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enhance accuracy, high order polynomials can be specified as the local approximations. This, however,
would incur rank deficiency of the stiffness matrix. In this study, a local displacement approximation
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degrees of freedom are physically meaningful. The stresses are continuous at all nodes, suggesting that
no stress polish is required. The proposed approximations have the same accuracy as the first-order poly-
nomials, but no linear dependency inherent in the latter.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical properties of the rock mass is determined by the
rock blocks and various discontinuous structural planes. Many rock
engineering practices have shown that rock mass failure usually
starts from the propagation of internal discontinuity, then large
deformation and large displacement follow, and finally engineer-
ing accidents happen. Thus it is of practical significance to study
the whole process of fractured rock mass, including crack initia-
tion, propagation and coalescence, sliding and finally forming the
deposits. To this end, many numerical methods have been devel-
oped over the decades to solve the fracture problems.

Under the assumption of continuum, the finite element method
(FEM) is the most commonly used in treating the discontinuous
problems. There are mainly two models including the equivalent
continuum model [1] and the joint or interface element model
[2]. There still exist some disadvantages in the simulation of the
crack problems with FEM: the finite element mesh must be in
accordance with the crack; and remeshing is inevitable during
the propagation of cracks.

In order to overcome the defects of FEM as mentioned above,
the extended finite element method (XFEM) [3] and generalized
finite element method (GFEM) [4] have been developed based on
the partition of unity method (PUM). XFEM is an alternative to
meshing or remeshing crack surfaces in computational fracture
mechanics problems due to the concept of discontinuous and
asymptotic partition of unity enrichment of the standard finite ele-
ment approximation spaces [5]. In XFEM, the discontinuity of crack
is simulated by introducing the generalized Heaviside functions; in
addition, enrichment functions are also included to capture the
stress singularity around crack tip more accurately. In principle,
XFEM is not dependent on the finite mesh in tracking the crack,
so it has been widely used in the crack growth problems [6–8].
But it still has difficulties in treating the large displacement prob-
lems. Recently, the strain smoothing technique in the smoothed
FEM [9] (SFEM) proposed firstly by Liu is implanted into XFEM,
which is not insensitive to mesh distortion and has a lower compu-
tational cost [10]. From then on, many successive excellent works
have been done, such as the node-based smoothed XFEM (NS-
XFEM) [11], extension of the strain smoothing technique to the
higher order elements [12], edge-based XFEM (ESm-XFEM) [13]
and combination of XFEM with the scaled boundary finite element
method (SBFEM) [14]. They are all applied to solve the fracture
problems and show good performance. In addition, an adaptive
singular edge-based smoothed FEM (sES-FEM) [15] is a good
improvement of the SFEM for the fracture problems. The newly
developed isogeometric analysis (IGA) [16], which integrates the
methods for analysis and Computer Aided Design (CAD) into a uni-
fied process, shows a great potential in solving the fracture
problems.
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mailto:hzheng@whrsm.ac.cn
http://dx.doi.org/10.1016/j.compstruc.2016.10.001
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


2 D. Xu et al. / Computers and Structures 178 (2017) 1–16
GFEM is nearly the same as the numerical manifold method
(NMM) in essence except for the treatment of fractures and dis-
crete blocks. The latter has been extended for application to rock
mechanics problems with large deformation, whereas GFEM still
has difficulties in simulating the movements of discrete rock block
system [17]. Similarly, GFEM has been developed to simulate the
three-dimensional dynamic crack propagation [18] and the branch
crack problems [19].

Element-free method (EFM) is another continuum-based
method in solving the strong discontinuity problems [20]. In
EFM, the pre-processing is very easy even for those complex
three-dimensional problems, because it only needs to discretize
the problem domain by a group of nodes and the connection
between nodes as in FEM is not necessary. The approximation
functions can be directly constructed by the discrete nodes, so
the mesh dependence is not as serious as in FEM. In treating the
crack propagation problems, there are no mesh distortion and no
need to remesh, which has greatly reduced the complexity. Simi-
larly the enrichment functions as in XFEM can also be included
to improve the accuracy of the stress field around the crack tip.
EFM has been greatly extended to the three-dimensional fracture
problems, such as a local partition of unity enriched element-free
Galerkin method in which crack path continuity can be guaranteed
[21], combination of the cohesive zone model [22], extended
meshfree method without asymptotic enrichment where Lagrange
multiplier field is added along the crack front to close the crack
[23], the meshfree method based on the cracking-particle method
[24] and new development of crack tracking procedure [25]. Fur-
thermore, a detailed review of meshless methods based on the glo-
bal weak forms in solid mechanics can be found in Ref. [26]. The
shape functions in EFM are generally very complex, so the compu-
tation consummation is very large.

