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Highlights 

 A modified dynamic constitutive model that can better describe the soil elastoplastic 

deformation behavior is introduced.  

 A specific application of the return mapping algorithms is introduced in this paper.  

 There are many necessary modifications of the return mapping algorithms which must be of 

interest to the readership.  
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ABSTRACT 

The bounding surface model has become one of the most widely used constitutive models for 

representing the elastoplastic behavior of soils under cyclic loads. Using a bounding surface model 

modified to include swell–shrink rules, this paper gives a full description of a popular return 

mapping algorithm based on implicit integration. The algorithm allows complete implicit 

integration and consistent linearization of the model to be achieved. Several modifications are 

made to force the algorithm to satisfy the computational needs of the model and a Newton–

Simpson iterative method is introduced to ensure high numerical accuracy. Numerical simulations 

are used to demonstrate the validity of the algorithm presented.  

Keywords: implicit integration; return mapping algorithm; Newton–Simpson iterative method; 

modified bounding surface model; swell–shrink rules 

 

1. Introduction 

A large number of cyclic triaxial tests indicate that the relationship between the stress and strain of 

soil subjected to cyclic loads appears to show nonlinearity and hysteresis characteristics which 

reflects the elastoplasticity of the soil under cyclic load (Kaynia, Madshus, & Zackrisson, 2000; 

Wang, 2007; Yang, Wang, & Luan, 2010; Wei, Liu, & Gao, 2007; Hu, Liu, & Huang, 2012). A 

proper constitutive model should correctly represent these characteristics and accurately describe 

the hysteresis between the stress and strain in the soil. Attempts to realize this has led to the 

development of several major categories of cyclic constitutive models, e.g. the multi-surface 

elastoplastic model (Mroz, Norris, & Zienkiewicz, 1978; Mroz, Norris, & Zienkiewicz, 1979; 

Prevest, 1977; Wang & Yao, 1996; Xu, Xie, & Zheng, 1995), endochronic elastoplastic model 

(Bazant & Bhat, 1976; Bazant, Ansal, & Krizek, 1979; Zienkiewicz, Chang, & Hinton, 1978), 

transient limit equilibrium theory (Xie, Wu, & Guo, 1981; Xie, Wu, & Guo, 1981; Xie & Zhang, 

1987), bounding surface elastoplastic model (Dafalias, 1986; Manzari & Dafalias, 1997; Dafalias, 

1986; Dafalias, 1987), etc.  

Among the numerous cyclic constitutive models, the bounding surface model is the most 

popular due to its comparatively theoretical simplicity and relatively low requirement for complex 

arithmetic (Manzari & Nour, 1997; Ronaldo, Borja, & Lin etc., 2001). In this paper, a modified 

bounding surface model is introduced based on ‘swell–shrink’ rules. The model describes the 

characteristics of clay under cyclic loads very well and also has a simple theoretical form which 

only requires a simple integration algorithm.  

When describing the mechanical characteristics of soil, a strategy involving numerical 

integration is needed throughout the whole loading process. In recent years, a number of often 

robust and accurate algorithms referred to as ‘return mapping algorithms’ have been widely 
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implemented which include both explicit and implicit integration (Manzari & Nour, 1997; 

Ronaldo, Borja, & Lin etc., 2001; Ortiz & Simo, 1986; Simo & Govindjee, 1991; Simo, 1985). 

Due to their high accuracy, however, backward Euler schemes involving implicit integration are 

often used in practice. In spite of their widespread use in classical elastoplastic constitutive models, 

return mapping algorithms based on implicit backward schemes still have to be modified to fit the 

computational needs of the bounding surface model. This is mainly due to the characteristics of 

the model itself. For example, in bounding surface models all the stress points are enveloped in the 

bounding surface and a consistency condition needs to be applied (according to the bounding 

surface equation) due to the lack of a yield surface (upon which the return mapping algorithm is 

usually performed). In the modified bounding surface model presented in this paper, new swell–

shrink rules are added to the algorithm.  

