Ma et al. [18], and many others, have 
made great efforts to investigate the crack analysis and 
propagation of cracks in geomaterials. An et al. [19] made a 
comparison between NMM and the extended finite element 
method (XFEM) in simulating discontinuities. Ning et al. 
[20] carried out an analysis of slope dynamic failure in-
volving crack growth. Wu and Wong [21] simulated initia-
tion and propagation of frictional cracks which arise from 
geomechanics. Recently, Zheng and Xu [15] proposed a 
simpler and more efficient scheme for the integration of 1/r 
singularity due to crack tips, and gave a proper representa-
tion of the displacement field around a kinked crack tip. Of 
course, there are some other methods, such as [22], which 
are designed ad hoc to simulate cracking of rocks. 

In addition to the application to solids, Zhang et al. [23] 
solved Navier–Stokes equations for fluid flow, where the 
same mesh was used to approximate both velocity and 
pressure. It is believed that NMM will have more extensive 
applications in the simulation of seepage flow through frac-
tal fracture networks [24]. 

All the above investigations and developments of NMM 
are limited to the second order partial differential equations 
where the NMM space takes on the Lagrange form. For the 
fourth order partial differential equations, Zheng et al. [25] 
proposed the NMM space of Hermit form and applied it to 
Kirchhoff’s thin plate problems. 

Although the mathematical covers of NMM can be con-
structed with a series of simple domains of any shape, for 

example, the influential domains of scattered nodes in the 
moving least squares (MLS) as in refs. [26–28] or honey-
comb meshes as in ref. [29], so far in almost all the applica-
tions and developments of NMM finite element meshes 
have been chosen as the mathematical covers. This is be-
cause the finite element methods are most familiar to engi-
neers and affluent knowledge and experience have been 
accumulated. In this case, the inventor of NMM always 
advocates uniform meshes as mathematical covers, where 
all the elements are congruent, so that the highest interpola-
tion accuracy is reached [30]. Where singularities or steep 
gradients are present, in principle we can enrich the NMM 
space with those locally defined functions that well reflect 
the behaviors of solution over the local regions. However, 
only limited a priori knowledge about the solution is avail-
able for many problems of engineering relevance, especially 
for nonlinear problems. Control of discretization errors in 
this class of problems requires local mesh refinement which 
offsets some of the advantages associated with local en-
richment techniques. 

If an unstructured mesh is used for local refinement, 
where some distorted elements exist, NMM will lose its 
excellent numerical properties and reduces to the conven-
tional finite element method. Sticking to uniform meshes, 
the structured local refinement must create irregular meshes 
as illustrated in Figure 1, where hanging nodes, marked by 
“○”, are present. Since NMM was invented, the inventor 
and many others have been considering how to realize the 
structured local refinement in the framework of NMM. This 
is believed to be one of the most important open issues in 
NMM. This study aims to solve this issue and is organized 
as follows. 

Considering that NMM is not familiar to many research-
ers, in Section 2 we concisely reformulate NMM in the 
framework of general covers. Section 3 recapitulates NMM 
in the setting of finite element covers. In Section 4, firstly 
we make a review on the structured local refinement, where 
we see that the existing treatments of hanging nodes are 

 

Figure 1  Irregular mesh caused by local refinement with structured mesh. 
Nodes marked by ○ are hanging nodes. 
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hard to be amenable to NMM; then we turn to the topic of 
this study and, by resorting to the approach of s-FEM [31], 
we expound NMM with multilayer covers. By the proposed 
procedure, we do not need to construct ad hoc new su-
per-elements that are appropriate for irregular meshes with 
no variational crime, nor yet to introduce the Lagrange mul-
tipliers to enforce the continuity between small and big el-
ements. In Section 5, we use some typical examples with 
steep gradients or strong singularities to demonstrate the 
capacity of the proposed procedure, and make comparisons 
with the existing treatments of hanging nodes. Section 6 
concludes this study with some discussions. 

2  Review on the conventional NMM 

NMM, to our knowledge, consists of four parts, the cover 
systems, the partition of unity, the NMM space, and the 
variational principle fitted to NMM. 

2.1  The general cover systems 

To solve continuous and discontinuous problems in a uni-
fied way, two covers are introduced in NMM, the mathe-
matical cover (MC) and the physical cover (PC). 

Throughout this study,  represents a 2-dimensional 
domain of interest. MC consists of m simply connected do-
mains, denoted by Mi, i=1,···, m. Each Mi is called a mathe-
matical patch. While deploying MC, we do not have to pay 
too much concern to the details of . In principle, the only 
indispensable requirement is that the union of all Mi cover 
, i.e., 

 
1

.
m

i
i

M


  (1) 

The MC configuration is a key factor to the solution pre-
cision. 

Now we use the components of , including the do-
main's boundary, the material interface, and the crack, to cut 
all Mi. Discarding those outside , we obtain p separated 
domains, Pj, j=1,···, p. Each Pj is called a physical patch, 
which may contain a crack tip or a concave angle. The col-
lection of all the p physical patches constitutes PC, and the 
union of them covers  exactly, i.e., 
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The overlapping domains of as many as possible physical 
patches are called manifold elements, which can serve as 
basic units for integrating the weak form of the problem. 

Now we use an example to interpret the conceptions of 
MC, PC and manifold elements. 

Figure 2 illustrates a planar domain  containing a 

branched crack. Let’s use three mathematical patches in 
Figure 3, M1, M2 and M3, to cover . Figure 4 displays all 
the resulting five physical patches after using the compo-
nents of  to cut M1, M2 and M3. P1 containing crack tips A 
and C (Figure 4(a)) is generated from M1; from M2 are two 
separate physical patches P2 and P3 (Figure 4(b)), with P3 
containing crack tip B; and from M3 are two separate physi-
cal patches P4 and P5 (Figure 4(c)), with P4 containing crack 
tip A. All the physical patches, P1 to P5, constitute the PC of 
. 