Discrete element method (DEM) and discontinuous deforma-
tion analysis (DDA) method are the two discontinuum-based
methods in solving the fracture problems. DEM is firstly proposed
by Cundall to study the mechanical behaviors of discontinuum
such as rock mass [27]. DEM is an explicit algorithmwhich is based
on Newton’s second law. Rock mass is viewed as a series of rigid or
deformable blocks cut by the discontinuities. The contact force
model is represented by the tiny penetration between contact cou-
ples. DDA [28] proposed by Shi is an implicit method, which is
based on the principle of minimum potential energy. Compared
with DEM, DDA allows relatively large time steps and the stiffness
matrix can be calculated by analytical simplex integration method.
Both DEM and DDA allow large deformation, for example, Camones
has utilized DEM to simulate crack propagation and coalescence
[29]. Similarly, DDA has also been applied in predicting the failure
process of the crack [30].

NMM proposed by Shi [31] can solve continuous and discontin-
uous problems of rock mechanics in a unified way. Recently it has
been developed to solve the fourth-order problems [32]. In NMM, a
mathematical patch might be cut into some physical patches, on
which independent local approximations are defined. As a result,
the discontinuity along a crack can be modeled more naturally. A
lot of research work has been done, see Refs. [33–37].

It is no doubt that the high-order NMM with higher precision
will be more suitable for the crack problems than the 0-order
NMM. Here the high-order NMM refers to the first-order (or above)
polynomials as the local approximations on the physical patches;
while 0-order NMM polynomials means that constants are selected
as the local approximations on the physical patches. However, the
use of high-order polynomials is suffering from the linear depen-
dence, where the global stiffness matrix is rank deficient even after
the rigid body displacement modes are removed. The linear depen-
dency issue is called as a ‘nail’ problem by its inventor. More
details can be found in [38].
In this study, aiming at keeping the high precision and eliminat-
ing the linear dependency issue, a new displacement approxima-
tion scheme is proposed. Furthermore, the enrichment functions
used to capture the singular stress field around crack tips are also
included. Then the enhanced NMM is applied to elastic and frac-
ture problems. The linear dependency issue has been resolved.
2. Foundation of numerical manifold method

NMM is based on the two cover systems including the mathe-
matical cover (MC) and the physical cover (PC), so as to solve the
continuous and discontinuous problems in a unified way. It should
be pointed out that MC and PC are not independent from each
other, PC is obtained by cutting MC with the components of the
problem domain, including the boundary, the material interface
and the discontinuity. Here, MC will be formed from a quadrilateral
mathematical mesh.

An MC consists of a finite number of simply connected domains.
Each domain is called as a mathematical patch (MP), which, in this
study, is the union of several quadrilaterals sharing the same node
such as MP-1 and MP-2 in Fig. 1. While deploying the MC, it is not
necessary to force MC to be in accordance with the problem
domain and it only needs to assure that the MC covers the problem
domain completely.

PC is composed of all physical patches. The physical patches are
generated by cutting all the mathematical patches, one by one,
with the components of the problem domain. From one mathemat-
ical patch, therefore, more than one physical patch might be gener-
ated, such as PP-1, PP-2 and PP-i in Fig. 1.

Since physical patches partially overlap, a physical patch might
be partitioned by other physical patch boundaries into disjointed
domains. Each of these domains is referred to as a manifold ele-
ment. As a result, a manifold element is a common domain of sev-
eral physical patches. As shown in Fig. 1, the quadrilateral i-j-m-l
with a segment of crack is a manifold element, which is the com-
mon region of physical patches PP-i, PP-j, PP-m and PP-l. Manifold
elements are basic units in the numerical integration of the weak
form of the problem.

In Fig. 1, there are two types of physical patches. Most physical
patches are simply connected domains containing no crack tip,
which are called nonsingular patches, such as PP-1. While a phys-
ical patch containing a crack tip is called as a singular patch, such
as PP-i, in the center of Fig. 1. For different types of physical
patches, different local approximations will be constructed as fol-
lows. Furthermore, the manifold elements are classified into three
types: (1) normal manifold element covered only by nonsingular
patches; (2) blending manifold element covered by both singular
patches and nonsingular patches; (3) singular manifold element
covered only by singular patches.

In addition, more details about NMM can be found in [34].
3. Construction of local approximations

In this section, a local approximation scheme based on the
quadrilateral mathematical mesh is proposed by introducing new
displacement approximations originating from the quadrilateral
plate element [39] in FEM. The manifold element constructed in
this way is denoted as Quad-P. The items of approximation func-
tions and their properties are firstly presented. Then it is further
extended to solve the linear elastic fracture problems.

