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a b s t r a c t

A new dual reciprocity hybrid boundary node method (DHBNM) is proposed in this paper, in which the
Shepard and Taylor interpolation method (STIM) and Chebyshev polynomials interpolation are proposed.
Firstly, the Shepard interpolation is used to construct zero level shape function, and the high-power
shape functions are constructed through the Taylor expansion, and through those two methods, no in-
version is needed in the whole process of the shape function construction. Besides, Chebyshev poly-
nomials are used as the basis functions for particular solution interpolation instead of the conical
function, radial basis functions, and the analytical solutions of the basic form of particular solutions
related to Chebyshev polynomials for elasticity are obtained, by means of this method, no internal node
is needed, and interpolation coefficients can be given as explicit functions, so no inversion is needed for
particular solution interpolation, which costs a large amount of computational expense for the tradi-
tional method. Based on those two methods, a new dual reciprocity hybrid boundary node method is
developed, compared to the traditional DHBNM, no inversion is needed for both shape function con-
struction and particular solution interpolation, which greatly improves the computational efficiency, and
no internal node is needed for particular solution interpolation. Numerical examples are given to illus-
trate that the present method is accurate and effective.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the past 30 years, meshless methods have been developed
rapidly, and a lot of different meshless methods have been pro-
posed one after another, and some of them have been widely used
in practical engineering. At the same time, for constructing dif-
ferent meshless methods, a lot of shape function constructing
methods for different meshless methods have been proposed, such
as: the moving least square(MLS), the point interpolation method,
the Kriging interpolation and so on [15]. As a widely used ap-
proximation method, MLS has been firstly proposed by Lancaster
and Salkauskas [14], and then has beenwidely applied for different
kinds of meshless methods, such as the element-free Galerkin
method (EFG) [3], the meshless local Petrov-Galerkin method
(MLPG) [2,11], the local boundary integral equation method (LBIM)
[1,43], the boundary node method (BNM) [24] and so on. In those
methods, although no element is needed for the variable inter-
polation, background elements are inevitable for ‘energy’ in-
tegration. Besides, some other methods such as mesh regeneration
algorithm [12,39] and meshless singular boundary method have
been developed recently.
In order to overcome the defect of background element for the

boundary node method, applying hybrid displacement variational
formulation and three fields interpolation scheme, Zhang and Yao
[40,41] proposed the hybrid boundary node method(HBNM) and
the regular hybrid boundary node method(RHBNM). Later, based
on HBNM and rigid body displacement, Miao and Wang [19,20]
developed a meshless method of singular hybrid boundary node
method(SHBNM), later, they applied this method for analysis of
reinforced concrete members and 3D composite materials [21–23];
and furthermore, applying dual reciprocity method (DRM) [32]
into SHBNM, [36,37,38] proposed the dual reciprocity hybrid
boundary node method(DHBNM) to solve inhomogeneous, dy-
namic, nonlinear problems, and so on.

The HBNM, RHBNM, SHBNM and DHBNM are MLS-based
meshless methods. As an approximation method, the shape
function based on MLS lacks the Delta function property compared
with the widely used shape function obtained by interpolation, so
boundary conditions cannot be imposed easily and directly, and its
frequently inversion operation is inefficient. Aimed to those de-
fects, the radial basis function interpolation method [16, 42], Kri-
ging interpolation method [30], partition of unity [18] have been
widely used to construct meshless shape function in past decades,
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and Cai and Zhu [5,6] have proposed meshless Shepard inter-
polation method, which satisfies the Delta function property and
has high order completeness. Based on the Shepard interpolation
method and Taylor expansion, [33] proposed the Shepard and
Taylor interpolation method(STIM). As a shape function con-
structing method, the advantages of STIM are: the interpolation
property, the arbitrarily high order consistency, no inversion for
the whole process of shape function constructing, and the low
computational expense.

