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a b s t r a c t

The recently published four-node quadrilateral element with continuous nodal stress (Quad4-CNS) is
extended to free and forced vibration analyses of two-dimensional solids. The Quad4-CNS element can
be regarded as a partition-of-unity (PU) based ‘FE-Meshfree’ element which inherits better accuracy,
higher convergence rate, and high tolerance to mesh distortion from the meshfree methods, while
preserving the Kronecker-delta property of the finite element method (FEM). Moreover, the Quad4-CNS
element is free from the linear dependence problem which otherwise cripples many of the PU based
finite elements. Several free and forced vibration problems are solved and the performance of the ele-
ment is compared with that of the four-node isoparametric quadrilateral element (Quad4) and eight-
node isoparametric quadrilateral element (Quad8). The results show that, for regular meshes, the per-
formance of the element is superior to that of Quad4 element, and comparable to that of Quad8 element.
For distorted meshes, the present element has better mesh-distortion tolerance than Quad4 and Quad8
elements.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the past several decades, the finite element method (FEM)
[1] has been extensively used in many fields of engineering [2–4].
Nevertheless, accuracy of some classic isoparametric elements is
highly sensitive to mesh distortions [5]. Recently, the meshfree or
meshless methods (MMs) which do not need a mesh to discretize
the problem domain and therefore are not limited by mesh dis-
tortion woes [6], have attracted many researchers. The meshfree
methods are very suitable to solve practical problems including
large deformation [7] and fracture propagation [8]. Some of the
important works associated with meshfree methods are Smoothed
Particle Hydrodynamics (SPH) [9], Diffuse Element Method (DEM)
[10], Element-Free Galerkin method (EFG) [11], reproducing kernel
particle method (RKPM) [12], stable particle methods [13], mesh-
free local Petrov-Galerkin method (MLPG) [14], point interpolation
method (PIM) [15], radial point interpolation method (RPIM) [16]
and smoothed point interpolation methods [17]. Like FEM, the
meshfree methods either are not free from drawbacks [6]. Shape
functions in some of the meshfree methods do not possess the
much desired Kronecker delta property which renders the appli-
cation of boundary condition more difficult than in FEM. The
(L. Chen).
meshfree methods are also computationally more expensive than
FEM [6]. As a result, some hybrid schemes [18] have been pro-
posed to improve the properties of meshfree methods.

In recent years, Partition-of-unity (PU) based methods [19]
have been developed and successfully used in many fields [20–23].
Notable among these PU based methods are hp-clouds [24], gen-
eralized finite element method (GFEM) [25], particle-partition of
unity method [26], numerical manifold method [27–31] and ex-
tended finite element method (XFEM) [32]. An attractive feature of
PU-based methods is that they are capable of constructing a higher
order global approximation by simply increasing the order of the
local approximation functions without adding new nodes [33].
However, “linear dependence” (LD) problem occurs when both the
PU functions and the local functions are taken as explicit poly-
nomials [6,19]. Here, the “linear dependence” (LD) problem means
after applying the basic boundary condition to eliminate the rigid
body displacement, the global stiffness matrix is still singular.
Some effective approaches to eliminate the LD problems can be
found in [34,35]. In other front, Liu and his co-workers have de-
veloped a family of smoothed finite element methods (S-FEMs),
such as cell-based S-FEM (CS-FEM) [36], node-based S-FEM (NS-
FEM) [37], edge-based S-FEM (ES-FEM) [38], and face-based S-FEM
(FS-FEM) [39] to improve FEM. Thanks to the smoothing technique
[40], the S-FEM has “softer” stiffness than FEM, and yields more
accurate solutions [36].

In order to synergize the individual strengths of meshfree and
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finite element methods, Rajendran et al. developed a new family of
PU-based [19] ‘FE-Meshfree’ elements [6,33,41] for linear, geo-
metry nonlinear and free vibration analyses. ‘FE-Meshfree’ ele-
ments combine the classical shape functions of isoparametric
elements with the shape functions of a meshfree method so as to
arrive at hybrid shape functions termed as composite shape func-
tions [33]. As a result, these ‘FE-Meshfree’ elements inherit better
accuracy, higher convergence rate, and high tolerance to mesh
distortion from the meshfree methods, while preserving the Kro-
necker-delta property of the standard isoparametric elements.
Moreover, these ‘FE-Meshfree’ elements have been known to be
free from the linear dependence problem which otherwise crip-
ples many of the PU-based finite elements [6]. Although ‘FE-
Meshfree’ elements can construct higher order shape functions
than classical isoparametric elements, derivatives of composite
shape functions of ‘FE-Meshfree’ elements [6,33,41,42] are not
continuous at nodes and extra smoothing operations are required
to calculate nodal stress in post processing. To further improve the
property of ‘FE-Meshfree’ elements, Tang et al. [43] developed a
new hybrid ‘FE-Meshfree’ four-node quadrilateral element with
continuous nodal stress (Quad4-CNS). Furthermore, a hybrid ‘FE-
Meshfree’ three-node triangular element with continuous nodal
stress (Trig3-CNS) [44] was developed. These two elements have
been successfully used for linear elasticity problems [43,44].