3.1. Local displacement approximations on Quad-P

For the sake of completeness, a brief establishment of theQuad-P
approximation functions is presented here. Let x = (x,y) be a point in
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a quadrilateral manifold element covered by 4 physical patches
denoted as PP-i, PP-j, PP-m and PP-l as schematically sketched in
Fig. 1. In the first step, we assume that there is no crack. So the four
physical patches are all nonsingular patches. Take PP-i as an exam-
ple, the horizontal displacement component uiðx; yÞ and vertical dis-
placement component v iðx; yÞ defined on it can be represented as

uiðx; yÞ ¼ Niðx; yÞui þ Nixðx; yÞui
y � Niyðx; yÞui

x

v iðx; yÞ ¼ Niðx; yÞv i þ Nixðx; yÞv i
y � Niyðx; yÞv i

x

(
; ð1Þ

where

Ni ¼ 1
16X1Y1ðX1Y1 � X2Y2 þ 2X1X2 þ 2Y1Y2Þ

Nix ¼ 1
16X1Y1ð2bY1Y2Þ

Niy ¼ 1
16X1Y1ð�2aX1X2Þ

8><
>: ð2Þ

X1 ¼ 1� x
a

Y1 ¼ 1� y
b

(
;

X2 ¼ 1þ x
a

Y2 ¼ 1þ y
b

(
; ð3Þ

It should be noted that Nix and Niy are not partial derivatives of
Ni with respect to x and y. Instead, they are Hermitian interpolation
functions associated with uiðx; yÞ and v iðx; yÞ respectively. In the
Eq. (3), a is half of the length between nodal points of PP-i and
PP-j or PP-m and PP-l, b is half of the length between nodal points
of PP-i and PP-l or PP-j and PP-m.

ui ¼ uðxi; yiÞ;ui
x ¼

@uðx; yÞ
@x

����
ðxi ;yiÞ

; and ui
y ¼

@uðx; yÞ
@y

����
ðxi ;yiÞ

; ð4Þ

v i ¼ vðxi; yiÞ; v i
x ¼

@vðx; yÞ
@x

����
ðxi ;yiÞ

; and v i
y ¼

@vðx; yÞ
@y

����
ðxi ;yiÞ

: ð5Þ

For elastic problems, under the assumption of small deforma-
tion, there are the following relationships between the displace-
ment functions and strain components

@uðx; yÞ
@x

¼ exðx; yÞ; @vðx; yÞ
@y

¼ eyðx; yÞ; ð6Þ

@uðx; yÞ
@y

þ @vðx; yÞ
@x

¼ cxyðx; yÞ;
@uðx; yÞ

@y
� @vðx; yÞ

@x
¼ xðx; yÞ; ð7Þ
where uðx; yÞ and vðx; yÞ are the translational displacement compo-
nents, exðx; yÞ, eyðx; yÞ and cxyðx; yÞ are strain components, xðx; yÞ is
rotation angle.

Thus, the following equations are easily derived by solving Eq.
(7)

@uðx;yÞ
@y ¼ 1

2 ðcxyðx; yÞ þxðx; yÞÞ
@vðx;yÞ

@x ¼ 1
2 ðcxyðx; yÞ �xðx; yÞÞ

(
: ð8Þ

Let

eix ¼ exðxi; yiÞ; eiy ¼ eyðxi; yiÞ; ð9Þ

cixy ¼ cxyðxi; yiÞ; xi ¼ xðxi; yiÞ; ð10Þ

where eix, eiy and cixy are strain components at the nodal point ðxi; yiÞ
of physical patch PP-i, xi is the corresponding rotation angle.

If ðx; yÞ ¼ ðxi; yiÞ, Eqs. (6) and (8) can be rewritten as

ui
x ¼ eix; v i

y ¼ eiy; ð11Þ

ui
y ¼

1
2
ðcixy þxiÞ; v i

x ¼
1
2
ðcixy �xiÞ; ð12Þ

Substituting Eqs. (11) and (12) into Eq. (1) and letting

ui ¼ ðuiðx; yÞ;v iðx; yÞÞT , we have

ui ¼ T idi; ð13Þ
where

T i ¼ Ni 0 �Niy 0 1
2Nix

1
2Nix

0 Ni 0 Nix � 1
2Niy

1
2Niy

" #

dT
i ¼ ui v i eix eiy cixy xi

� �
8>>><
>>>:

; ð14Þ

It is easy to confirm that the above shape functions in Eq. (2)
have the following characteristics.

On the nodal point ðxi; yiÞ of physical patch PP-i, shape functions
have the following properties

Ni ¼ @Nix

@y
¼ � @Niy

@x
¼ 1; ð15Þ
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Nix ¼ Niy ¼ @Ni

@x
¼ @Ni

@y
¼ 0: ð16Þ

On the other three nodal points corresponding to physical
patches PP-j, PP-m and PP-l; Ni, Nix, Niy and their first-order deriva-
tives are all 0.

The shape functions corresponding to PP-j, PP-m and PP-lwhich
will be given below have the same properties.