By overlapping the physical patches, P1 to P5, we obtain 
eleven manifold elements, E1 to E11, as shown in Figure 5. 
Table 1 lists the eleven manifold elements and the physical 
patches containing each of the manifold elements. Since 
only three mathematical patches are used, the number of 
physical patches containing a manifold element is at most 
three. 

2.2  The partition of unity 

(1) Once we have the MC  1
,

m
iM  we can construct 

weight functions wi(r), i = 1,···, m, with r the position vector, 
satisfying the following properties: 

 ( ) 0,iw r , if ,iMr  (3.1) 

 0 ( ) 1,iw r  if ,iMr  (3.2) 

  
1

1,
m

i
i

w


 r  if ,r  (3.3) 

 

Figure 2  Problem domain containing a bifurcation crack. 

 

Figure 3  (Color online) Mathematical cover. 
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Figure 4  (Color online) Mathematical patches and the resulting physical 
patches. (a) Physical patch P1 from M1; (b) physical patches P2 and P3 from 
M2; (c) physical patches P4 and P5 from M3. 

 

Figure 5  (Color online) Eleven manifold elements. 

Table 1  Relation between manifold elements and physical patches 

Elem Covered by physical patches 

E1 P1 
E2 P1, P4 
E3 P1, P2, P4 
E4 P1, P2 
E5 P1, P3, P4 
E6 P1, P3, P5 
E7 P1, P3 
E8 P4 
E9 P3, P5 
E10 P3, P4 
E11 P3 

 
{wi(r)} is collectively called the partition of unity subordi-
nate to {Mi}. 

In the partition of unity method (PUM) [3], the require-
ment for wi(r)0 is discarded, which is different a little from 
the standard statements of the partition of unity theorem 
[32]. The purpose for this, in our opinion, is to include the 
experiences gained in the finite element analysis, where the 
shape functions of a nonlinear isoparametric element, such 
as the 2-dimensional isoparametric element of eight nodes, 

are negative in part of the element. 
Meanwhile, all wi(r) can be made arbitrarily smooth over 

the whole domain according to the partition of unity theo-
rem [32]. In our cases, nevertheless, we only require wi(r) is 
continuous, implying that wi(r) vanishes on the boundary of 
Mi. 

(2) By restricting each wi(r) supported by Mi onto the 
physical patches Pj, generated from Mi, we obtain the parti-

tion of unity subordinate to the PC  
1

,
p

jP  still represented 

by wj(r), j = 1,···, p. We further notice that wj(r) on Pj may 
not be zero on the portion of the boundary of Pj that belongs 
to a discontinuity (weak or strong). 

2.3  The NMM space 

Compared with FEM, NMM pays more attention to physi-
cal patches rather than individual elements. Over each 
physical patch, Pj, we independently construct approxima-
tions to the solution such that they reflect the local behavior 
of the solution over Pj. 

2.3.1  Approximations over individual physical patches 
The approximations over a typical physical patch, Pj, are 
usually constructed by the Taylor expansion of solution u 
with regard to a reference point rj, 

      
1

1
,  ,

!

i
h
j j j j j

i
P

i

        
u r u r r u r r

r
 (4) 

with uj=u(rj), if patch Pj contains no singularity, which is 
called a nonsingular patch. 

To avoid unnecessary distractions, this study takes con-
stants over nonsingular patches, resulting in 

   ,h
j ju r u  .jP r  (5) 

As for the higher order approximations, we refer to refs. 
[8,15]. 

If, however, patch Pj contains a crack tip such as P3 in 
Figure 4(b), we can enrich the approximations over Pj by 
adding some particular functions that can reflect the local 
behavior of the solution over Pj, such as, 

    , ,h
j j j r  u r u f  (6) 

with 

    , , ,j j jr r f E e  (7) 

ej is the 8-dimensioanl vector consisting of eight enrichment 
degrees of freedom 

  T 1 8, , .j j je e e  (8) 

Ej(r,) is the 28 matrix with four enrichment functions 

  1 2 1 2 2 2 2 2 ,j c s c sE I I I I  (9) 



 Liu Z J, et al.   Sci China Tech Sci   January (2015) Vol.58 No.1 5 

where I2 is the 2 by 2 identity matrix, (c1, s1) and (c2, s2) are 
the first two items of Williams’ displacement series, defined 
by 

 
 

 

2 1
, cos ,

2
2 1

, sin ,
2

k

k

kc r r

ks r r

 

 







 (10) 

with k=1 and 2. Here, (r, ) is the polar coordinate with the 
origin at the crack tip, the crack as the polar axis, and 
<. 

If more than one crack tip terminates inside Pj, in princi-
ple we can enrich the local approximations over Pj by add-
ing more items, like 2 2 ,j jE e  3 3 ,j jE e ···, corresponding to the 

second tip, the third tip,···, respectively. Therefore, NMM 
can simulate multiple cracks very naturally. 

Eqs. (5) and (6) can be written in the unified form 

    h
j j ju r L r d , (11) 

with the vector 

 ,j jd u  for Pj nonsingular,  (12.1) 

or 

 ,
j

j
j

 
   
 

u
d

e
 for Pj singular;  (12.2) 

and the matrix 

 2 ,j L I  for Pj nonsingular, (13.1) 

or 

 2 ,j j   L I E  for Pj singular, (13.2) 

which is continuous in Pj. 

2.3.2  Global approximations over the problem domain 

By adding up the weighted approximations, ,h
j jw u  over all 

the p physical patches, we obtain the global approximation 
over  

      
1

,
p

h h
j j

j
w



 u r r u r   r  (14) 

Substituting eq. (11) into eq. (14) results in 

   ,h u r Nd  (15) 

where d is the vector consisting of degrees of freedom of all 
physical patches, and N is the shape matrix defined by 

 1 1, , ,p pw w   N L L  (16) 

which is discontinuous across any discontinuity, weak or 

strong. 
We note in passing that eq. (14) is the Lagrange form of 

the NMM space, which is appropriate for the second order 
partial differential equation problems. If a fourth order 
problem is solved, we should apply the Hermit form of the 
NMM space, as in ref. [25]. 