Based on a previously-proposed modified bounding surface model (Li, 2013), this paper 

presents the complete deduction process involved in the integration model (the detailed algorithm 

itself is given in Appendix A). A key feature of the process of combining the return mapping 

algorithm with the modified bounding surface model is that an iterative Newton–Simpson method 

can be invoked when deducing the control equation group. This guarantees high accuracy and 

efficiency. In addition, during the process of computation, the stress point is always kept on the 

bounding surface throughout the elastic loading or unloading phases. This forces the algorithm to 

represent the elastoplastic characteristics of the soil. The algorithm presented was embedded into 

the FLAC3D package and several validation tests performed to verify the precision and efficiency 

of the model and algorithm used. As a general aid to the reader, all the symbols used in this paper 

are listed in Appendix B. 

 

2. Modified bounding surface model based on swell–shrink rules 

Daliafas and Herman proposed a constitutive model called the ‘bounding surface model’ in 1986 

based on the Cam-clay model. The model was able to stimulate the stress–strain relationship in 

soil under cyclic loading conditions and overcome the difficulties caused by tracing the multiple 

nested yield surfaces and their movement. However, the bounding surface model considers the 

unloading and reloading phases in the elastic region, and so it cannot, therefore, reflect the 

nonlinear stress–strain relationship in the two phases. As a result, the bounding surface model 

must be subsequently modified (Liang & Ma, 1992; Zhou, Sun, & Wu, 2002; Anadarajah & 

Dafalias, 1986).  

For the reasons outlined above, a modified bounding surface model based on swell–shrink 

rules has been proposed (Li, 2013). The modified model is based on critical state theory and 

bounding surface plasticity. In the calculations performed, the bounding surface does not need to 

be predefined. Instead, it is taken to be the biggest yield surface formed in the initial loading phase 

(this overcomes the defect that the bounding surface need to be predefined in the model 

application phase). It also simplifies parameter calibration and makes the model more convenient 

to apply. Only the main aspects of the theory are discussed here — a more detailed account can be 

found in the paper by Li (2013). 

The modified bounding surface model based on swell–shrink rules consists mainly of: (1) a 

bounding surface equation; (2) a mapping rule; (3) the plastic flow and swell–shrink rules; and (4) 

computation of the plastic modulus. We discuss these features in turn. 

2.1 Bounding surface equation 
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The specific bounding surface equation used here has the form (Li, 2013; Chen, Li, & Jiang, 

2013): 

   ' 2

σ

2
[ ,θ ]

3
ij ij cF Q s s M p p p p                      (1) 
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.  

From Eqs. (1) and (2), it can be seen that the above equation for the bounding surface takes 

the nonlinear critical state into account, which means that the critical state line(CSL) in the p-q 

stress space is a hyperbolic curve(Mc and Me shown in Fig. 1). Besides, the S-D effect which 

indicates that the compression strength is bigger than the extension strength is also considered. An 

illustration of its shape is shown in Fig. 1. 

CSL-M c

CSL-M e

bounding surface

pc p

q

 

Fig. 1. The modified bounding surface. 

 

2.2 Mapping rule 

For soil, the elastic area is considered to be non-existent in stress space. Therefore, the mapping 

origin can be fixed at the coordinate origin. The mapping rule is shown in Fig. 2 and can be 

expressed in the form: 

ij ijc   , 0

0

c


 



                              (3) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

¦ Òij
¦ Òij

¦ Ä0

¦ Ä

¦ Ä0-¦ Ä

¦ Áij
mapping
center

p

q

bounding surface F

 

Fig. 2. The mapping rule 

 

2.3 Plastic flow and bounding surface swell–shrink rules 

2.3.1 Plastic flow rules 

An associated flow rule is used here, as shown in Eqs. (4) and (5): 

p

ij

ij

F
 







                                        (4) 

p

c c v

v
p p 

 



                                    (5) 

2.3.2 Swell–shrink rules of the bounding surface 

Several bounding surface swell–shrink rules are proposed. Whenever we are in the loading or 

unloading stages, there must be a ‘virtual stress’ 𝜎̅𝑖𝑗’ which is obtained from the mapping rule in 

accordance with the stress state in a new stress step. This virtual stress ’ is substituted into the 

bounding surface equation F to judge whether the virtual stress state exceeds F or not. When F > 0 

the virtual stress exceeds the bounding surface equation and the bounding surface swells 

according to the hardening rules. When F > 0 the virtual stress is within the bounding surface and 

the bounding surface shrinks to make sure the virtual stress lies on F. However, there is no plastic 

strain produced in this stress step. The swell–shrink rules can be expressed as shown in Fig. 3. 