For the displacement functions defined on the other three phys-
ical patches, we only need to change the index i into j, m or l. The
basis functions are as follows

(1) Shape functions of PP-j
Nj ¼ 1
16X2Y1ðX2Y1 � X1Y2 þ 2X1X2 þ 2Y1Y2Þ

Njx ¼ 1
16X2Y1ð2bY1Y2Þ

Njy ¼ 1
16X2Y1ð2aX1X2Þ

8><
>: ; ð17Þ

(2) Shape functions of PP-m

Nm ¼ 1
16X2Y2ðX2Y2 � X1Y1 þ 2X1X2 þ 2Y1Y2Þ

Nmx ¼ 1
16X2Y2ð�2bY1Y2Þ

Nmy ¼ 1
16X2Y2ð2aX1X2Þ

8><
>: ; ð18Þ

(3) Shape functions of PP-l

Nl ¼ 1
16X1Y2ðX1Y2 � X2Y1 þ 2X1X2 þ 2Y1Y2Þ

Nlx ¼ 1
16X1Y2ð�2bY1Y2Þ

Nly ¼ 1
16X1Y2ð�2aX1X2Þ

8><
>: : ð19Þ

To this point, the displacement approximation vector defined
on the manifold element can be represented as

u ¼ ui þ u j þ um þ ul: ð20Þ
Figs. 2–4 typically depict the shape functions of Quad-P. As

expected, the Quad-P shape functions Ni, Nj, Nm and Nl are very
smooth as shown in Fig. 2(a) and (b). The first-order derivatives
of the Quad-P shape functions are also sketched in Figs. 3 and 4
respectively, for better observation. Ref. [40] has proposed a so-
called extended consecutive-interpolation quadrilateral element
(XCQ4), which have good performance even in treating the linear
elastic fracture problems. Obviously, the proposed shape functions
and the corresponding derivatives of Quad-P behave slightly
smoother than those of XCQ4.
(a) Top view 
Fig. 2. Nephograms of shape fu
3.2. Local displacement approximations on cracked Quad-P

If there is a crack tip in the physical patch PP-i, we still include
the additional enriched displacement functions to capture the
stress singularity around the crack tip, which can be expressed as

ui
s ¼ NiU

ids
i ; ð21Þ

where

Ui ¼ U1 0 U2 0 U3 0 U4 0
0 U1 0 U2 0 U3 0 U4

� �
; ð22Þ

U1 U2 U3 U4ð Þ ¼ ffiffiffi
r

p
cos h

2

ffiffiffi
r

p
sin h

2

ffiffiffi
r

p
cos 3h

2

ffiffiffi
r

p
sin 3h

2

� 	
:

ð23Þ
ðr; hÞ is a polar coordinate system with its origin at the crack tip.

Similarly, the singular displacement functions corresponding to
other three physical patches can be obtained by replacing the
index i by j, m or l.

Therefore, the complete displacement functions of the manifold
element is represented as

u ¼ ui þ u j þ um þ ul þ ui
s þ u j

s þ um
s þ ul

s ð24Þ
4. Discrete equations for Quad-P and integration strategies

In NMM, mathematical cover does not have to be in accordance
with the solution domain, so the displacement boundary condi-
tions cannot be applied directly as in FEM. The displacement
boundary conditions should be included into the potential energy
by the Lagrange multiplier method or the penalty function method.
In this study, the penalty function method is adopted, so the poten-
tial energy can be expressed as

PðuÞ ¼
Z
X

1
2
eTrdX�

Z
X
uTbdX�

Z
Cs

uT �pdS

þ
Z
Cd

1
2
kðu� �uÞTðu� �uÞdS; ð25Þ

where Cs is the stress boundary, Cd is the displacement boundary, �u
is the given displacement on Cd, �p is the given traction on Cs, k is
the user-specified penalty.

We will take the singular manifold element as shown in Fig. 1 as
an example to introduce the whole derivation process. For the nor-
(b) Side view
nctions Ni , Nj , Nm and Nl .



(b) Side view(a) Top view
Fig. 4. Nephograms of shape functions Niy , Njy , Nmy and Nly .

(b) Side view(a) Top view
Fig. 3. Nephograms of shape functions Nix , Njx , Nmx and Nlx .
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mal or blending manifold elements, we only need to set the corre-
sponding items to zero. Here, the singular manifold element must
be covered by 4 singular physical patches denoted as PP-i, PP-j, PP-
m and PP-l. Thus, its displacement approximations expressed by
Eq. (24) can be rewritten as

u ¼ Nh; ð26Þ
where

N ¼ N i N i
s N j N j

s Nm Nm
s N l N l

s

h i
; ð27Þ

hT ¼ hT
i hs

i

� 	T
hT
j hs

j

� �T
hT
m hs

m

� 	T
hT
l hs

l

� 	T
 �
: ð28Þ

with

N i ¼ T i; hi ¼ di; ð29Þ

N i
s ¼ NiU

i; hs
i ¼ ds

i : ð30Þ
The strain e and displacement u has the following relationship

e ¼ Ldu; ð31Þ
with

Ld ¼
@
@x 0 @

@y

0 @
@y

@
@x

" #T
: ð32Þ

Substituting Eq. (26) into Eq. (31), we have

e ¼ Bh; ð33Þ
where

B ¼ Bi Bi
s B j B j

s Bm Bm
s Bl Bl

s

h i
; ð34Þ

with

Bi ¼ LdN
i; ð35Þ

Bi
s ¼ LdN

i
s: ð36Þ
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The stress r and strain e has the relationship as follows

r ¼ De; ð37Þ
where D is the elastic matrix, for the plane stress problems,
expressed as

D ¼ E
1� m2

1 m 0
m 1 0
0 0 ð1� mÞ=2

2
64

3
75; ð38Þ

and for the plane strain problems,

D ¼ Eð1� mÞ
ð1þ mÞð1� 2mÞ

1 m=ð1� mÞ 0
m=ð1� mÞ 1 0

0 0 ð1� 2mÞ=½2ð1� mÞ�

2
64

3
75:

ð39Þ
Substituting Eq. (33) into Eq. (37), we have

r ¼ Sh; ð40Þ
with
(a) (b) 

(e) (f) 
Fig. 5. Meshes for test of linear dependence (D - constraints in

Table 1
Comparison of rank deficiency (before constraints).