2.3.3  Variational principle fitted to NMM 
The conventional minimum potential principle of elasticity 
says that the real displacement vector u minimizes the po-
tential 

   T T1
d d ,

2c S
S


   v σε v p  (17) 

where v is any vector-valued function that satisfies the dis-
placement boundary conditions 

 vn=0, on Sn, (18) 

and 

 vt=0, on St; (19) 

and the continuity condition 

 [ ] 0,   v v v  on SI, (20) 

on the material interface SI, a weak discontinuity, with [v] 
the jump of v across SI, v+ and v the values of v on the two 
sides of SI. Sn in eq. (18) represents the displacement 
boundary segment that is smoothly supported in the normal 
direction; vn=n·v; n=(cos, sin) is the outer unit vector 
normal to Sn; and  is the angle between n and the positive 
x-axis. St in eq. (19) represents the displacement boundary 
segment that is fixed along the tangential of St; vt=t·v; 
t=(sin, cos) is the unit vector tangential to St. St and Sn 
may coincide partially or completely. 

 in eq. (17) is the strain vector related to v by 

 ,dLε v  (21) 

with Ld the differential operator 

 

0

0 .d

x

L
y

y x

 
 
 
 

   
  
 
  

 (22) 

 in eq. (15) is the stress vector related to v by the con-
stitutive relation 

 ,σ Dε  (23) 

where D is the elastic matrix. 
p  in eq. (17) represents the traction vector acting on the 

traction boundary S . S  has no intersection with either 
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Sn or St. But Sn, Sn, and S , compose the whole boundary 
of , S, i.e., 

 .n tS S S S     

In NMM there are two reasons that prevent us from im-
posing the displacement boundary conditions as in FEM, 
where all the FE nodes match the problem domain. On the 
one hand, NMM allows the mathematical cover not to 
match the problem domain, implying that the displacement 
boundary condition cannot be satisfied in advance. On the 
other hand, in the presence of the material interface SI, the 
NMM approximation uh(r) may be discontinuous across SI, 
because any mathematical patch, say Mi, cut through by SI, 
is divided into two physical patches, say Pj and Pk, which 
have two independent approximations, ( )h

ju r  and ( ).h
ku r  

We do not need to get worried about these two issues. 
Zheng et al. [25] showed that matching nodes with the 
problem domain brings about little improvement of solution 
accuracy; instead the solution accuracy is determined by the 
mesh configuration for the local approximations. 

In this study, the penalty method is selected to approxi-
mately enforce the displacement boundary condition and the 
interface continuity condition, leading to the functional fit-
ted to NMM for the second order problem 

 
    2

2 2
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2
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k v S

k v S k S

  

 



 

v v

v
 (24) 

where kp is the user-defined penalty parameter. 
As a result, while taking the first variation of n with re-

gard to v, we do not need to satisfy the displacement 
boundary conditions (18) and (19), and the continuity con-
dition (20). 

Of course, we can also utilize the Lagrange multiplier 
method to enforce the displacement boundary conditions 
and the interface continuity condition like refs. [13,25], 
which will result in an indefinite system of linear equations 
that need to be solved by specific techniques like ref. [33]. 
A solution to this issue is to introduce the augmented La-
grange multiplier method as in Ventura [34], only at the 
cost of several iterations for updating the multiplier. 

3  Cover systems induced by a finite element 
mesh 

In principle, an MC can be formed arbitrarily. According to 
the partition of unity theorem [32], the partition of unity 
subordinate to the MC always exists and all the weight 
functions can be made arbitrarily smooth. Up to now, how-
ever, in most applications and developments of NMM a 
finite element mesh has been chosen to construct MC be-

cause the weight functions associated with the finite ele-
ment mesh are ready-made. 

While deploying a finite element mesh, we do not have 
to match the mesh with  as long as it covers , or equiva-
lently, some elements in the mesh may have intersection 
with . We call the mesh the mathematical mesh (MM). 

Once MM is formed, a typical mathematical patch Mi 
consists of all the elements sharing node-i, called the star of 
node-i. Figure 6(a) displays the configuration of  and the 
triangular MM, where some stars are shadowed. 

Theories and practices in the finite element analysis [30] 
tell us that the precision of the finite element analysis 
strongly depends on the mesh quality. So, in NMM a uni-
form MM is always favorite where all the elements takes on 
a standard shape, such as a square, an equilateral triangle or 
a right angled isosceles triangle. As a result, some nodes 
might be outside  as in Figure 6(a). 

Cutting MM with the components of , we obtain the 
physical patches and the physical mesh (PM), as shown in 
Figure 6(b), where the physical patches created from the 
node stars marked in Figure 6(a) are displayed. Each physi-
cal patch is associated with a node, and the node index is 
also the physical patch number. If a node star is cut by the 
crack into two distinct physical patches, a newly generated 
node is associated with one of the two physical patches, 
with the same coordinate as the original node. Figure 7 
demonstrates this process. For this reason, in the physical 
mesh we still use the term "physical patch" instead of "star" 
because a physical patch might be misshapen due to cutting. 
Therefore, geometrically the node associated with a physi-
cal patch might be outside the physical patch. By intersect-
ing the three neighboring physical patches, a manifold ele-
ment shown in Figure 6(b) is just an ordinary element that 
might be partially cut off. 

We make such a convention in specifying singular 
patches. Whenever a crack tip contacts an element, namely 
terminates inside the element or touches on an edge of the 
element, all the three physical patches covering the element 
are designated as singular patches. 