 

     

Fig. 3. The swell–shrink rules of the bounding surface. 

 

In Fig. 3, it can be seen that the stress path is a→b→c→d→e→f→g. In the loading process 
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from isotropic consolidation stress point a to b, the initial bounding surface f swells to F along 

with development of plastic strain. If loading is continued to stress point c, the bounding surface 

swells to F’. After that, in the unloading process from c to d, if there is no change to the plastic 

strain, then the bounding surface shrinks to F’’ to make the stress point lie on the bounding surface. 

After unloading to a, if loaded to e, the bounding surface swells to F along with elastoplasticity 

development. If reverse loading is continued to g, then the bounding surface swells to F’. 

2.4 Solving for the plastic modulus 

One key aspect of the bounding surface model is the method used to compute the plastic modulus. 

According to theory, the plastic modulus can be found using interpolation. The relationship 

between pK  and pK  is determined by the stress tensor ij , the inner variable qn, and the 

distances  , 0  between the stress points. Here, the interpolation function proposed by Manzari 

is used (Manzari & Nour, 1997) which has the form: 

 

4
3

0

16 1

9
p p

M
p

c

c
K K H



 

 
   

  
                            (6) 

 

3. Return mapping algorithm 

A good constitutive model algorithm should be convenient to implement, satisfy the incremental 

plastic consistency requirement, and have good accuracy and stability (Krieg, 1977; Schreyer, 

Kulak, & Kramer, 1979; Ortiz & Popov, 1985). From this standpoint, a number of authors have 

proposed the so-called ‘return mapping algorithm’ for the integration of elastoplastic constitutive 

model equations. In this section, the main features of such algorithms are discussed to show how 

the procedure works. 

The return mapping process is illustrated in Fig. 4. From Fig. 4 it can be seen that the return 

mapping algorithm has two main procedures: elastic prediction (path I in the figure) and plastic 

correction (path II). Note that the plastic correction process is carried out in a step-by-step fashion. 

Furthermore, the direction involved in the correction step, Rij, is controlled by the yield function F 

and follows the steepest descent path corresponding to F — the direction is computed from the 

elastic modulus.   

      

Fig. 4. Scheme illustrating the return mapping algorithm.  

 

These characteristics can be deduced as follows. For σn+1, we have: 

 1σ σ try p

n n ij ijE                                   (7) 

For 𝜀𝑖̇𝑗
𝑝

, we have: 
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p

ij ijLR                                            (8) 

where, ij
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F
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





. 

As a result, the stress plastic corrector is: 

p p

ij ij ij

ij

F
E ELR EL 
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
                              (9) 

Dividing Eq. (7) throughout by 〈𝐿̇〉, produces: 

p

ij

ij

F
E

L









                                       (10) 

Eq. (10) can be used to determine the direction of the plastic correction needed in each step 

of the correction process. It also proves one of the characteristics of the return mapping algorithm 

discussed later. 

There are generally two main methods used to conduct plastic correction which involve 

explicit and implicit methods of iteration. For high accuracy and stability, an implicit iterative 

method is preferred and is the solution method adopted here. The whole algorithm, and the 

procedures therein, are illustrated in Table 1.  

 

Table 1  The return mapping algorithm 

(i) Elastic prediction:  

 
(0) (0)

1 1 1

e try
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1 1n n   , (0)

1 1n nq q                         Goto (v) 

(iii) Plastic correction:  

Implicit iterative method: 
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(iv) Convergence check:  
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(v)Stress update:  
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4. Implicit integration for the model 

4.1 Incremental constitutive relationships 

Corresponding to the modified bounding surface model, the incremental constitutive relationships 

are derived as follows. 

(1) Elastic strain 

By decomposing the volumetric and deviatoric parts of the strain tensor we obtain:  

 e p

v v vp K K                                 (11) 

 2 2e p

ij ij ij ijs Ge G e e                             (12) 

Due to the extension from critical state theory and bounding surface model, the bulk and 

shear moduli are functions of the current stress state and some other parameters (referred to as 

‘hyperelasticity’). Expressions for these quantities are given by: 

v
K p


                                         (13) 

 

 

3 1 2

2 1
G K









                                 (14) 

Note that v is the current specific volume, which means that it will vary with deformation of 

the soil. Its change can be calculated using / vv v   . 