Element type 1 Element 4 Eleme

T3-0 3 3
T3-1 9 9
Quad-0 3 3
Quad-1 11 15
Quad-P 3 3

Table 2
Comparison of rank deficiency (after constraints).

Element type 1 element 4 eleme

T3-0 0 0
T3-1 6 6
Quad-0 0 0
Quad-1 8 12
Quad-P 0 0
S ¼ DB: ð41Þ
By substituting Eqs. (26), (33) and (40) into Eq. (25), we have

the system of linear equilibrium equations as

Kp ¼ q; ð42Þ
where K is the global stiffness matrix, p is the degrees of freedom
including normal and enriched items on all the physical patches,
q is the generalized force vector dual to p. Both K and q are obtained
by assembling all the element stiffness matrices Ke and element
load vectors qe, defined as

Ke ¼
Z
Xe

BTDBdXþ k
Z
Ce
d

NTNdS; ð43Þ

qe ¼
Z
Xe

NTbdXþ
Z
Ce
s

NT �pdSþ k
Z
Ce
d

NT �udS: ð44Þ

respectively.
For the three element types, the different integration strategies

are adopted. For the normal element, simplex integration or Gaus-
sian integration is adopted; Gaussian integration for the blending
(c) (d) 

(g) (h) 
both x- and y-direction, O - constraints in the y-direction).

nts 9 Elements 16 Elements

3 3
9 9
3 3
19 23
3 3

nts 9 elements 16 elements

0 0
6 6
0 0
16 20
0 0
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element; for the singular element, the integration scheme in refer-
ence [34] is adopted, which can easily treat the 1/r singularity of
integrand.

5. Demonstration of nodal stress continuity

Taking the partial derivatives of the displacement approxima-
tions u with respect to x or y, we have

u;x ¼ ui
;x þ u j

;x þ um
;x þ ul

;x þ ui
s;x þ u j

s;x þ um
s;x þ ul

s;x; ð45Þ

u;y ¼ ui
;y þ u j

;y þ um
;y þ ul

;y þ ui
s;y þ u j

s;y þ um
s;y þ ul

s;y; ð46Þ
According to the properties of shape functions, it is easy to

confirm
Table 3
Deflections of point A for tip-shear beam.

Element type Mesh types

Mesh-2 Mesh-

T3-0 DOFs 26 94
M 0.30911 0.7151

T3-1 DOFs 78 282
M 0.99612 0.9993

Quad-0 DOFs 30 90
M 0.70966 0.8978

Quad-1 DOFs 90 270
M 0.99831 0.9996

Quad-P DOFs 90 270
M 1.00000 1.0000
RD 0 0

P

L

D x

y

A
na

ly
tic

A

Fig. 6. A 2D cantilever beam subjected to a shear force on the right end.

(a) Triangular mathematical mesh (b
Fig. 7. Mathematical mesh denote
u;xðxiÞ ¼ ui
;xðxiÞ þ ui

s;xðxiÞ ¼
eix

1
2 c

i
xy � 1

2x
i

( )
þUi

;xd
s
i ; ð47Þ

u;yðxiÞ ¼ ui
;yðxiÞ þ ui

s;yðxiÞ ¼
1
2 c

i
xy þ 1

2x
i

eiy

( )
þUi

;yd
s
i : ð48Þ

Substituting Eqs. (47) and (48) into Eq. (31), we have

e ¼
eix
eiy
cixy

8><
>:

9>=
>;þ

a1
a2 þ b1

b2

8><
>:

9>=
>;; ð49Þ

where

Ui
;xd

s
i ¼

a1
a2


 �
; Ui

;yd
s
i ¼

b1

b2


 �
: ð50Þ

For a normal manifold element, the second item in Eq. (49) does
not exist. So the strain components at the nodal point of PP-i is just
the third to fifth degrees of freedom on PP-i. Consequently, there is
no need to solve the strain components at the nodal point by the
geometric equations. In addition, the stress components on the
nodal point can be directly obtained by multiplying the elastic
matrix, which simplifies the calculation greatly.