Like a tent with a supporting center pole of unit height as 
shown in Figure 7(a), the weight function subordinate to a  

 

Figure 6  Finite element cover. (a) Mathematical mesh and some mathe-
matical node stars (shadowed); (b) physical mesh and some physical 
patches (shadowed). 
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Figure 7  One node star is cut into two physical patches, each of them has 
its own weight function pointed by the arrows. (a) The star of node-5 in the 
mathematical mesh; (b) the lower physical patch has a newly generated 
node, indexed by 52, with the same coordinate as node 5 at this moment;  
(c) the two physical patches detach due to the ensuing movement. 

star is formed by collecting the shape functions of all 
mathematical elements sharing node-i. If the star is cut into 
two physical patches by a crack, each physical patch has its 
own weight function, which will move with the physical 
patch, see Figure 7 for the demonstration. 

4  NMM with multilayer finite element covers 

We have pointed out that the inventor of NMM advocates a 
uniform mesh as MM so that the highest accuracy is 
reached. However, numerical problems often exhibit special 
features in small regions that require resolution and accura-
cy well beyond what is required in the rest of the domain. It 
is wasteful or prohibitively expensive to let local accuracy 
requirements dictate the global discretization and solution 
process. Therefore, since the invention of NMM, the inven-
tor and many others have been considering how to imple-
ment structured local refinement. The goal of this section is 
to treat local demands in the framework of multilayer uni-
form meshes without overburdening the overall computa-
tion. Before our presentation, we make a brief review on the 
existing procedures for the structured local refinement. 

4.1  Review on the structured local refinement 

Whenever possible, according to the FEA theory [30], 
quadrilateral elements should be used in two dimensions, 
hexahedral elements in three dimensions, which, however, 
is almost impossible while handling complex geometries, 
unless irregular meshes as shown in Figure 1 are permitted, 
where nodes marked by ○ are hanging nodes. A hanging 
node is a vertex of a smaller element but hanging at an edge 
of the bigger element abutting on the smaller element. 

In the setting of the finite difference methods, local re-
finement of uniform grids is easy because no compatibility 

between elements is involved, see ref. [35] for example. 
In the setting of the finite element methods, to satisfy 

compatibility between elements, most finite element codes 
working with hanging nodes limit the maximum difference 
of refinement layers of adjacent elements to one (1-irregu- 
larity rule) (see, e.g., [36–40]). Figure 1 is an example of a 
1-irregular mesh. Babuška and Miller [41] gave a posteriori 
error estimation yielded with 1-irregular mesh. In the litera-
ture, by k-irregularity rule (or k-layer hanging nodes) we 
mean this type of restriction where the maximum difference 
of refinement layers of adjacent elements is k. In this con-
text, k = 0 corresponds to adaptivity with regular meshes 
and k = ∞ to adaptivity with arbitrary-layer hanging nodes. 

The 1-irregularity rule brings stern restrictions to the 
mesh generation. For the 1-irregular mesh shown in Figure 
8, for example, we hope to refine the shadowed triangle 
only, where singularity exists, obtaining the refinement 
shown in Figure 8(b). Because of the 1-irregularity rule, 
however, a further refinement of the neighboring elements 
as shown in Figure 8(c) is necessary even though such a 
refinement has little help to improve the resolution or the 
accuracy. 

For the satisfaction of continuity on an interface between 
small and big element zones, there have been two com-
monly used techniques which essentially give rise to the 
same results. With the first technique, the hanging nodes 
have their own degrees of freedom and, the continuity on 
the interface is satisfied in a sense of the Lagrange multipli-
er method [42–45]. With the second technique, the hanging 
nodes are interpolated with vertex nodes [40]. Both tech-
niques will cause the positive definiteness of the global 
stiffness matrix to be lost, necessitating complex hierar-
chical data structures that are hard to be amenable to NMM. 

As an alternative, a super-element with variable number 
of edge nodes can be constructed. For example, Gupta [46] 
ever constructed a quadrilateral element each edge of which 
can have a middle node. So it can be used to implement 
1-irregular local refinement [40]. But Gupta’s technique 
cannot be used to construct elements with more than one 
edge node. 

The quadrilateral element recently constructed by Cho 
and Im [47] and Baitsch and Hartmann [48] allows for arbi-
trary number of edge nodes, and in principle can be used to 
implement arbitrary-layer irregular local refinement. But  

 

Figure 8  Trouble caused by 1-irregular rule. (a) Element marked for 
refinement; (b) refinement violating 1−irregularity rule; (c) additional 
refinements forced by 1−irregularity rule. 
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one must prepare sufficient element types in the finite ele-
ment library, because the derivation of element shape func-
tions has to be started from the scratch whenever a new 
node is added onto the edge. In addition, the numerical 
quadrature over a super-element with variable number of 
edge nodes becomes very complicated, necessitating further 
sub-division of the element and numerous integration points, 
because their shape functions are far more complicated than 
those of ordinary elements. 

Up to now, all the structured local refinement techniques 
are performed on quadrilateral bilinear elements, excluding 
the use of more sophisticated element types. 

All the limitations in the literature will be overcome in 
this study. To implement structured local refinement, we do 
not have to construct super-elements with variable number 
of edge nodes nor to introduce the Lagrange multiplier 
method. 

4.2  NMM with multilayer finite element covers 

In order to realize the best interpolation precision, we 
choose to implement structured local refinement in the set-
ting of numerical manifold method, where each element 
takes on a standard shape, such as a square, an equilateral 
triangle or a right angled isosceles triangle. 

Let’s suppose that a given uniform mathematical mesh is 
called the first mathematical mesh layer, denoted by MM-1 
subsequently. MM-1 covers the square domain  demon-
strated in Figure 9(a), where  contains a crack represented  

 

Figure 9  Generation of two physical mesh layers. (a) MM-1 covers the 
whole domain, with no info of the crack; (b) MM-2 is obtained by dividing 
some MM-1 elements around the crack tip. MM-2 has no info of the crack; 
(c) PM-1 is generated by cutting with the crack all the node stars in MM-1 
except those covered by MM-2 which are marked by ◇. The elements not 
covered by MM-2 are called top elements of PM-1, which are not shad-
owed; (d) PM-2 is obtained by cutting MM-2 with the crack. All the PM-2 
elements are top elements. 

by the dash dot line temporarily. 
Now, around the crack tip we equally divide some ele-

ments in MM-1 into smaller elements. These smaller ele-
ments constitute the second mathematical mesh layer, 
MM-2, which merely covers the local domain around the 
crack tip, as shown in Figure 9(b). 