(2) Flow and hardening rules 

According to the theory, the flow rule can be expressed in the form: 

p

v

F
L

p






; 

p

ij

ij

F
e L

s





                                (15) 

To calculate the plastic strain increments 
p

v  and 
p

ije , the plastic multiplier L must first be 

determined. L can be computed using the following equation: 

1 1
ij ij

p ij p ij

F F F F
L s p s p

K s p K s p

      
               

                   (16) 

An isotropic hardening law is used to characterize the evolution of the bounding surface with 

the change in void ratio: 

p

c c vp p
v


 




                                    (17) 

(3) Plastic modulus 

The plastic modulus Kp can be obtained from Eq. (6). However, the value of the virtual plastic 

modulus pK  must be confirmed. pK  can be calculated from the consistency condition, as 

follows: 

0ij c

ij c

F F F
F s p p

s p p

  
   
  

                           (18) 
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Thus, pK  is such that: 

p c
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F v F
K p

p p 

 
 

  
                              (19) 

(4) Other relationships 

Several complementary equations are required to finish off the set of model relationships:  
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
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                              (20) 

Overall, the complete set of incremental constitutive relationships have now been expressed 

and by combining Eqs. (1), (3), and (6) the stress–strain curve can be calculated by substituting 

the expressions in Eq. (20) into the incremental relations.  

4.2 Implicit integration based on the return mapping algorithm  

As already discussed, the implicit integration scheme based on the return mapping algorithm has, 

generally speaking, three integration procedures which involve an elastic prediction phase, a state 

judgment phase, and a plastic correction phase. First, at the beginning of each strain increment, an 

elastic response is assumed and the corresponding stress is calculated. Second, the estimated stress 

and strain are substituted into the bounding surface equation to test the state of the bounding 

surface equation. Finally, some corrections are made according to the state of the bounding surface 

equation, and the bounding surface is allowed to swell or shrink. The details of this procedure are 

discussed in this section. 

(1) Elastic prediction phase 

According to the elastic prediction, we have: 
1 1n n n

vp p K                                     (21) 
1 12n n n

ij ij ijs s G e                                    (22) 

where the superscripts n and n+1 represent the current time and the next time increment, v  is 

the estimated elastic volumetric strain increment, and ije  is the deviatoric strain increment.  

Note that K
n+1 

and G
n+1

 are related to current parameters and can be calculated using: 

1
n

n nv
K p



                                       (23) 

 

 
1 1

3 1 2

2 1

n nG K




 





                              (24) 

(2) State judgment phase 

In this phase, c
n
 (the algorithm for which will be discussed later), p

n+1
, and 

1n

ijs 
 need to be put 

into the bounding surface expression in Eq. (1) to judge the state of the bounding surface equation. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

If F(c
n
p

n+1
,c

n 1n

ijs 
) > 0, a correction must be made to force the estimated stress and strain to 

satisfy the plastic equation and the bounding surface swells. However, if F(c
n
p

n+1
,c

n 1n

ijs 
) < 0, the 

bounding surface will shrink. In a word, no matter which state the bounding surface equation is in, 

the virtual stress must be on the bounding surface curve.  

(3) Plastic correction phase (when F(c
n
p

n+1
, c

n 1n

ijs 
) > 0) 

The purpose of performing plastic correction based on flow and hardening rules is to force the 

stress state to satisfy the consistency condition. In other words, it is to keep the stress state on the 

bounding surface curve.  

Plastic correction is the key part of the whole integration procedure. In this phase, the 

equations for plastic strain, corrected stress, hardening parameter, bounding surface condition, and 

plastic modulus constitute an integral iterative equation group which can be solved by applying an 

iterative Newton–Simpson method.  