In the present paper, the Quad4-CNS element is extended to
free and forced vibration analyses of two dimensional solids. The
outline of this paper is as follows. Section 2 briefly reviews the
construction of shape functions for the Quad4-CNS element. Sec-
tion 3 gives the equations for free and forced vibration analyses.
Typical numerical tests are carried out to assess accuracy of the
proposed Quad4-CNS element in Section 4. Finally, conclusions are
drawn in Section 5.
)11
2. Construction shape function for Quad4-CNS

Consider a quadrilateral domain Ω described by four nodes {P1
P2 P3 P4} and introduce an arbitrary point P(x) with the coordinates
x¼(x, y). According to the concept of PUM [19], in the quadrilateral
domain Ω, the Quad4-CNS global approximation uh(x) can be re-
presented in the following form:

( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) ( ) ( )x x x x x x x x xu w u w u w u w u 1h
1 1 2 2 3 3 4 4

where, wi(x) and ui(x) are the weight functions and the nodal
approximations associated with node i.

The weight functions { }( ) =xw i, 1, 2, 3, 4i with the global
Cartesian coordinates are mapped from 'parent’ weight functions
in the local coordinates [43]. The formulations for coordinate
transformation are represented as:

( ) ( ) ( ) ( )ξ η ξ η ξ η ξ η= ˜ + ˜ + ˜ + ˜ ( )x N x N x N x N x, , , , 21 1 2 2 3 3 4 4

( ) ( ) ( ) ( )ξ η ξ η ξ η ξ η= ˜ + ˜ + ˜ + ˜ ( )y N y N y N y N y, , , , 31 1 2 2 3 3 4 4

where ( ) ( ) ( ) ( )ξ η ξ η ξ η ξ η˜ ˜ ˜ ˜N N N N, , , , , , ,1 2 3 4 are expressed in the fol-
lowing form [1]

( ) ( )( )ξ η ξ η ξ ξ ξ η η η˜ = + + = = = ( )N i, 1 1 /4, , , 1, 2, 3, 4. 4i i i0 0 0 0

Unlike the 'FE-Meshfree’ QUAD4 element with least square
point interpolation functions (Quad4-LSPIM) [41], which uses the
shape functions of Quad4 to define its weight functions, the
weight functions of Quad4-CNS element are written as [43]
( )( ) ( )( )ξ η ξ η ξ η ξ η= + + + + − −

= ( )

w i, 1 1 2 /8,

1, 2, 3, 4. 5

i 0 0 0 0
2 2

There are three important features for the weight functions of
Quad4-CNS element as described in Appendix A.

The nodal approximations associated with node i, as yet un-
known, are expressed in the interpolation form as

∑ ϕ( ) = ^ ( )
( )=
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in which n[i] is the total number of nodes in the domain Ωi, (Fig.

B1), aj is the nodal displacement of node j and ϕ̂ ( )
⎡⎣ ⎤⎦

xj

i
is the shape

function of the nodal approximation ui(x) associated with node j.
(The procedure to obtain ui is described in Appendix B.)

The Quad4-CNS approximation uh(x) can be represented in a
common form:

∑ ϕ( ) = ( )
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in which ϕ ( )xi is the shape function corresponding to the node i. N

is the total number of the nodes in domain Ω̂ (Fig. B2). Substitu-
tion of Eq. (6) into Eq. (1), and then the Quad4-CNS global ap-
proximation can be constructed as

∑ ∑ ϕ( ) = ( ) ^ ( )
( )= =

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

x x xu w a .
8

h

i
i

j

n

j

i
j

1

4

1

i

By manipulating Eq. (8), the Quad4-CNS shape functions in Eq.
(7) can be represented as