We note that neither MM-1 nor MM-2 possesses any info 
of the crack. 

By cutting with the crack all the MM-1 node stars except 
those covered by MM-2, we obtain the first physical mesh 
layer, PM-1, as shown in Figure 9(c). By cutting MM-2 
with the crack, we obtain the second physical mesh layer, 
PM-2, as illustrated in Figure 9(d). We say PM-1 is below 
PM-2, as shown in Figure 10. Meanwhile, those PM-1 ele-
ments not covered by PM-2 are called top elements, which 
are the elements not shadowed as shown in Figure 9(c). 
Shortly, we will see that generating the physical meshes in 
this way can efficiently control the number of degrees of 
freedom. 

If a point of interest, say x, is contained in PM-1 only, 
the approximation at x takes on the form 

    1 1,e eu x N x d  (25) 

where 1
eN  represents the shape function matrix of PM-1 

element 1
e  that contains x and must be a top element; 1

ed  

is the vector of degrees of freedom of 1
e . 

If, however, x is contained in both elements 1
e  of 

PM-1 and 2
e  of PM-2, the solution at x is approximated 

by 

      1 1 2 2 ,e e e e u x N x d N x d  (26) 

where i
eN  is the shape function matrix of element i

e   

 

Figure 10  PM-1 is the global physical mesh. PM-2, around the crack tip, 
is finer than PM-1. PM-1 is below PC-2. All the PM-1 elements except 
those covered by PM-2 are top elements. All the PM-2 elements are top 
elements. All the top elements of PM-1 and PM-2 partition the whole 
problem domain exactly. 
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and i
ed  the vector of degrees of freedom of i

e , with su-

perscript i = 1 or 2 denoting the mesh layer. 
According to the way of generating the two physical 

meshes, eq. (26) has another implication: the first item 
1 1
e eN d  is always continuous because we do not cut the node 

stars of MM-1 covered by MM-2; the second item 2 2
e eN d , 

determined by PM-2, reflects the characteristics of the solu-
tion around x. In this way, the number of degrees of free-
dom is efficiently limited. 

The above practice is actually equivalent to enriching the 
small region around the crack tip with the piecewise func-
tions defined on PM-2 that is finer than PM-1 and is shown 
in Figure 9(d). Different from the conventional partition of 
unity methods, however, PM-2 has its own partition of unity, 
and the piecewise functions defined on PM-2 and con-
structed as in section 2.3.1 are not serving as the local ap-
proximations of those PM-1 physical patches around the 
crack tip. In this way, we can reach the maximum flexibility 
in local refinement. But this also leaves us with the issue of 
continuity across the PM-2 boundary. 

By resorting to the approach of s-FEM [31], the continu-
ity across the PM-2 boundary can be exactly satisfied by 
simply letting the PM-2 boundary nodes not participate in 
the interpolation, in other words, letting the degrees of 
freedom of these patches be zero. In this way, the displace-
ments on the interface between PM-1 and PM-2 are deter-
mined by the displacements of nodes at PM-1’s boundary, 
and the continuity is accordingly realized. In 1992, Fish  
[31] developed s-FEM, an excellent local refinement pro-
cedure that has been used extensively. However, s-FEM is 
not able to reflect the singularity or the discontinuity. Be-
sides, s-FEM requires that local elements match the local 
domain and, it only involves two mesh layers. Sometimes, 
multilayer mesh refinement is necessary to be stated subse-
quently. In addition, to avoid the linear dependency of the 
system of equilibrium equations, s-FEM proposed that the 
local elements not align with the global mesh. Since the 
linear dependency due to alignment of the finer elements 
and the coarse elements is easy to solve by techniques such 
as the -disturbance method [4] or a more effective method 
[49], the alignment is persistent in this study so as to main-
tain the high precision. After all, the linear dependency is-
sue disable those powerful solvers for the systems of linear 
equations. As a result, developing a local refinement 
scheme on the structurized meshes free from linear de-
pendency is still a huge task, which is also one of the major 
topics the authors are studying. 

To this point, the essential difference from the literature 
on the structured local refinement becomes clear. In the 
literature, only the local mesh, corresponding to PM-2, par-
ticipates in the interpolation to the local domain, which 
causes the difficulty in the satisfaction of continuity on the 
interface between the fine mesh and the coarse mesh. In this 
study, however, the approximation at any point is con-

structed by all the mesh layers covering the point. It is clear 
that the displacement along the PM-2 boundary is deter-
mined by the displacement at the PM-1 nodes on the PM-1 
boundary in alignment with the PM-2 boundary. 

Sometimes we might need to further divide some MM-2 
elements to constitute the third mathematical mesh, denoted 
by MM-3. Due to the generating way of the three mesh lay-
ers, only MM-1 is said to be the global mesh, both MM-2 
and MM-3 are local meshes. As a result, the three mesh 
layers are hierarchical: MM-2 is above MM-1 but below 
MM-3. 

Another purpose to deploy more than two mesh layers is 
to make the computational error distribution over the whole 
problem domain as even as possible, which is to be accom-
plished by the adaptive analysis. 

Now we suppose that over  we have L mathematical 
mesh layers in all, MM-i, i= 1,···, L. Except the first layer 
MM-1 covering the whole domain, any higher layer, MM-i 
(i >1), is obtained by dividing some elements of its immedi-
ate predecessor MM-(i1), and accordingly only covers 
local domains of . As a result, all the L mathematical 
mesh layers have the relationship 

 MM-1  MM-2 ···  MM-(L1)  MML, 

and take on a hierarchical structure by the order that MM-1 
is at the bottom, MM-2 is above MM-1 but below MM-3, 
and so on, until the top layer MM-L. 