(1) Plastic strain equations 

According to the expressions in Eq. (15), the integration formula can be expressed in the form: 

   

 

1
1 2 1 1 1

1
1 1 1

2
2

3

2

n
p n n n n

v c
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p n n n

ij ij

L M c p p

e L c s




   


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  

 







                    (25) 

(2) Hardening parameter equation 

The hardening parameter pc can be computed by applying the backward Euler integration 

algorithm:  

 
1

1 exp
n

n
n n p

c c v

v
p p 

 


  
  

 
                             (26) 

(3) Bounding surface control equation 

The corrected virtual stress must stay on the bounding surface equation 

 1 1 1 1 2 1 1 1 1 12
0

3

n n n n n n n n n

ij ij cF c s c s M c p c p p                     (27) 

(4) Stress correction 

According to Eqs. (11) and (12), the stress can be corrected using the expressions: 

    
    

111

v

11
1 2

nnn n p

v

nn
n n p

ij ij ij ij

p p K

s s G e e

 





     


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

                       (28) 

At this stage, we note that there are presently 16 equations in the iterative equation group and 

17 unknowns (
p

v , 6
p

ije , pc, p, 6sij, c, L). Therefore, there needs to be another control equation. 

In the equation group, we see that there is a parameter c
n+1

 which does not have its own control 

equation. 

(5) Control equation for c
n+1

 

An equation for c
n+1

 can be obtained by substituting into Eq. (16) the differential relationship 
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between the virtual stress ij  and the real stress ij .  

The differential relationship between ij  and ij  is derived from Eq. (3): 

d d d

d d dij ij ij

p p b b p

ss b b s

 


 
                                 (29) 

Substituting Eq. (29) into Eq. (16) and then rearranging, we have: 

2

d
2

3

p p

c

K cK
c L

M pp


                                   (30) 

Substituting 
21 2

3
c

pK
L M cpp  into this we get: 

d
d 1

p c

p c

K p
c c c

K p

 
   

 

                              (31) 

Using backward Euler integration, we have: 

1

1 1 /

n

n n n n n

p c c

XY
c

c k c p p



 
 

 
                       (32) 

where 

1 1n n n

p c p

pn

c p

c k p K
XY k

p K

 

 ， . 

Here, we have a new unknown kp and therefore another control equation must be found.  

(6) Control equation for kp 

From Eqs. (6), (17), and (18), we find: 

 
1

1 1

0

XX

XX 4H 1

pn

p n n
p

K
k

K c c



 
 

 
                       (33) 

where  1 1 1 1 1XX 2 / /n n n n n

c cc p p p p      . 

Now there are 18 equations and 18 unknowns. Therefore, all the unknowns can be calculated 

using the Newton–Simpson iterative method.  

Up to this point, the incremental stress and strain tensors at moment n may be obtained 

provided F(c
n
p

n+1
, c

n 1n

ijs 
) > 0. When F(c

n
p

n+1
, c

n 1n

ijs 
) < 0, the bounding surface must shrink 

according to the theory and the relevant control equation is: 

22
( )

3

ij ij

c

s s
p p

M p

                                   (34) 

Details of the algorithm for implementing the implicit integrations mentioned in this section 

are given in Appendix A. 

 

5. Model validation 
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The modified bounding surface model discussed here was implemented in FLAC3D according to 

the proposed implicit integration method based on the return mapping algorithm. Conventional 

and cyclic load triaxial tests on clay samples were simulated (the clay soil specimens had 

compactness values of 0.8, 0.85, and 0.95). By comparing the calculated stress–strain relationships 

with data from real tests, the model and its algorithm could be verified. The strength parameters (a 

and b) and other parameters for the model are shown in Tables 2 and 3, respectively.  

 

Table 2  The strength parameters of the critical state line of the soil. 

Compactness a b 

0.80 0.0009 0.6874 

0.85 0.0008 0.3581 

0.95 0.0007 0.2843 

 

Table 3  Parameter values for the present model. 

Compactness 
Initial specific 

volume, v 

Compression 

index, λ 

Swelling 

index, κ 

Bulk modulus, 

K (MPa) 

Poisson 

ratio, μ 
H0 

0.80 2.21 0.19 0.026 16.7 0.3 20 

0.85 1.92 0.15 0.018 33.3 0.28 20 

0.95 1.43 0.13 0.014 60.2 0.26 20 

 

5.1 Conventional triaxial tests 

Figures 5–7 show the results of the conventional triaxial calculations on clay samples with 

different compactness values.  