ϕ ϕ ϕ ϕ
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If node j is not in the neighboring domain Ωi, then ϕ̂ ( )
⎡⎣ ⎤⎦

xj

i
is

defined to be of zero value,

ϕ̂ ( ) ≡ ( )
⎡⎣ ⎤⎦

x 0. 10j

i

Some useful properties of Quad4-CNS are shown as follows
[43]:

(1) The derivative of weight function is of zero value at the nodes.
(2) The derivative of Quad4-CNS global approximation is con-

tinuous at the nodes.
(3) The Kronecker-delta property

ϕ δ( ) = (xi j ij

3. Forced and free vibration analyses
Consider a 2D problem defined in domain V and let domain V
be discretized by a set of non-overlapping quadrilateral domain:

= ∪ =V Vi
N

i1 . Using the Quad4-CNS shape functions derived in
Section 2, the discretized equation system of dynamic analysis is
obtained as [16,38]

+ ̇ + = ( )Ma Ca Ka f" 12

where K, and M are the global stiffness matrix and global mass
matrix, respectively, and defined by

∑ ∑= = ( )K K M M, 13ij ij
e

ij ij
e

where
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D is the matrix of material constants.
For simplicity of implementation, the Rayleigh damping is

used, and the damping matrix C is assumed to be a linear com-
bination of K and M,

β β= + ( )C M K 181 2

where β1 and β2 are the Rayleigh damping coefficients.
To solve the second-order time dependent problems, many

method such as the Newmark method and Crank–Nicholson
method [1] have been proposed. In this study, the Newmark
method is used. When the state at t is known, the new state at

+ Δt t can be calculated using the following formulations:
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Without damping and forcing terms, Eq. (12) will reduce to a
homogenous equation:

+ = ( )Ma Ka 0" 22

A general solution of Eq. (22) can be written as

( )ω= ¯ ( )exp i ta a 23

where t denotes time. ā is the eigenvector and ω is natural
frequency.

Substitution Eq. (23) into Eq. (22), the natural frequency ω can
be found by solving the following eigenvalue equation:

λ λ ω¯− ¯ = = ( )K Ma a 0, , 242

4. Numerical examples

Numerical tests with the present Quad4-CNS element for free
vibration analyses of 2-D solids were carried out. Except specially
mentioned, the physical units used in the present work are based
on the international standard unit system. Here, n defines the total
number of the nodes in the computational model. To assess
accuracy and convergence, the relative error in the natural fre-
quency is defined, as follows:

ω ω
ω

= −
( )Re ,
25

num ref

ref

where the superscript “ref” represents the reference solution and
the superscript “num” denotes a numerical solution.

4.1. Comparison of shape functions

The shape functions of 3-node triangular element (Trig3),
Quad4, 6-node triangular element (Trig6), Quad8 and Quad4-CNS
are compared in Fig. 1. It is observed that the derivative of Quad4-
CNS shape functions is continuous at the node. However, the de-
rivatives of shape functions for Trig3, Quad4, Trig6 and Quad8
elements are not continuous at the nodes. The shape function of
Quad4-CNS elements is smoother than that of Trig3, Quad4, Trig6
and Quad8 elements on edges of elements.

4.2. A cantilever beam

A two dimensional cantilever beam fixed at the left end with
length L and height D is studied for the various behaviors of Quad4-
CNS element as a benchmark problem, as shown in Fig. 2. The
parameters in the computation are taken as L¼100 mm, D¼10 mm,
Young's modulus E¼2.1�104 kg f/mm2, Poisson's ratio v¼0.3,
thickness t¼1mm, mass density ρ¼8.0�10�10 kg fs2/mm4. This
problem has earlier been analyzed by Liu and Gu [16] using a local
radial point interpolation method (LRPIM) with the multi-quadrics
(MQ) radial function and Gaussian radial function, by Nagashima [45]
using the node-by-node meshless (NBNM) method and by Liu and
Nguyen-Thoi using node-based S-FEM with triangular mesh (NS-
FEM-T3) and edge-based S-FEM with triangular mesh (ES-FEM-T3)
[36,38]. The results obtained using the present Quad4-CNS element
are compared with those of NS-FEM-T3 [36], ES-FEM-T3 [38], Quad4,
Quad8, Trig3 and 6-node triangular element (Trig6).