From Eq. (49), it is easy to see that if several manifold elements
share the same physical patch, the stresses at the common nodal
point are always equal. In other words, the stresses at the nodal
point of physical patch are always continuous. This suggests that
no stress polish in the post-processing is necessary. Similarly, an
4 Mesh-8 Mesh-16 Mesh-32

258 758 2834
0 0.87768 0.93882 0.97370

774 2274 8502
8 0.99998 1.00000 1.00000

266 770 2814
0 0.97418 0.99322 0.99826

798 2310 8442
9 0.99998 1.00000 1.00000

798 2310 8442
0 1.00000 1.00000 1.00000

0 0 0

) quadrilateral mathematical mesh 
d as Mesh-2 for shear beam.
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enriched double-interpolation finite element method (XDFEM)
[41] also has continuous nodal gradients, smooth nodal stress
without post-processing.
(a) T3-0 

(b) T3-1 
6. Numerical tests

Numerical tests with the proposed Quad-P model are carried
out, comparing with those by triangular elements and quadrilat-
eral elements based NMM. In the following, T3-0 and T3-1 present
the regular triangular mathematical mesh, while the former uses
constants as the displacement approximations on the physical
patches, and the latter uses the first-order polynomials. Similarly,
Quad-0 and Quad-1 represent the quadrilateral mathematical
mesh, with the same local approximations as T3-0 and T3-1
respectively.

In this section, the linear dependency tests are first conducted;
then four elastic problems are analyzed to verify the solution accu-
racy of Quad-P; at last the linear elastic fracture problems are
solved.

Here, the accuracy of the first four examples below is measured
in the form of ratio denoted as M, expressed as

M ¼ Rnum

Rref ð51Þ

where Rnum is the numerical result and Rref is the reference solution.
For the last three examples, the stress intensity factors for the

mixed-mode cracks are represented as K I and K II, with the accuracy
measured in the form of ratio

MI ¼ Knum
I

Kref
I

ð52Þ

MII ¼ Knum
II

Kref
II

ð53Þ

where Knum
I and Knum

II are the stress intensity factors by numerical

simulation, and Kref
I and Kref

II are the reference solutions. Here, the
stress intensity factors are calculated using the domain forms of
interaction integrals [42].
(c) Quad-0 

(d) Quad-1 

(e) Quad-P 
Fig. 8. Contour plots of rx for cantilever beam subjected to a tip-shear force for five
element types.
6.1. Linear dependence test

The material parameters in this test include: Young’s modulus
E ¼ 1:0 and Poisson’s ratio m ¼ 0:25. The plane stress condition is
assumed. As shown in Fig. 5(a–h), two types of meshes including
triangular meshes and quadrilateral meshes with four different
mesh densities are adopted to test the linear dependence problem.
Comparisons of rank deficiency without and with constraints for
the five different cases are shown in Tables 1 and 2. Obviously,
for every case in Table 1, it has uniformly three more rank deficien-
cies than that in Table 2. For T3-0, Quad-0 and Quad-P, the rank
deficiencies are all 0 after constraints are enforced, suggesting no
linear dependence exists. With the increase in the number of ele-
ments, the rank deficiency of T3-1 is always 3 and the rank defi-
ciency of Quad-1 increases.

6.2. Cantilever beam subjected to a tip-shear force

A two-dimensional cantilever beam subjected to a shear force
[43] on its right end is studied, as shown in Fig. 6. The parameters
in the calculation include: length L ¼ 48:0, height D ¼ 12:0, shear
force P ¼ 1000:0, Young’s modulus E ¼ 3:0� 107 and Poisson’s
ratio m ¼ 0:3. The plane stress condition is assumed. In the calcula-
tion, the left boundary of the beam is constrained by the analytical
displacements, and the analytical tractions are specified on the
right boundary. The exact solution for this case is given by
Timoshenko and Goodier [44]

u ¼ � Py
6EI

ð6L� 3xÞxþ ð2þ mÞ y2 � D2

4

 !" #
ð54Þ

v ¼ P
6EI

3my2ðL� xÞ þ ð4þ 5mÞD
2x
4

þ ð3L� xÞx2
" #

ð55Þ

rxðx; yÞ ¼ � PðL� xÞy
I

ð56Þ

ryðx; yÞ ¼ 0 ð57Þ
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Fig. 9. Comparison of accuracy for cantilever beam problem subjected to a tip-shear force. (a) Relative error in displacement norm; (b) relative error in energy norm.
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Fig. 11. A cantilever beam subjected to an end-moment.
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rxyðx; yÞ ¼ � P
2I

D2

4
� y2

" #
ð58Þ

where I is the inertia moment and can be expressed as I ¼ D3

12.
The deflection of point A in the form of ratio K is given in Table 3.
Five mathematical meshes of different density are designed for this
example, among which Mesh-2 means that in the y-direction two
element layers are used to cover half of the section; in other words,
the beam is covered by four element layers. However, none of the
five meshes is in accordance with the beam. Shown in Fig. 7
(a) and (b) are the configurations of Mesh-2 with triangular and
quadrilateral meshes.

Deflections of point A under tip-shear force are shown in
Table 3. It should be noted that degrees of freedom is abbreviated
to DOFs and RD is the abbreviation of rank deficiency. For T3-0 and
Quad-0, they both have low precisions when the mesh density is
low or says the DOFs are less, although they converge to the ana-
lytical solution with the increase in mesh density. For T3-1 and
Quad-1, they both have high precisions even if the mesh density



Table 4
Deflections of point A for end-moment beam.