 

  

(a) Stress–strain curve                      (b) Stress path 

Fig. 5. Comparison of the results of the numerical simulations and real test data for a compactness 

value of 0.80. 
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(a) Confining pressure 50 kPa               (b) Confining pressure 100 kPa                 

 

    (c) Confining pressure 200 kPa 

Fig. 6. Comparison of the results of the numerical simulations and real test data for a compactness 

value of 0.85. 

     

(a) Confining pressure 50 kPa               (b) Confining pressure 100 kPa 

 

  (c) Confining pressure 200 kPa 

Fig. 7. Comparison of the results of the numerical simulations and real test data for a compactness 

value of 0.95. 

From Figs. 5(a), 6, and 7, it can be seen that the modified model can simulate the nonlinearity 

of the stress–strain relationship in the clay samples and the plastic flow characteristics very well. 
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Fig. 5b also shows that the stress path calculated using the present constitutive model matches the 

theoretical stress path and reaches the hyperbolic critical line. However, the stress path computed 

by the well-known Cam-clay model is shorter that the theoretical stress path (due to the small 

value of M involved).  

From Figs. 6 and 7, it can be seen that although it is possible to simulate the mechanical 

characteristics well by adjusting the value of M to make the critical line pass through the critical 

state of the stiff clay for a given confining pressure, the Cam-clay model cannot give good 

simulation results when the confining pressure is changed. This is because the linear critical line in 

the Cam-clay model is not capable of comprehensively describing the critical state of the stiff clay. 

For example, in Fig. 6 the Cam-clay model simulates the mechanical features of the clay sample 

well under a confining pressure of 50 kPa if the value of M is adjusted, however, the calculation 

results are unsatisfactory for the other two higher confining pressures. This is because the strength 

under a small confining pressure is greater (relatively). However, if the confining pressure 

increases then the range of the strength increase is reduced. At this point, continuing to use a linear 

critical line causes the predicted strength to be greater than that of real stiff clay (as can be seen in 

Figs. 6(b) and 6(c)). From Fig. 7, the same conclusion can be made. Nevertheless, the modified 

bounding surface model overcomes this defect and continues to simulate the mechanical 

characteristics of the stiff clay very well. 

 

5.2 Cyclic load triaxial tests 

Figures 8 and 9 show the cyclic load triaxial calculation results for clay samples with a 

compactness of 0.8 and consolidation ratio of 3.0. 

 

 

(a) test curve                          (b) numerical simulation curve 

Fig. 8. Comparison of a simulated stress–strain curve for soil subjected to cyclic loading and that 

obtained from real tests (σd  = 120 kPa).  
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Fig. 9. Comparison of simulated results for accumulated plastic strain under cyclic loading with 

real test results.  

 

From Figs. 8 and 9, it can be seen that the curves calculated using the numerical simulation 

method match well the curves obtained in real tests. In Fig. 9, the calculated accumulated plastic 

strain appears to develop slightly faster than in the real tests when the cyclic stress amplitude is 

small. Nevertheless, the accumulated strain becomes steady later on and the difference between 

the numerical simulations and test results is small. If the cyclic stress is high, the two curves 

match each other very well (although the final value of the accumulated plastic strain is a little 

larger than the actual measured value). 

Overall, the calculation results show that the cyclic constitutive model and the implicit 

algorithm proposed in this paper can describe cyclic stress–strain relationships and trends in 

plastic strain development in clay subjected to cyclic loading very well. In addition, the numerical 

calculation results are stable and the computational efficiency is high. 

 

6. Conclusions 

In this paper, a modified bounding surface constitutive model based on swell–shrink rules has 

been briefly introduced for clay. In addition, a detailed account of the full implicit integration 

algorithm has been given. One of the key features of the implicit integration process is the use of a 

return mapping algorithm, which ensures the method has high accuracy and stability. Because of 

the plastic correction and bounding surface shrink algorithm, the model can accurately reflect the 

elastoplastic characteristics of the clay under cyclic loads, particularly in the unloading and 

reloading stages.  