4.2.1. Convergence study
To examine the convergence of numerical solutions in Quad4-

CNS element, three discrete models with regular grids are con-
structed as shown in Fig. 3. The frequencies computed for the
three meshes are listed in Tables 1–3. The reference results shown
in last column of Tables 1–3 were proposed by Liu and Gu [16].
Fig. 4 shows the plot of error in the first two natural frequencies
obtained using the present Quad4-CNS element as well as Quad4,
NS-FEM-T3 [36] and ES-FEM-T3 [38]. It is seen that the error in the
first two natural frequencies given by Quad4-CNS element is
generally less than that given by Quad4 element, NS-FEM-T3 and
ES-FEM-T3. The results obtained from the present Quad4-CNS
element also exhibit a faster convergence than those elements
including Quad4, NS-FEM-T3 and ES-FEM-T3. Even for the coarse
mesh, the results given by Quad4-CNS element are close to the
reference solution.

The first 10 eigenmodes, obtained with the Quad4-CNS element
using the Mesh B (Fig. 3(b)) are plotted in Fig. 5. These modeshape
plots compare well with that of ES-FEM-T3 [38].

4.2.2. Sensitivity to distorted meshes
As shown in Fig. 6, two distorted meshes are used to examine

the influence of the mesh quality. The result obtained with six
element types viz., Trig3, Trig6, Quad4, Quad8 and the present
Quad4-CNS, are shown in Table 4 and 5, respectively. It is seen that
accuracy given by the present Quad4-CNS element is generally
better than that given by Trig3 and Quad4 elements, and com-
parable to that given by Trig6 and Quad8 elements. Even for the



Fig. 1. Comparison of the shape functions of Trig3, Quad4, Trig6, Quad8 and Quad4-CNS (the Quad4-CNS shape function is C1 continuous at the nodes).

Fig. 2. Free vibration analysis of a 2D cantilever beam.

Fig. 3. Regular mesh for cantilever beam in Fig. 2.

Table 1
Comparison of computed frequencies (Hz) for the cantilever beam with Mesh A
(10�1).

Mode Quad4 (22
nodes, 10
elements)

NS-FEM-T3
[36] (22
nodes, 20
elements)

ES-FEM-T3
[38] (22
nodes, 20
elements)

Quad4-CNS
(22 nodes,
10 elements)

Reference [16]

1 1000 580 1050 871 823
2 6077 3240 6020 5512 4937
3 12,863 7440 12,830 12,842 12,824
4 16,423 9880 15,180 15,555 13,005
5 30,962 10,110 26,360 31,146 23,632
6 38,921 11,350 37,720 38,583 36,040
7 49,339 12,780 38,560 54,202 38,442
8 65,982 15,710 50,350 64,975 49,616
9 71,244 23,700 60,830 87,127 63,955

10 94,728 32,690 61,520 93,668 63,967

Y. Yang et al. / Engineering Analysis with Boundary Elements 70 (2016) 1–114
distorted mesh, very good results are obtained using the Quad4-
CNS element. This is a very significant advantage of Quad4-CNS
element. This property is very beneficial for practical applications



Table 2
Comparison of computed frequencies (Hz) for the cantilever beam with Mesh B
(20�2).

Mode Quad4 (63
nodes, 40
elements)

NS-FEM-T3
[36] (63
nodes, 80
elements)

ES-FEM-T3
[38] (63
nodes, 80
elements)

Quad4-CNS
(63 nodes,
40 elements)

Reference [16]

1 872 680 850 825 823
2 5263 4030 5080 4983 4937
3 12,837 10,520 12,830 12,830 12,824
4 14,010 12,810 13,250 13,248 13,005
5 25,816 16,470 23,780 24,394 23,632
6 38,573 18,790 35,780 37,859 36,040
7 40,002 27,820 38,300 38,466 38,442
8 56,043 30,930 48,530 53,295 49,616
9 64,494 36,780 61,530 64,044 63,955

10 73,611 38,090 63,180 70,583 63,967

Table 3
Comparison of computed frequencies (Hz) for the cantilever beam with Mesh C
(40�4).

Mode Quad4 (205
nodes, 160
elements)

NS-FEM-T3
[36] (205
nodes, 320
elements)

ES-FEM-T3
[38] (205
nodes, 320
elements)

Quad4-CNS
(205 nodes,
160
elements)

Reference [16]

1 835 780 830 823 823
2 5020 4650 4950 4939 4937
3 12,828 12,200 12,830 12,826 12,824
4 13,264 12,820 13,010 13,019 13,005
5 24,201 16,690 23,550 23,682 23,632
6 37,079 22,010 35,780 36,164 36,040
7 38,480 32,520 38,410 38,451 38,442
8 51,309 33,270 49,030 49,879 49,616
9 64,110 38,340 62,870 63,989 63,955