To avoid domain integral that comes out from the in-
homogeneous term of governing equation, the dual reciprocity
method(DRM) was introduced by Nardini and Brebbia [26,27] in
1982 for elastodynamic problems and extended by Wrobel and
Brebbia [32] to time-dependent diffusion in 1986. Later, a book by
Partridge et al. [28] has been published to introduce dual re-
ciprocity method to apply for boundary element method. In the
first few years, the conical function + r1 was exclusively em-
ployed for approximation of inhomogeneous term. After that the
theory of radial basis function for DRM was introduced by Golberg
and Chen [9] to replace the conical function. Since then, a lot of
important papers about DRM have been focused on the in-
vestigation of the effect of choosing different radial basis functions
[7,25].

Actually, a good choice of radial basis functions improves the
accuracy and efficiency of DRM, and it is widely accepted as a
reliable numerical method in transferring the domain integral to
the boundary in the BEM community. But in those methods, the
inversion for DRM processes is inevitable, which costs much large
computational time, and it is inefficient for large scale calculation.
It is well-known that Chebyshev polynomials are valuable tools in
numerical analysis and approximation theory [17], and they are
widely used in the numerical solution of boundary value problems
for partial differential equations with spectral methods [4], which
has a rapid convergence rate. Golberg et al. [10] used the symbol
software mathematica to connect monomials with Chebyshev
polynomials and employed their derived particular solution for
floating number computing. Then Reutskiy and Chen [29] cir-
cumvented the tedious book keeping by using two-stage approx-
imations of trigonometric functions and Chebyshev polynomials.
Later, [13] used Chebyshev polynomials for approximating parti-
cular solutions of elliptic equations, and Tsai [31] took his effort for
the particular solutions of Chebyshev polynomials for Reissner
plates under arbitrary loadings.

In this paper, in order to overcome the inefficient property of
the traditional dual reciprocity hybrid boundary node method
(DHBNM), a new dual reciprocity hybrid boundary node method
(DHBNM) is proposed, in which the Shepard and Taylor inter-
polation method(STIM) is employed for shape function con-
structing, and Chebyshev polynomials are applied for basis func-
tions of particular solution interpolation. Firstly, the Shepard in-
terpolation is used to construct zero level shape function, and the
high-power shape functions are constructed through the Taylor
expansion, and through those methods, STIM is developed, and no
inversion is needed in the process of the shape function con-
struction, and much lower computational expense is achieved. At
the same time, Chebyshev polynomials are used as basis functions
for particular solution interpolation instead of the conical function,
radial basis functions, by means of this method no real internal
interpolation node is needed, and the interpolation coefficients
can be given as explicit functions, then no inversion is needed in
the process of particular solution interpolation, which costs a large
amount of computational expense for the traditional method.
Based on those two methods and hybrid boundary node method, a
new dual reciprocity hybrid boundary node method is developed,
compared to the traditional DHBNM, no inversion is needed for
both shape function construction and particular solution
interpolation process, which greatly improve the computational
efficiency.
2. Description of governing equation

In this paper, we take elasticity problem as the example, then
consider an elasticity problem in domain Ω bounded by Γ . The
governing equation can be given

σ = ( )b 1ij j i,

Γ= ^ ( )u u on 2i i u

σ Γ= = ^
( )t n t on 3i ij j i t

In which the superposed bar denotes the prescribed boundary
values and n is the unit vector of outward normal of boundary, bi is
the inhomogeneous term.

According to the traditional DHBNM theory, the solution vari-
able of displacement u can be divided into the complementary
solution uc and the particular solution up, which can be expressed
as [36–38]

= + ( )u u u 4i i
c

i
p

The complementary solution ui
c must satisfy the homogeneous

equation and the modified boundary conditions, but the particular
solution just satisfies the inhomogeneous equation in the whole
space.