To aid implementation, incremental constitutive relationships for the modified bounding 

surface model have been given and the corresponding implicit integration (based on the return 

mapping algorithm) has been presented in detail. The model was developed using the FLAC3D 

package and several validation tests were completed. The results of the validation studies show 

that the model can simulate the mechanical characteristics of the clay pretty well and that the 

corresponding algorithm is stable and accurate.  
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Appendix A 

Detailed algorithm for implicit integration for the modified bounding surface model based on 

swell–shrink rules: 

(1) Initialize 

( 1) ( 1) ( 1) ( ) (n 1)0, 0, , 0p n p n n n

v ij c ce p p L         

( 1)

( )

1
( ) n

n
M

ap b


 


 

2 2
( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

( ) / ( ( ) )
3 3

n n n n n n n n n n

c ij ijc c M p p s s M p p             

        ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

02 / / / 2 / / 4 1n n n n n n n n n n n n n n

p p c c c ck k c p p p p c p p p p H cc     

 

(2) Elastic prediction 

( )

( 1) ( ) ( )

( 1) ( 1)

( 1) ( 1) (

( 1) ( )

1)

)

(

1

2

n try

v

n n n try

ij ij

n n

n n n

ij i

n

n

j

n K

s s G e

p c

s c s

p p

p





 

  





  

  





 

(3) Yield condition  

( 1) ( 1) ( 1)( , , ) 0?n n n

ij cF p s p     

① Yes: F shrinks: 
( 1)

)
2

((
2

3
)

ij ijn

c
n

p

M

s s
p

p



  

      

Then go to (7) final stress. 

② No: Conduct plastic correction.  

(i) Plastic correction uses a Newton–Simpson scheme and the formula set includes:  
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 ( 1) ( 1) ( 1) ( 1) ( 1)

1

( 1) ( 1) ( 1) ( 1)

2~7

( )
( 1) ( ) ( 1)

8

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) (

2

9

( )

2
( )

( )
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2
2

3
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2
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p n n n n n

v c

p n n n n

ij ij
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n n p n

c c v
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f L c p p

f e L s
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f p p exp

f c s s p pc p
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c
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f













 

    

   

 

      

   

  

 
  

  

 
 

    
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 

 

 

 

1)

( 1) ( ) try( 1) ( 1)
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( 1) ( ) ( 1) ( 1)

11~16

( 1)

17 ( ) ( 1) ( ) ( 1) ( )
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18 ( 1) ( 1)
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 
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where,  
( ) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

( )
, 2 /, /

n n n

p cn n n n n n

p c cn

c

p

p

c k p
k XY XZ c p p p p

p

K

K

 

         

(ii) In the formula set, 

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1), , , , , , ,p n p n n n n n n n

v ij c ij pe p L p s c k             are seen as unknowns. Therefore 

its Jacobi determinant (18×18 dimensional) is such that: 

The elements of the first row are: 
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The elements of the second to seventh rows are: 

( 1) ( 1)2~7 2~7 2~7 2~7
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The elements of the eighth row are: 
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The elements of the ninth row are: 

 

   

 

2 ( 1)9 9 9 9

( 1) ( 1) ( 1) ( 1)

2 ( 1) ( 1) ( 1) ( 1) ( 1)9 9

( 1) ( 1)

2( 1) ( 1) ( 1) ( 1)9 9

( 1) (

2
0, 0, ( ) 0,

3

2
( ) 2 , 2

3

2
(

3

,

,

,)

n

p n p n n n

v ij c

n n n n n

c ijn n

ij

n n n n

ij ijn

p

f f f f
M p

e p L

f f
M c p p c s

p s

f f
s s M p p

c k
















   

    

 

   



   
    

   

 
  

 

 
 

  1)
0

n


 

The elements of the tenth row are: 
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The elements of the eleventh to sixteenth rows are: 
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11~16 11~16 11~16 11~16

( 1) ( 1) ( 1) ( 1)

0, 2 , 0, 0,

0, 1, 0, 0

p n p n n n

v ij c

n n n n

ij p

f f f f
G

e p L

f f f f

p s c k

    

   

   
   

   

   
   

   

 

The elements of the seventeenth row are: 

 

 

17 17 17 17

2( 1) ( 1) ( 1) ( 1)( 1) ( 1) ( 1) ( 1) ( )