10 66,508 45,250 63,770 64,452 63,967
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of Quad4-CNS element. However, compare to Quad4-CNS element,
the Trig6 and Quad8 elements achieve slightly better result. It is
noticed that these two elements need adding additional nodes,
which increases the size of the global stiffness matrix.
4.3. Cantilever beam for mesh distortion test

The cantilever beam shown in Fig. 2 is also used to investigate
the performance of Quad4-CNS element on distorted meshes. As
0.8 1 1.2 1.4
-0.4

-0.2

0

0.2

0.4

lg(n)/2

R
e

Quad4
NS-FEM-T3
ES-FEM-T3
Quad4-CNS
Reference

Fig. 4. Convergence of the error in the comp
shown in Fig. 7, the cantilever beam is discretized by two elements
to investigate the performance of Quad4-CNS, Quad4 and Quad8
elements. The cantilever beam is also discretized into four ele-
ments for Trig3 and Trig6 elements. The mesh distortion is con-
trolled by a distortion parameter, 2d/b, which is a widely used
methodology to investigate the sensitivity of numerical methods
to distorted meshes [46]. A comparison of computed natural fre-
quency of the first mode is shown in Table 6. A comparison of
relative error in the computed frequencies is shown in Fig. 8. Some
conclusions can be drawn:

First, the error given by Quad4-CNS element does not change
appreciably with the increase in distortion parameters while the
error with Trig3, Quad4 and Quad8 elements shows a rapid in-
crease. The present Quad4-CNS element is seen to be almost in-
sensitive to mesh distortion.

Second, the results of Quad4-CNS elements are always much
better than those of Trig3 and Quad4 elements.

Third, the results of Quad8 element are better than the nu-
merical results of Trig3, Quad4, and Quad4-CNS elements when
the distortion parameter 2d/b is smaller than 0.2. However, with
the increasing of distortion parameter, accuracy of Quad8 element
decreases sharply. When the meshes are severely distorted, the
performance of Quad8 element is much worse than that of Quad4-
CNS element.

Fourth, compare to Quad4-CNS element, Trig6 element gen-
erally achieves more accurate results. However, with the increas-
ing of distortion parameter, accuracy of Trig6 element decreases to
the same level as that of Quad4-CNS element. Moreover, as dis-
cussed in Section 4.2.2, Trig6 element needs adding additional
nodes, which increases the size of the global stiffness matrix.

4.4. A shear wall

Fig. 9 shows a shear wall with four openings [16]. The para-
meters in the computation are taken as Young's modulus
E¼1000 Pa, Poisson's ratio v¼0.2, thickness t¼1 m, mass density
ρ¼1 kg/m3 and plane stress state is assumed. The mesh for
computation with 476 elements and 559 nodes is shown in Fig. 10.
This problem has earlier been analyzed by Liu and Gu [16] using a
local radial point interpolation method (LRPIM) with the multi-
quadrics (MQ) radial function and by Liu and Nguyen-Thoi using
NS-FEM-T3 [36] and ES-FEM-T3 [38]. For reference purposes, the
problem has also been solved by them using ANSYS [41] and
ABAQUS [16]. Natural frequencies of the first eight modes are
0.8 1 1.2 1.4
-0.4

-0.2

0

0.2

0.4

lg(n)/2

R
e

Quad4
NS-FEM-T3
ES-FEM-T3
Quad4-CNS
Reference

uted frequency for the first two modes.



Fig. 5. First to tenth vibration modes of the cantilever beam computed using Quad4-CNS element.

Fig. 6. The distorted grids for the cantilever beam in Fig. 3 (mesh: 20�2).

Y. Yang et al. / Engineering Analysis with Boundary Elements 70 (2016) 1–116
calculated using the Quad4-CNS element and listed in Table 7. It is
seen that the results given by the present Quad4-CNS element are
in good agreement with those obtained by other methods. The
first to eighth eigenmodes, obtained with the Quad4-CNS element
are plotted in Fig. 11. These modeshape plots compare well with
that of ES-FEM-T3 [38].
4.5. Slope

In this test, a practical test, homogeneous slope [51], is investigated.
This slope is subjected to self-weight, as shown in Fig. 12. This slope is
Table 4
Comparison of computed frequencies (Hz) for the cantilever beam with distorted grids

Mode Trig3 (63 nodes, 80
elements)

Trig6 (205 nodes, 80
elements)

Quad4 (63 nodes, 40
elements)