The particular solution ui
p can be solved by Chebyshev poly-

nomials interpolation in Section 4 by means of dual reciprocity
method. The complementary solution uc must satisfy the homo-
geneous equation and the modified boundary conditions, accord-
ing to modified variational principle of hybrid boundary node
method, we can get the local integral of the present method,

∫ ∫Γ σ Ω( − ˜) ( ) − ( ) =
( )Γ Ω

t t h Q d h Q d 0
5J ij j J,

s s

∫ Γ( − ˜) ( ) =
( )Γ

u u h Q d 0
6J

s

In which Γs is the interaction of sub-domain Ωs and the
boundary of the calculation domain, which can be seen in refer-
ences [36–38], and test function ( )h QJ in the present method is
given as
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in which the variables, the factors and its related contents can be
referred in [36–38].
3. Shepard and Taylor interpolation method

MLS is a widely used shape function construction method for
meshless methods, and as an approximation method, MLS has
high accuracy, but it has three disadvantages, firstly, it is lack of
the Delta function property, so the boundary condition cannot be
easily and directly imposed; secondly, high computational expense
is needed, because individual interpolation coefficients are needed
for every interpolation nodes; finally, the inversion is inevitable for
every nodes in their shape function constructing processes. To
overcome those defects, the Shepard and Taylor interpolation
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method is developed in the present method.
According to the Shepard function interpolation theory, the

Shepard function interpolation can be written as [33,5,6]

∑ φ( ) = ( )
( )=

u x y x y u, ,
8i

M
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in which φ ( )x y,i
0 can be given as
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In order to ensure the weight function satisfy the Kronecker
delta function property, the weight function can be chosen as
[33,5,6]
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In which the ri, di, ε can be referred as [33]. It is shown that this
shape function satisfies zero order consistency, and can satisfy the
Kronecker delta function property if the weight function ( )w x y,i is
singular at ( ) = ( )x y x y, ,i i . But we can also see that this shape
function has no high order consistency, we will use the Taylor
expansion to construct the high order consistency of the present
shape function.

According to the Taylor expansion, the variable ( )u x y, can be
expanded at Gauss integral point ( )x y,0 0 via the Taylor expansion
[33]
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in which β< <0 1, = −h x x0, = −k y y0, and ( )x y,0 0 is the Gauss
point of each integral sub-domain.

Employed the Shepard function interpolation, the field function
( )u x y,0 0 at integral node ( )x y,0 0 can be rewritten as
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Substituting Eqs. (12) and (13) into Eq. (11), then Eq. (11) can be
rewritten as
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From Eq. (14), the shape function of the present method can be
written as [33]
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Then Eq. (8) can be rewritten as

∑ Φ( ) = ( )
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Then, we can see that the present method share several ad-
vantages, such as the Kronecker delta function property, high ac-
curacy, high order completeness, lower computational cost and no
inversion is needed in the whole process of the shape function
construction.

Combining STIM and HBNM, we can obtain the boundary
variables interpolation as
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4. Chebyshev polynomials interpolation

According to DRM formulation, the approximation for the in-
homogeneous term bi can be proposed as

∑ α( ) = ( )
( )=

+

b x y f r,
19

k
j

N L
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where, αk
j are a set of unknown coefficients, f j are basis functions,

N and L are total numbers of boundary nodes and internal nodes.
It can be seen that the inversion is inevitable for solving unknown
coefficients αk

j, which costs a large amount of computational time.
In the present method, Chebyshev polynomials are employed

as the basis function. For simplification, we take two dimensional
elasticity problem as the example, then Eq. (9) can be given as
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and are Chebyshev polynomials, and the

interpolation domain is a rectangle area [ ] × [ ]x x y y, ,a b a b , which
can cover the calculation domain; Gauss-Lobatto nodes are used as
the interpolation nodes; L, M are numbers of Gauss-Lobatto n
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y y

2 b a

b a
odes in the x and y directions. So we can see that no
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real nodes are needed in this interpolation, which overcomes the
defect of random arrangement of the traditional radial basis
function interpolation.