The same mathematical mesh layer may be composed of 
several separate element groups for covering separate local 
domains. Each element group may have a different element 
size. Figure 11 illustrates such a case, where MM-2 contains 
two separate element groups. The elements around the 
re-entrant angle on the left boundary are coarser than those 
around the crack tip, but both the element groups belong to 
MM-2. 

Clearly, except the top layer MM-L, any MM-i (i<L) 
consists of two sets of elements: One set of elements are not 
covered by its immediate successor, MM-(i+1), and ac-
cordingly called top elements; another set of elements are 
covered by MM-(i+1). Figure 9(c) clearly demonstrates the 
two sets of elements in MM-1, where all those elements not  

 

Figure 11  MM-2 contains two separate element groups: The elements 
around the re-entrant angle on the left and the elements around the crack 
tip. The two groups have different element size. 
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shadowed are top elements. By this definition, all the MM-L 
elements are top elements. 

While generating the physical mesh PM-i corresponding 
to MM-i, we only cut with discontinuities the stars whose 
nodes are not coved by MM-(i+1) (see Figure 9(c) for ex-
planation). In this way, the number of degrees of freedom 
can be controlled efficiently, because it is sufficient for the 
top layer to reflect the singularity and discontinuity. 

With the L physical mesh layers, we approximate the so-
lution at point x by 

    
1

,
l

i i
e e

i
 u x N x d  (27) 

where l is the number of mesh layers containing x, suggest-
ing that there are l elements containing x, denoted by ,i

e  

i=1,···, l. i
e  belongs to PM-i. l

e  is the top element of 

PM-i. Figure 12 demonstrates a case of two mesh layers 
containing x. Associated with i

e  are its shape function 

matrix i
eN  and degrees of freedom vector i

ed . 

Again, the first l1 items in eq. (27), i i
e eN d , i=1,···, l1, 

are continuous because the first l1 mesh layers covering x 
do not participate in intersection with the discontinuities; 
the last item, ,l l

e eN d  is discontinuous or singular, if the top 

element l
e  has intersection with a discontinuity or singu-

larity. 
In order to assure the continuity of approximation (27) 

across the PM-i boundary ( i >1), we assign zero to the de-
grees of freedom of all the PM-i boundary nodes. Therefore, 
the displacement on the PM-i boundary is determined by the 
displacement at PM-(i1) nodes on the PM-(i1) boundary 
in alignment with the PM-i boundary. 

 

Figure 12  Point x is contained in two elements of two mesh layers. 

Marked by the inner thick lines, 2
e  is the small element of PM-2. PM-1 

element 1
e  is the big element marked by the outer thick lines. Associat-

ed with i
e  are its shape matrix i

eN  and degree of freedom vector i
ed . 

Clearly, all the top elements from all the physical mesh 
layers exactly partition the problem domain  and hence 
serve as the basic units while integrating the weak form of 
the problem. 

4.3  Formation of NMM system 

A top element l
e  of PM-l must be contained in the bigger 

elements j
e  of lower layers PM-j, j = 1,···, l1. Accord-

ing to approximation (27), all these l elements participate in 
the approximation over .l

e  As a result, the stiffness ma-

trix of l
e  associated with functional n in eq. (24) in-

volves the degrees of freedom of all these l elements, com-
posed of l×l sub-matrices, typified by 

 

T T

T

d d

         d ,

l n
e l

t
l

ij i j i j
e e e p e eS

i j
p e eS

k S

k S

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

 


K B DB N CN

N SN
 (28) 

with small dimensions independent of the number of mesh 
layers. For example, for a top element with no crack tip, 
both the row- and column-dimensions of ij

eK  are 16. Here, 
j

eN  represents the shape function matrix of ,j
e  j = 1,···, 

l. n
lS  and t

lS  are the edges of ,l
e  portions of the nor-

mal and tangential displacement boundaries Sn and St, re-
spectively. i

eB  is defined by 

 .i i
e d eLB N  (29) 

Matrices C and S in eq. (28) are defined by 

 
2

2

c cs
cs s
 

  
 

C  and 
2

2
,

s cs
cs c

 
   

S  (30) 

with c=cos, s=sin, and  inclination of the normal to n
lS  

and .t
lS . 

Similarly, the load vector of l
e  consists of l sub-  

vectors, with a representative 

 T Td d ,
l

e l

i i i
e e eS

S


  q N b N p  (31) 

where lS  is the edge of ,l
e  portion of the traction 

boundary ,S  on which traction p  loads. 

Once sub-matrix ij
eK  given by eq. (28) and sub-vector 

i
eq  given by eq. (31) are formed, they are immediately as-

sembled into the global stiffness matrix denoted by K, and 
the global load vector denoted by q, respectively. Since the 
dimensions of ij

eK  are very small and independent of the 

number of mesh layers, we are able to avoid the formation 
or storage of a very big top element stiffness matrix what-
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ever number of mesh layers are deployed, which facilitates 
the creation of an even error distribution of the whole prob-
lem domain. 

By solving the system Kd = q for the vector of degrees of 
freedom d, we can retrieve any physical quantities of inter-
est. 

5  Numerical examples 

In this section, we will demonstrate the capability of the 
proposed procedure with some examples with steep gradi-
ents or singularity. Except the last example, all examples 
are assumed to be in the plane stress state. 

5.1  An infinite plate with a circular hole 

Shown in Figure 13(a) is an infinite plate with a circular 
hole with radius a = 1 under the action of a horizontal stress 
  = 1 at the infinite distance. The symmetry leads us to 

take a finite quadrant as the problem domain as illustrated in 
Figure 13(b), where the left and bottom boundaries are 
smoothly supported in the normal direction, the right and 
top boundaries are loaded by the traction specified by the 
analytical solution, 

 
2 4

2 4

3 3
1 cos2 cos4 cos4 ,

2 2x
a aσ σ
r r

  
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 (32.1) 
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 (32.3) 

with Young’s modulus E= 1 and Poisson’s ratio v= 0.2. 
Now we first design a uniform coarse mesh with an ele-

ment size of 1.2 to cover the quadrant and obtain MM-1. 
Then, starting from the four MM-1 elements around the 

hole, we halve the elements in this region consecutively. 
Three halving operations yield MM-2 with a uniform ele-
ment size of 1.2/8, as illustrated in Figure 14, which, by the 
nomenclature in the literature, is an 8-irregular mesh. 