17 17 17 17

2( 1) ( 1) ( 1) ( 1) ( ) ( 1) ( ) ( 1) ( )

0, 0, , 0,
/

0, 0, 1,
/

p n p n n nn n n n n
v ij c p c c

n n n n n n n n n
ij p p c c

f f f fYZ

e p Lc k c p p

f f f f ZY

p s c k c k c p p

       

     

   
   

    

   
   

     

 

The elements of the eighteenth row are: 

 

18 18 18

( 1) ( 1) ( 1) 2

18 18 18

( 1) ( 1) 2 ( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

0 018 18

( 1) 2 (

* *
0, 0, ,

* *
0, , 0,

2 * / * 2 / 8 4
,

p n p n n

v ij c

n n n

ij

n n n n n

c c

n n

p

f f f XX ZZ ZX ZZ

e p XX

f f fXX YY ZX YY

L p XX s

XX p p ZX p p H c Hf f

c XX k

   

  

    

 

    
  

  

   
  

  

    


  1)
1
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where, 

 

   

 

  

( 1) ( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( 1) ( ) ( 1) ( 1) ( ) ( 1) ( ) ( ) ( ) (

2 / /

2 / 2 /

2 / 2 /

/ /

n n n n n

c c

n n n n n n n n

c c

n n n n n

c

n n n n n n n n n n

p c p c p

XX c p p p p

YY c p p p p p p p

ZZ c p p p p

YZ c k c p p c k p c c k

    

       

    

   

 

  

 

     

  

 

1) ( 1) ( ) ( )

( ) ( 1) ( ) ( 1) ( 1) ( ) ( 1) ( ) ( ) ( 1) ( 1) ( )

( 1) ( 1) ( 1) ( 1) ( 1)

/

/ / /

2 / /

n n n n

c c c

n n n n n n n n n n n n

p c p c p c c

n n n n n

c c

p p p

ZY c k c p p c k p c k p p

ZX c p p p p

 

     

    

   

 

 

(iii) Set an initial vector: 

 ( 1) ( 1) ( 1) ( 1) ( 1) ( 10 ) ( 1) ( 1), , , , , , ,p n p n n n n n n n

v ij c ij pe p L p s c kx            

        ( ) (( ) )0,0, ,0, , , ,try try n

i pc

n

j

n p s c kp  

    Set a residual error vector: 

f ={f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18} 

(iv) Calculate || f || 

   (a) If || f || ≤ TOL, exit iteration. 

   (b) If || f || ＞ TOL, continue iteration until || f || ≤ TOL. 

(4) Parameters and stress update 

 

 

 

( 1) ( 1) ( 1)

( 1) ( ) ( 1)

( 1)
( 1) ( 1)

( 1) ( 1)

1

=

3 1 2
=

2 1

n n n

ij ij ij

n n n

v

n
n n

n n

s p

v v

v
K p

G K

 









  

 


 

 

 

 




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Appendix B 

All symbols and their meanings as used in this paper are listed in the following table. 

 

Symbols table 

ij  stress tensor   Lode angle 

ij  
stress tensor on bounding 

surface 
a parameter of hyperbolic critical line 

p  volumetric stress b parameter of hyperbolic critical line 

p  
volumetric stress on 

bounding surface 
pK  plastic modulus 

ijs  deviatoric stress pK  
plastic modulus corresponding to the bounding 

surface equation 

ijs  
deviatoric stress on bounding 

surface 
pk  

p pK K  

ij  strain tensor  0H  parameter of the constitutive model 

v  volumetric strain  ( )M   slope of the critical line 

ije  deviatoric strain L plastic loading index 

p

ij  plastic strain tensor E elastic modulus tensor 

p

v  plastic volumetric strain K volumetric modulus 

p

ije  plastic deviatoric strain  G shear modulus 

  specific volume 2J  second deviatoric stress invariant 

  
slope of normal consolidation 

line 
3J  third deviatoric stress invariant 

  slope of elastic swelling line 0  
distance between the mapping origin and the 

virtual stress 

cp  hardening parameter   
distance between the mapping origin and the 

real stress 

eM  slope of tensile critical line c 0 0( )    

cM  
slope of compressive critical 

line 
F bounding surface  

 