According to Chebyshev polynomials interpolation theory [31],
we can get the interpolation coefficients as
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According to dual reciprocity method theory, the basic form of
particular solution must satisfy the following equation
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If ¯ ( )u x y,mn
ij is known, by means of dual reciprocity method, we

can get the particular solution is
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From Eq. (25), interpolation coefficients al
ij can be referred by

Eq. (21), so the next task is solving the basic form of particular
solution ¯ ( )u x y,lk

ij .
In order to solve the basic form of particular solution, the right

hand term of Eq. (24) can be rewritten as [31]
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Then Eq. (24) can be simplified as
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in which is shear modulus and ν is Poisson’s ratio. Solving Eq. (29),
we can get the basic form of particular solution, which can be seen
in Table 1. And solving the above Eq. (29), the much more
Table 1
The basic form of particular solutions.

( ) =p x y x y,l k k1 2 ν( − ) ¯ ( ( ))G u p x y4 1 ,mn
l

1 ν δ δ δ( − ) −⎡⎣ ⎤⎦x2 1 mn m n1 1
2

xk1 ν δ δ δ( − ) − +
+

⎡
⎣⎢

⎤
⎦⎥x C2 1 /mn m n

k
k
k

1 1 1 2
1 2
1

yk2 ν δ δ δ[ ( − ) − ] +
+y C2 1 /mn m n

k
k
k

2 2 2 2
2 2
2

xy δ δ δ δ ν δ δ δ{( − − ) + [ ( − ) − ] }x x y4 2 1 /12m n n m mn m n
3

1 2 1 2 1 1

x y2 δ δ δ δ ν δ δ δ{( − − ) + [ ( − ) − ] }x x y5 2 1 /30m n n m mn m n
4

1 2 1 2 1 1

xy2 δ δ δ δ ν δ δ δ{( − − ) + [ ( − ) − ] }y y x5 2 1 /30m n n m mn m n
4

1 2 1 2 2 2
complicate ones of particular solution can be calculated by [8]
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Via Eq. (25), we can get the particular solution of displacement
up, then applying the equation ε̄ = ( ¯ + ¯ )u u /2mn l ml n, , , σ ε¯ = ¯ +G2 mnl

ε δ¯ν
ν−

G
mjj nl

2
1 2

, and σ¯ = ¯t nmn mnl l, one can get the basic form of particular
solution of traction. The same as Eq. (25), we can get particular
solution of traction via the basic form of particular solution of
traction, which is
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Eqs. (25) and (33) can be rewritten as matrix form, which are

= ¯ ( )u Ua 34p

= ¯ ( )t Sa 35p

in which Ū and S̄ are matrixes for basic function of particular
solution of displacement and traction respectively, and a is a
matrix of interpolation coefficients of Chebyshev polynomials in-
terpolation. It can be seen that interpolation coefficients can be
obtained explicitly by Eq. (21), then no inversion is needed for the
particular solution interpolation.
5. Discrete equations of DHBNM

In contrary to the traditional DHBNM, the present method uses
STIM to construct the shape function, which has the delta function
property, so the boundary condition can be applied easily and
directly. From Eqs. (4), (34) and (35), we can get the com-
plementary solution, they can be given in matrix form as

= − = − ¯ ( )u u u u Ua 36c p

= − = − ¯ ( )t t t t Sa 37c p

From Eqs. (5) and (6), we can get

= ( )Tx Ht 38c

= ( )Ux Hu 39c

Substituting Eqs. (36) and (37) into Eqs. (38) and (39), we can
get

= ( − ¯ ) ( )Tx H t Sa 40

= ( − ¯ ) ( )Ux H u Ua 41

Different from the traditional DHBNM, which uses MLS to
construct shape function, boundary conditions of the present
method can be easily and directly imposed. Appling boundary
condition directly and solving linear Eqs. (40) and (41), we can get
the solutions of the present problem, and no inversion is needed
for both shape function construction and particular solution
interpolation.



Fig. 2. CPU time expenses for different methods.