Element type Mesh types

Mesh-2 Mesh-4 Mesh-8 Mesh-16 Mesh-32

T3-0 DOFs 26 94 258 758 2834
M 0.32095 0.72571 0.88839 0.94944 0.97975

T3-1 DOFs 78 282 774 2274 8502
M 1.00000 1.00000 1.00000 1.00000 1.00000

Quad-0 DOFs 30 90 266 770 2814
M 0.707254 0.89505 0.97454 0.99341 0.99832

Quad-1 DOFs 90 270 798 2310 8442
M 1.00000 1.00000 1.00000 1.00000 1.00000

Quad-P DOFs 90 270 798 2310 8442
M 1.00000 1.00000 1.00000 1.00000 1.00000
RD 0 0 0 0 0

(a) T3-0 

(b) T3-1 

(c) Quad-0 

(d) Quad-1 

(e) Quad-P 
Fig. 12. Contour plots of rx for cantilever beam subjected to end-moment for five
element types.
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is low. Both Quad-1 and the proposed Quad-P have high precisions,
but Quad-P is free from linear dependence because the RD is 0.

Contour plots of horizontal stress rx for the beam for five ele-
ment types are shown in Fig. 8(a)–(e). It is found that the stress
filed of Quad-P is smoother than others and closer to the exact
solution. The contour plots of T3-0 are very coarse because all ele-
ments in T3-0 are constant strain elements.
6.2.1. Convergence study
To assess accuracy and convergence, the relative L2 errors in the

displacement norm ed and the energy norm ee are defined respec-
tively as follows:
ed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Xðuex � unumÞ2dXR

X ðuexÞ2dX

vuut ð59Þ
ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

R
X ðeex � enumÞTDðeex � enumÞdX

1
2

R
X ðeexÞTDðeexÞdX

vuut ð60Þ
where the superscript ‘‘ex” represents the exact or analytical solu-
tion and the superscript ‘‘num” denotes a numerical solution.

Convergence study of numerical solutions for the five element
types are conducted. The convergence curves are plotted in
Fig. 9. The accuracies of the five element types in both displace-
ment norm and energy norm are compared with each other. From
the comparison, it can be seen that Quad-P has the same conver-
gence rate as the other four element types.
6.2.2. Computational efficiency
As in Fig. 9, the proposed Quad-P is indeed able to improve

accuracy, at the price of increase in the bandwidth of global stiff-
ness matrix. This will lead to the increase in computational time.
Thereby it is necessary to find the right balance between the accu-
racy and computational speed.

The relative errors in both displacement norm and energy norm
versus the corresponding computational time for the five element
types are shown in Fig. 10. Quad-P yields more accurate results
than the other element types under the same computational time.
So the present Quad-P is viewed as computationally more efficient.
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Fig. 13. Cook skew beam subjected to a uniformly distributed shear force.

Table 5
Major principal stress at the point B for Cook’s skew beam.

Element type Mesh types

Mesh-2 Mesh-

T3-0 DOFs 32 74
M 0.5036 0.654

T3-1 DOFs 96 222
M 0.8699 0.956

Quad-0 DOFs 42 92
M 0.4548 0.615

Quad-1 DOFs 126 276
M 0.9551 0.971

Quad-P DOFs 126 276
M 0.9708 0.999
RD 0 0

Table 6
Minor principal stress at the point C for Cook’s skew beam.

Element type Mesh types

Mesh-2 Mesh-4

T3-0 0.4461 0.8074
T3-1 1.0107 1.0072
Quad-0 1.2415 1.1263
Quad-1 1.0088 1.0159
Quad-P 1.0767 0.9978

Table 7
Vertical displacements at point A for Cook’s skew beam.

Element type Mesh types

Mesh-2 Mesh-4

T3-0 0.4836 0.7517
T3-1 0.9366 0.9844
Quad-0 0.7127 0.8946
Quad-1 0.9934 0.9972
Quad-P 0.9930 0.9970
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6.3. Cantilever beam subjected to an end-moment

A cantilever beam subjected to a moment at the right end as in
Fig. 11 is considered. The bending moment M ¼ 24;000 and other
details are the same as that in Section 6.2. The exact solution to this
problem is given by Timoshenko and Goodier [44]

u ¼ M
EI

xy ð61Þ
4 Mesh-8 Mesh-16 Mesh-32

242 766 2688
9 0.9050 0.9683 0.9934

726 2298 8064
6 1.0103 1.0046 1.0032

270 818 2790
7 0.8126 0.9128 0.9643

810 2454 8370
9 0.9951 1.0009 1.0024

810 2454 8370
1 1.0025 1.0027 1.0028

0 0 0

Mesh-8 Mesh-16 Mesh-32

0.8913 1.0063 0.9859
1.0033 1.0063 1.0058
1.1417 1.0673 1.0481
1.0049 1.0061 1.0060
1.0056 1.0059 1.0060

Mesh-8 Mesh-16 Mesh-32

0.9162 0.9608 0.9838
0.9977 0.9991 0.9997
0.9709 0.9918 0.9979
0.9996 0.9998 1.0001
0.9993 0.9997 1.0001

Fig. 14. Dimensions of slope model.