The stress distribution yielded by the three refinements is 
displayed in Figure 15, suggesting that with the mesh re-
finement, the calculated stress fast approximates the analyt-
ical solution. 

By defining the relative energy error, 

 
   T

T

d
,

d

n a n a

Ω
r a a

Ω

Ω
E

Ω

 
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
ε ε D ε ε

ε Dε
 (33) 

 

Figure 13  (a) Infinite plate with a hole; (b) computational model (exam-
ple 5.1). 

 

Figure 14  Two mesh layers (example 5.1). 

 

Figure 15  (Color online) Stress distribution yielded by three refinements (example 5.1). (a) σxx along axis y; (b) σyy along axis x. 
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we list the results in Table 2 with different refinements, 
indicating that the strain energy approaches from below the 
accurate value of 12.966. 

This example and all the following examples appear to 
suggest such a fact that with mesh refinement the conver-
gence rate of the strain energy or the stress intensity 
strength is not as fast as stresses or displacements at indi-
vidual points. 

5.2  A plate containing a horizontal crack 

Now we consider a simple linear fracture problem. Shown 
in Figure 16 is a plate containing a horizontal crack with the 
parameters as follows: The uniform traction  = 1, the plate 
length L = 25, the plate width W = 10, and the half crack 
length a = 4. The elastic parameters taken in the calculation 
are E = 1 and  = 0.2. 

Three meshes are used as the global mesh with different 
element sizes 2.3, 1.8 and 1.6, respectively. Figure 17 dis-
plays the refined regions corresponding to three different 
global mesh size (GMS), in which the elements are to be 
halved twice. Figure 18 illustrates the mesh with a GMS of 
2.3, a 4-irregular mesh. 

The reference solution, given by Tada [50], is KI = 
3.9315 and KII = 0. The calculated strength intensity factors 
are listed in Tables 3 to 5. From these results we can see 
that with refinement, the calculated solutions approach the 
reference solution. 

Table 2  Relative errors (Er) with refinement (example 5.1) 

Halving times Element size Strain energy Er (%) DOF 

0 1.2 12.477 3.71 72 

1 1.2/2 12.870 0.74 244 

2 1.2/4 12.929 0.29 460 

3 1.2/8 12.947 0.15 1016 

 

 

Figure 16  A plate loaded by a uniform tension (example 5.2). 

 
Figure 17  (Color online) Refined regions corresponding to three differ-
ent global mesh sizes (GMS). (a) GMS=2.3; (b) GMS=1.8; (c) GMS=1.6 
(example 5.2). 

 

Figure 18  (Color online) A configuration of two mesh layers with 
GMS=2.3 (Example 5.2). 

5.3  A plate containing a hole with two skew edge 
cracks 

Shown in Figure 19(a) is a plate containing a hole with two 
skew edge cracks. The top surface of the plate is pulled by a 
uniformly distributed traction of =1, and the bottom sur-
face is supported smoothly in the vertical direction. The 
plate dimensions include width W=10, length H=20, and the 
hole’s radius r=2.5. The angle of the skew cracks, , varies 
between 0 and 60. Two mesh layers are designed to cover 
the whole problem domain and the local region around the 
cracks, as shown in Figure 19(b). MM-1 has an element size 
of 2, and the MM-2 has an element size of 0.5. 

Now let the crack have different length: a=0.7W, 0.6W, 
0.5W, and 0.4W; and let =0, 15, 30, 45, and 60.  

The results are listed in Table 6, where F1 and F2 are de-
fined by 

 I
1

KF
a




 and II
2 ;

KF
a



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Figure 19  (Color online) (a) Dimensions and boundary conditions; (b) 
two mesh layers with the crack angle θ=45 (example 5.3). 

Table 3  SIFs with GMS=2.3 (example 5.2) 

Refinements 
Left tip Right tip 

DOF 
KI KII KI KII 

0 3.8554 0.0127 3.7609 0.0011 492 
1 3.8927 0.0025 3.8829 0.0048 790 
2 3.9029 0.0029 3.9036 0.0020 1984 

Table 4  SIFs with GMS=1.8 (example 5.2) 

Refinements 
Left tip Right tip 

DOF 
KI KII KI KII 

0 3.7635 0.0155 3.7807 0.0231 794 
1 3.8984 0.0037 3.8829 0.0026 1212 
2 3.9122 0.0009 3.9109 0.0024 2838 

Table 5  SIFs with GMS=1.6 (Example 5.2) 

Refinements
Left tip Right tip 

DOF 
KI KII KI KII 

0 3.8787 0.0045 3.8784 0.0016 1000 
1 3.9036 0.0052 3.9055 0.0048 1462 
2 3.9130 0.0083 3.9134 0.0079 3196 

 
and the rows marked by “R” give the reference solutions 
given by Chinese Aeronautical Establishment [51], sug-
gesting that excellent agreements are reached. 

5.4  A plate containing a long crack and a very short 
crack 

Till now, all the PU-based methods are actually making 
such an implicit assumption that a crack cannot be so short 
that its two ends are both inside a patch, because no special 
solution is available to so short a crack. When encountering 
a very short crack, one has to make the mesh fine enough so 
that the two ends of the crack are not in the same patch. 
Here is an example. 

Figure 20 illustrates a plate containing a long crack and a 
very short crack, with elastic parameters of E=1 and v=0.2. 
An even upward traction, =1, is acting on the plate top. 
The plate bottom is smoothly supported in the vertical di-
rection. All the dimensions are displayed in Figure 20. 