1 1139 823 884
2 6727 4942 5325
3 12,851 12,827 12,837
4 17,444 13,034 14,191
5 31,214 23,729 26,131
6 38,636 36,264 38,578
7 47,354 38,454 40,610
8 64,310 50,066 56,747
9 64,900 63,994 64,522

10 82,775 64,758 73,951
fixed at the bottom. The normal constraints are imposed on the both
sides of the slope. The material parameters of this slope are, Young's
modulus E¼8�107 Pa, Poisson's ratio v¼0.43 and unit weight
γ¼1.962�104 N/m3. The mesh for computation with 132 elements
and 161 nodes is shown in Fig. 13. Due to the lack of theoretical so-
lution, the mesh in Fig. 13 is refined to obtain a fined mesh with
12,255 elements and 12,528 nodes. A reference solution is calculated
by Quad4 element using this fined mesh. Natural frequencies of the
first eight modes are calculated using Quad4-CNS element and listed
in Table 8. Here again, it is seen that the results given by Quad4-CNS
element are better than those obtained by Quad4 element, and
comparable to those obtained by Quad8 element. The first 8 eigen-
modes, obtained with the Quad4-CNS element are plotted in Fig. 14.

4.6. Forced vibration analysis of a cantilever beam

A benchmark problem of a cantilever beam is investigated
using the Quad4-CNS model with the Newmark method for time
stepping. The cantilever beam is fixed at the left end with length L
and height D, as shown in Fig. 15. It is subjected to a harmonic
in Fig. 6. (Mesh a).

Quad8 (165 nodes, 40
elements)

Quad4-CNS (63 nodes,40
elements)

Reference[16]

823 825 823
4940 4986 4937

12,827 12,831 12,824
13,022 13,254 13,005
23,686 24,446 23,632
36,158 37,980 36,040
38,452 38,467 38,442
49,846 53,448 49,616
63,991 64,047 63,955
64,399 70,639 63,967



Table 5
Comparison of computed frequencies (Hz) for the cantilever beam with distorted grids in Fig. 6. (Mesh b).

Mode Trig3 (63 nodes, 80
elements)

Trig6 (205 nodes, 80
elements)

Quad4 (63 nodes, 40
elements)

Quad8 (165 nodes, 40
elements)

Quad4-CNS (63 nodes, 40
elements)

Reference [16]

1 1179 823 909 823 826 823
2 6855 4945 5433 4941 4990 4937
3 12,856 12,828 12,838 12,826 12,831 12,824
4 17,845 13,046 14,504 13,028 13,271 13,005
5 31,948 23,760 26,597 23,708 24,480 23,632
6 38,657 36,320 38,584 36,207 38,134 36,040
7 48,668 38,456 41,346 38,452 38,469 38,442
8 64,702 50,155 57,641 49,937 53,761 49,616
9 66,764 63,998 64,546 63,991 64,053 63,955

10 86,403 64,885 76,001 64,499 71,100 63,967

BhseMAhseM

DhseMChseM

EhseM
Fig. 7. The mesh used for the distortion sensitivity test.
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Fig. 8. Error in the computed frequencies of the first mode for distortion sensitivity
test.
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loading ω( ) =f t tsin f in y-direction. The parameters in the com-
putation are taken as L¼4 m, D¼1 m, Young's modulus
E¼1 Pa, Poisson's ratio v¼0.3, thickness t¼1 m, mass density
ρ¼1 kg/m3, ω = 0. 04 rad/sf , the Rayleigh damping coefficients
β = 0.0051 , β = 0.2722 and the Newmark method parameters
α = 0. 5, δ = 1.0. The time step Δ =t 1.57 s is used for time in-
tegration, while the total computational time is set to be 1200 s.
Table 6
Computed natural frequencies (Hz) of the first mode for the distortion sensitivity test.

2d/b Trig3 (6 nodes,
4 elements)

Trig6 (15 nodes,
4 elements)

Quad4 (6 nodes,
2 elements)

0.000 4141 870 2623
0.025 4297 875 2710
0.050 4445 890 2889
0.075 4557 913 3052
0.100 4642 939 3169
0.150 4773 983 3296
0.200 4881 1007 3352
0.250 4980 1018 3386
0.300 5075 1024 3417
0.400 5255 1030 3498
0.500 5429 1033 3617
0.600 5596 1035 3776
0.700 5759 1037 3984
0.800 5919 1039 4252
0.900 6074 1040 4617

a Six term basis is used.
The domain is represented with 8�2 elements. The problem is
also solved with three types of elements including Trig3 (32 ele-
ments, 27 nodes), Quad4 (16 elements, 27 nodes), and Quad8 (16
elements, 69 nodes) for the purpose of comparison. Due to the lack
of theoretical solution, a very dense quadrilateral mesh with 6400
elements and 6601 nodes is generated. A reference solution is
calculated by Quad4 element using this mesh. From the dynamic
responses in Fig. 16, it is seen that the amplitudes of the Quad4-
CNS element is closer to that of reference solution as compared to
the Quad4 element. This shows that the Quad4-CNS element using
Quad8 (13 nodes,
2 elements)