Fig. 3. Convergences for ( )e u of the present method compared with DHBNM and
DHRBNM.
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6. Numerical examples

In order to certify the efficiency of the present new dual re-
ciprocity hybrid boundary node method for solid structure mod-
eling, some numerical examples are considered, which are given
as follows. For comparison, we denote the traditional dual re-
ciprocity hybrid boundary node method as DHBNM, and DHRBNM
represents the method of dual reciprocity hybrid radial boundary
node method in reference [34].

6.1. A quadrifoil shaped plate

A quadrifoil shaped plate is considered in this example [34], in
which the geometry of model can be seen in Fig. 1, and the radius
of each circle is 1.0. The potential of left and right semicircle is

= ( ) + ( ) + +u x y x ysin /2 sin /2 3 3, and normal flux is given as
= ( ( ) + ) + ( ( ) + )q x x n y y ncos /2 /2 3 cos /2 /2 3x y

2 2 on the upper and
bottom boundaries, in which nx and ny are components of the
boundary outside normal direction vector.

For different node numbers, the CPU expenses for this example
are given in Fig. 2, in which CPU time for DHBNM with the tra-
ditional radial basis function interpolation and DHRBNM with
RPIM are also plotted for comparison [34]. It can be seen in this
figure that the CPU time expenses are increased slower by the
present method than that of by DHBNM and DHRBNM with the
increase of the boundary node numbers, and actually no real in-
ternal node is needed in the present method. It is obvious that the
computational expense is greatly improved by the present
method.

The convergences for e(u) of the present method for different
node numbers and by different methods are studied in this sec-
tion, which are shown in Fig. 3. It is shown that the convergence of
the present method is much smoother and quicker than that of the
DHBNM and DHRBNM [34]. And the equation of e(u) can be re-
ferred in reference [34].

Fig. 4 plots the potentials on the internal points on =x 0.0 for
different methods, which are compared with the results by re-
ference [34]. It is shown that results of the internal points obtained
by the present method, DHBNM and DHRBNM are very close with
each other, which is demonstrated that the present method is
efficient and accurate.

The normal flux errors of the left semi-circle by the different
methods are shown in Fig. 5. It can be seen that the most accurate
results can be gotten by the present method; besides, the results
obtained by the present method are much smoother than the
others.
Fig. 1. Geometry of the model.

Fig. 4. Potential along the line x¼0.0.
6.2. A gravity dam

It is shown in Fig. 6, in which a gravity dam subjected to a
hydrostatic pressure on the left side is considered in this example
[35]. It is considered as a plane strain problem, and the material
properties of the gravity dam are given as E¼100 MPa and ν = 0.3.
The density of water is 1000 kg/m3 and the density of gravity dam
is 2400 kg/m3. For comparison, the problem has also been solved
by FEM using the commercial package ANSYS, DHBNM and
DHRBNM. The displacements at two points A and B (see Fig. 6) are



Fig. 5. Flux error by the different methods.

Fig. 6. Geometry of gravity dam.

Table 2
Displacements (m) at A and B of the dam.

Method Node A (3.0,60.0) Node B (3.0,60.0)

ux uy ux uy

DHBNM [35] 0.2388 �0.1435 0.1728 �0.1172
DHBRNM [35] 0.2390 �0.1430 0.1739 �0.1174
ANSYS [35] 0.2389 �0.1433 0.1734 �0.1174
The present method 0.2391 �0.1432 0.1737 �0.1175
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Fig. 7. CPU time expense by the different methods.
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Fig. 8. Model of three dimensional thermal problem.
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listed in Table 2. It can be seen that the results obtained by the
present method are in good agreement with those obtained by
FEM, DHBNM and DHRBNM [35], by DHBNM and DHRBNM some
internal nodes are needed, but by the present method no real
internal node is needed because of the application of Chebyshev
polynomials interpolation.