Three mesh layers are used to cover the plate, the long 
crack and the short crack, respectively, as shown in Figure 
21. Suppose that MM-1 has an element size of h1. Let 
MM-2 have an element size of h2=1/4h1, and MM-3 have an 
element size of h3=1/4h2. 

Table 7 lists the calculated results corresponding to dif-
ferent h1, the element size of MM-1. For this example, we 
have no analytical solution or reference solution available. 
By scrutinizing the results, however, KI is nearly propor- 

Table 6  Results with different crack lengths and angles (example 5.3) 

 Tip 
0.7 0.6 0.5 0.4 

F1 F2 F1 F2 F1 F2 F1 F2 

0 
A 1.549 -0.001 1.379 -0.001 1.273 0.000 1.207 0.000 
B 1.549 0.001 1.379 0.001 1.274 0.001 1.207 0.001 

R*) 1.574 0.000 1.396 0.000 1.286 0.000 1.216 0.000 

15 
A 1.446 0.270 1.290 0.258 1.191 0.236 1.120 0.194 
B 1.446 0.271 1.289 0.259 1.189 0.237 1.120 0.195 
R 1.462 0.291 1.303 0.263 0.198 0.237 1.126 0.192 

30 
A 1.142 0.491 1.028 0.457 0.944 0.416 0.870 0.338 
B 1.140 0.491 1.026 0.457 0.944 0.416 0.869 0.337 
R 1.155 0.504 1.038 0.463 0.948 0.417 0.872 0.336 

45 
A 0.723 0.581 0.652 0.539 0.583 0.485 0.514 0.390 
B 0.721 0.578 0.652 0.539 0.583 0.484 0.513 0.390 
R 0.731 0.584 0.654 0.541 0.585 0.486 0.512 0.388 

60 
A 0.297 0.494 0.258 0.463 0.213 0.418 0.151 0.335 
B 0.297 0.491 0.258 0.460 0.213 0.416 0.151 0.333 
R 0.300 0.500 0.257 0.465 0.210 0.418 0.147 0.332 

 *) “R” represents Reference Solution [49]. 
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Figure 20  A plate containing a long crack and a very short crack 
(example 5.4). 

Table 7  Calculated SIFs (example 5.4) 

GMS 

Long crack Short crack 

Left end Right end Left end Right end 

KI KII KI KII KI KII KI KII 

2.4 2.6268 0.0073 2.6127 0.0106 1.1091 0.0010 1.0352 0.0008

2.0 2.6359 0.0002 2.6139 0.0000 1.1137 0.0001 1.0876 0.0001

1.6 2.6574 0.0006 2.6291 0.0005 1.1053 0.0001 1.0893 0.0001

 
tional to the square root of the crack length, in agreement 
with our knowledge from linear facture mechanics. 

5.5  A semi-infinite elastic body under the action of a 
concentrated force 

Lastly, we consider a semi-infinite elastic body under the 
action of a downward concentrated force, which is the 
strongest singularity that is acceptable to elasticity theory. 
Under the coordinate system shown in Figure 22(a), we 
have the analytical solution as follows: 
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Since the example is strongly singular, four mesh layers 
are designed as shown in Figure 22(b), with element sizes 
of 1.0, 0.5, 0.25 and 0.125, respectively. The left and the 
bottom boundaries are loaded with the traction calculated by 
equations (34.1) to (34.3). The right boundary is smoothly 
supported in the horizontal direction due to the symmetry. 
In order to remove the rigid body displacement mode, the 
vertical displacement at the bottom right corner of the mod-
el is imposed by the exact value determined by equation 
(35.1) with F = 1, I = 10, =10 and =0. 

In order to compare the proposed procedure with the ex-
isting methods in the literature, we specify the coarse ele-
ments abutting on the finer meshes as Gupta’s transition 
element [46]. Such an element can have 0−4 edge nodes and 
can be used to construct a 1-irregular mesh through match-
ing one Gupta’s element with two small elements side-by- 
side. 

All the elements are specified as ordinary rectangular 
elements with no special solutions introduced. 

Figure 23 displays the vertical displacements along axis 
y (=90) and the line of =45. 

 

 

Figure 21  (Color online) Three mesh layers with GMS=2 (example 5.4). 

 

Figure 22  (Color online) (a) A semi-infinite elastic body under the action 
of a concentrated force; (b) four mesh layers (example 5.5). 
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Figure 23  (Color online) (a) Vertical displacement along axis y (example 5.5); (b) vertical displacement along the line of  =45° (example 5.5). 

The proposed procedure reaches higher accuracy than the 
transition element method, suggesting that hanging nodes 
are not helpful to accuracy because their values are deter-
mined by the vertex nodes. 

6  Discussion and conclusions 

By introducing multilayer covers that cover different local 
domains with different element sizes, we realize the local 
refinement on the structured uniform meshes. When the 
exact solution does not have a recognizable structure, as in 
highly heterogeneous media, then h-extensions with uni-
form mesh refinement should be utilized so that the highest 
accuracy and convergence are reached. 

We never form or save any top element matrices, which 
might have very big dimensions in case of the presence of 
multilayer covers. Instead, we directly assemble into the 
global matrices the sub-matrices of top element matrices 
whose dimensions are small and independent of cover lay-
ers. In this way, there is no limitation to the number of cov-
er layers, facilitating the creation of an even error distribu-
tion over the whole problem domain. 

By extrapolation of the finite element method, what's 
more, we can derive a very accurate solution from two con-
secutively refined meshes that must be structured [52]. This 
and adaptive refinement with uniform meshes will be our 
next research subjects. 

Yet, we must admit that the proposed procedure does not 
overcome linear dependency, although there have been ro-
bust solvers to solve the systems of linear equations of line-
ar dependency. To utilize those high efficient solutions for 
the systems of linear equations, it is necessary to develop 
local refinement methods based on the structurized meshes 
but free from linear dependency, and this is just one of the 
topics we are conducting. 
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