Quad4-CNSa (6 nodes,
2 elements)

Reference [16]

869 1093 823
872 1061 823
881 1066 823
894 1070 823
910 1074 823
947 1098 823
999 1078 823

1086 1075 823
1220 1078 823
1597 1078 823
1996 1077 823
2324 1078 823
2576 1078 823
2783 1071 823
2991 1097 823



Fig. 9. A shear wall with four openings [16].

Fig. 10. Model of the shear wall with four openings.

Table 7
Natural frequencies (rad/s) of the shear wall.

Mode LRPIM
(MQ)þ
[16]

FEM (ABA-
QUS) [16]

Brebbia
[41,50]
BEM

ANSYS Plane 42
with bubble
functions [41]

Quad4-CNS

1 2.086 2.073 2.079 2.057 2.094
2 7.152 7.096 7.181 7.067 7.124
3 7.647 7.625 7.644 7.62 7.590
4 12.019 11.938 11.833 11.84 12.192
5 15.628 15.341 15.947 15.313 15.451
6 18.548 18.345 18.644 18.342 18.330
7 20.085 19.876 20.268 19.887 19.858
8 22.564 22.210 22.765 22.236 22.225

Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Mode 7 Mode 8
Fig. 11. First to eighth vibration modes of the shear wall with four openings.
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quadrilateral mesh can be applied to the forced vibration analysis
with excellent accuracy.

5. Discussions and conclusions

In this paper, the PU based quadrilateral element with continuous
nodal stress called Quad4-CNS element [43], has been extended to free



Fig. 12. Dimensions of slope model [51].

Fig. 13. Discretized model of slope.

Table 8
Natural frequencies (Hz) of the slope.

Mode Quad4 (161
nodes, 132
elements)

Quad8 (453
nodes, 132
elements)

Quad4-CNS (161
nodes, 132
elements)

Reference

1 0.1799 0.1788 0.1789 0.1789
2 0.2448 0.2395 0.2398 0.2396
3 0.2863 0.2761 0.2770 0.2761
4 0.3134 0.3071 0.3076 0.3072
5 0.3283 0.3133 0.3153 0.3134
6 0.3625 0.3565 0.3572 0.3566
7 0.3821 0.3579 0.3634 0.3579
8 0.3901 0.3825 0.3832 0.3825

Fig. 14. First to eighth vibrat

Fig. 15. A 2D cantilever beam subjected to a harmonic loading on the right end.
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Fig. 16. Transient responses of a cantilever beam subjected to a harmonic loading.
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and forced vibration analyses of two-dimensional solids. Some im-
portant observations from this work are as follows:

(1) Compared to meshfree methods, the shape functions of
Quad4-CNS element possess the much desired Kronecker-
delta property, so the essential boundary conditions can be
easily applied as in the classical FEM.

(2) Compared to FEM, the Quad4-CNS element does not
ion modes of the slope.



Fig. B2. Element support domain.
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necessitate a newmesh or additional nodes in the mesh. It just
uses the same mesh as the classical Quad4 element and is able
to give more accurate solution than the Quad4 element be-
cause a higher order interpolation is used in the Quad4-CNS
element.

(3) The linear dependence (LD) problem, which is common in
most PU based finite elements, is eliminated automatically in
the proposed element. This has been verified by an eigenvalue
analysis of the global stiffness matrix before and after applying
the boundary conditions [43].

(4) Accuracy of Quad4-CNS element is generally better than that
given by Trig3, Quad4, NS-FEM-T3 [36] and ES-FEM-T3 [38]
and agrees very well with that of Trig6 and Quad8 elements.
The results obtained from the Quad4-CNS element also exhibit
a faster convergence than Quad4, NS-FEM-T3 and ES-FEM-T3.
Even for the coarse mesh, the results given by Quad4-CNS
element are close to the reference solution.