The CPU time expenses with different boundary node numbers
by the different methods are shown in Fig. 7, in which the
boundary nodes are increased from 48 to 216, and the internal
node number for DHBNM and DHRBNM are the same as reference
[35], but no real internal node is needed for the present method. It
is obvious that the CPU time of the present method increases
slowly with the increase of the boundary node numbers, which is
much clearer for the large number of the boundary nodes. It can
be observed that the computational expense is greatly improved
by the present method.
6.3. Three dimensional thermal load problem

A three dimensional thermal load problem is considered in this
section, and the geometry of model can be seen in Fig. 8 [37].
According to thermal theory, the effect of temperature variation on
an elastic body is equivalent to that of a pseudo body force and a
pseudo surface traction applied on the calculation object. Based on
the above, we assume that the temperatures on the faces = ±x 0.5
and = ±y 0.5 are given as θ = ( + )x y100 cos 4 4 , and the tem-
peratures on the top and bottom surfaces of the model are fixed. A
pseudo surface traction of ν αθ ν= − ( + ) ( − )p G n2 1 / 1 2m m is im-
posed on faces = ±x 0.5 and = ±y 0.5, and a pseudo body force is
applied, which is ν αθ ν= − ( + ) ( − )b G2 1 / 1 2m m, . The non-dimen-
sional material parameters are given as α = 0.00001, =E 10000
and ν = 0.3 [37].

In this case, the exact values of σzz on the line parallel to the x-
axis and =y 0.0, = −z 1.0 are given as σ α= − ( + )E x y100 cos 4 4zz ,
Results by the present method and some other methods are given
in Table 3. At the same time, results on the line parallel to the x-
axis and =y 0.0, = −z 0.5 and =y 0.25, = −z 1.0 are shown in
Fig. 9 and 10. It can be seem that a good agreement can be
achieved between the present method, DHBNM and the analytical
solution.



Table 3
σzz on the line of =y 0.0, = −z 1.0.

Coordinate The present method DHBNM [37] Exact [37]

(�0.3,0.0,�1.0) �3.598 �3.591 �3.624
(�0.2,0.0,�1.0) �6.962 �6.958 �6.967
(�0.1,0.0,�1.0) �9.209 �9.205 �9.211
(0.0,0.0,�1.0) �9.997 �9.994 �10.000

Fig. 9. Distribution of σzz on the line of =y 0.0, = −z 0.5.

Fig. 10. Distribution of σzz on the line of =y 0.25, = −z 1.0.
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7. Conclusion

In the present paper, a new dual reciprocity hybrid boundary
node method is proposed, in which the Shepard and Taylor in-
terpolation method is employed for shape function constructing,
and Chebyshev polynomials are applied for interpolating basis
functions of particular solution interpolation. Firstly, the Shepard
interpolation is used to construct zero level shape function, and
the high-power shape functions are constructed through the
Taylor expansion, and through those methods, no inversion is
needed in the process of the shape function construction, and
much lower computational expense is achieved. Besides, Cheby-
shev polynomials are used as the basis functions of particular
solution interpolation instead of the conical function, radial basis
functions, and the analytical solution of basic form of particular
solutions related to Chebyshev polynomials for elasticity is ob-
tained, by means of Chebyshev polynomials interpolation, no in-
ternal interpolation node is needed, and the interpolation coeffi-
cients can be given as explicit functions, then no inversion is
needed in the process of particular solution interpolation, which
costs a large amount of computational expense for the traditional
method. Based on those two methods and hybrid boundary node
method, a new dual reciprocity hybrid boundary node method is
developed, compared to the traditional DHBNM, no inversion is
needed for both in the process of shape function construction and
particular solution interpolation process, and no internal nodes is
needed for particular solution interpolation, which greatly im-
proves the computational efficiency. Numerical examples are gi-
ven to illustrate that the present method is accurate and effective.
And some more challenging practical problems such as: rock
fracture, deep underground excavation engineering will be studied
by this method, for which a discontinuous method will be
developed.
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