(5) The mesh distortion test conducted shows that the error given
by Quad4-CNS element does not change appreciably with the
increase in distortion parameters while the error with Trig3,
Quad4 and Quad8 shows a rapid increase. Quad4-CNS element
is seen to be highly tolerant to mesh distortion.
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Appendix A. Features of Quad4-CNS weight functions

The weight functions of Quad4-CNS element have three
features:
(1) they satisfy the PUM condition: ξ η∑ ( ) == w , 1i i1

4 ,
(2) the weight functions satisfy the Kronecker-delta property

δ( ) =xwi j ij (i,j¼1,2,3,4),
(3) Moreover, the gradient of the weight functions is continuous

over all the nodes:

( ) ( )ξ η

ξ

ξ η

η

∂

∂

∂

∂
= =

(

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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w w
i j

, ,
0, , 1, 2, 3, 4.

i j j i j j
T

Appendix B. Construction of nodal approximation

First the node patch of the node i is defined by Ωi, as shown in
Fig. B1. Here, node i is called central node, and other nodes in
domain Ωi are called satellite nodes. The element support domain

Ω̂ is the union of the four node patches Ω Ω^ = ∪ =i i1
4 as shown in

Fig. B2.
Fig. B1. The node patch and neighboring elements associated to a central node in
the computational domain.
Several constrained least-squares methods have been proposed
to construct shape functions with the Kronecker-delta property,
such as least square point method (LSPIM) [41], radial point in-
terpolation method (RPIM) [16,47], orthonormalized and con-
strained moving least-squares method (CO-MLS) [48] and the re-
duced CO-MLS (CO-LS) [43,44]. Here, the orthonormalized and
constrained least-squares method (CO-LS), which is constrained at
its central node, is briefly introduced and used to construct the
nodal approximation of Quad4-CNS element.

Using least-squares method, the nodal approximation ui(x) can
be represented as:

( ) = ( ) = ⋯ ( )− [ ]⎡⎣ ⎤⎦x p x A Ba au a a a, , B2i
T

n
T1

1 2 i

The moment matrix A and the basis matrix B are expressed as:

∑= ( ) ( ) = ( ) ( )⋯ ( )
( )=

[ ]

[ ]⎡⎣ ⎤⎦A p x p x B p x p x p x, .
B3j

n

j
T

j n
1

1 2

i

i

where n[i] is the total number of nodes in the domain Ωi or the
number of supporting nodes for node i, a is a vector of nodal
displacements and p(x) is a vector of basis functions configured by
subsets of the Pascal triangle. In an eight polynomial terms, p(x)
can be expressed as

( ) = { } ( )p x x y x xy y x y xy1 B4T2 2 2 2

when considering four or six polynomial terms, p(x) are expressed
as

{ }{ }( ) = ( ) = ( )p x p xx y xy x y x xy y1 or 1 B5
T T2 2

To improve least-squares method, an orthonormalized and
constrained least-squares method (CO-LS) is developed using the
Gram-Schmidt orthonormalization process [49]. The vector p can
be orthogonalized as:

= [ ⋯ ] = ( )s Rps s s , B6m
T

1 2

R is an orthogonalizing matrix with dimension m�m andm as the
number of the monomial terms of p(x). The formula of R is pre-
sented in reference [48].

Normalizing vector s yields

= ( )r Hp, B7

H is an orthonormalizing matrix with dimension m�m [48].
Using Lagrange multiplier method, the constrained nodal ap-

proximation ui(x) can be constructed as

∑ ϕ( ) = ^ ( )
( )=

[ ]
[ ]

x xu a ,
B8

i
j

n

j

i
j

1

i
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in which ϕ̂ ( )
⎡⎣ ⎤⎦

xj

i
is the shape function of the nodal approximation

ui(x) associated with node j.
In defining the support of a given node, the first order nodal

connectivity which includes the nodes of all the elements con-
nected to the given node is usually considered. Such a support is
called first order support. However, sometimes, as discussed in [33],
the first order support may not contain sufficient number of nodes.
For example, any of the corner nodes of the mesh in Fig. B1(b) has
only four nodes in the first order support. Four nodes are not
sufficient to accommodate a quadratic polynomial basis that has
six terms in the basis (see Eq. (B5)). At least, six nodes are needed
for the purpose. In such cases, a bigger support is defined based on
the second order nodal connectivity by including the nodes of all
the elements connected to the nodes in the first order support.
Such a support is called second order support. Recall that n[i] refers
to the total number of nodes in the domain Ωi or the number of
supporting nodes for node i. For the sake of convenience, in the
present work, if possible, a support size such that n[i]48 is usually
considered and the number of polynomial terms is chosen to be
eight.
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