Table 8
Horizontal displacements of measured point B for slope.

Element type Mesh types

Mesh-2 Mesh-4 Mesh-8 Mesh-16 Mesh-32

T3-0 DOFs 26 86 242 828 3070
M 0.5097 0.8432 0.9423 0.9587 0.9931

T3-1 DOFs 78 258 726 2484 9210
M 1.1051 0.9768 0.9972 0.9984 0.9986

Quad-0 DOFs 30 84 252 850 3056
M 1.5599 1.1296 1.0693 1.0156 1.0052

Quad-1 DOFs 90 252 756 2550 9168
M 0.9957 0.9933 1.0001 0.9982 0.9986

Quad-P DOFs 90 252 756 2550 9168
M 1.0717 1.0037 1.0012 0.9990 0.9986
RD 0 0 0 0 0

Table 9
Vertical displacements of measured point A for slope.

Element type Mesh types

Mesh-2 Mesh-4 Mesh-8 Mesh-16 Mesh-32

T3-0 1.2776 1.1390 1.0855 1.0260 1.0029
T3-1 1.1222 1.0206 1.0040 1.0007 1.0001
Quad-0 1.1620 1.0466 1.0303 1.0067 1.0025
Quad-1 1.0591 1.0080 1.0020 1.0004 1.0001
Quad-P 1.0499 1.0079 1.0020 1.0002 0.9999

a

H

H

W

Fig. 15. A finite plate with an edge crack subjected to a uniform tensile force.
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v ¼ � mM
2EI

y2 � M
2EI

x2 ð62Þ

rx ¼ M
I
y ð63Þ

ry ¼ rxy ¼ 0 ð64Þ
Deflection of point A is given in Table 4. Variations of deflection

for T3-0 and Quad-0 are the same as the above end-shear case. T3-1,
Quad-1 and Quad-P have nearly the same precision with each other
and they are both very close to the analytical solutions even if a very
coarse mesh, such as Mesh-2, is used. Similarly, contour of the
stress field for Quad-P is the smoothest, as shown in Fig. 12(a)–(e).

6.4. Cook’s skew beam

In this section, Cook’s skew beam is considered, which is pro-
posed by Cook et al. [45] to assess the ability of distortion with dif-
ferent types of elements. The material parameters and dimensions
are shown in Fig. 13. A shear force of F ¼ 1 is uniformly distributed
on the right end of the beam and the left end is completely fixed.
Reference solutions of major principal stress at point B, minor prin-
cipal stress at point C and vertical displacement at point A are
0.2362, �0.2023 and 23.96 respectively, which are computed by
the GT9M element with 64 � 64 mesh [46,47]. The results are
listed in Tables 5–7 respectively. Quad-P has reached very high
precision when mesh density is not very high, such as Mesh-4
and is linearly independent.

6.5. Earth slope

In this test, a homogeneous earth slope acted by self-weight is
considered, as shown in Fig. 14. The bottom boundary is completely
fixed and the normal constraints are imposed on both the left and
right boundaries. The material is assumed as elastic with Young’s
modulus E ¼ 8� 107, Poisson ratio m ¼ 0:43 and unit weight
c ¼ 1:962� 104. Due to the lack of theoretical solution, the slope
model adopts a very fine mesh with 12,255 elements and 12,528



Table 10
Stress intensity factor MI for the edge crack under tensile load.

Element type Mesh types

Mesh-9 Mesh-15 Mesh-21 Mesh-27 Mesh-33

T3-0 DOFs 270 564 1090 1654 2380
MI 0.8344 0.8984 0.9318 0.9426 0.9540

T3-1 DOFs 746 1628 3206 4898 7076
MI 0.9908 0.9937 0.9953 0.9966 0.9969

Quad-0 DOFs 292 566 1092 1660 2382
MI 0.8750 0.9245 0.9471 0.9598 0.9672

Quad-1 DOFs 812 1634 3212 4916 7082
MI 0.9963 0.9978 0.9984 0.9985 0.9986

Quad-P DOFs 812 1634 3212 4916 7082
MI 0.9934 0.9931 0.9958 0.9971 0.9978
RD 0 0 0 0 0

H

H

a

W

Fig. 16. A finite plate with an edge crack subjected to a uniform shear force.

Table 11
Stress intensity factors MI for the edge crack under shear force.

Element type Mesh types

Mesh-9 Mesh-1

T3-0 DOFs 328 692
MI 0.8491 0.9024

T3-1 DOFs 920 2012
MI 0.9953 0.9974

Quad-0 DOFs 332 724
MI 0.8862 0.9365

Quad-1 DOFs 932 2108
MI 0.9992 1.0000

Quad-P DOFs 932 2108
MI 0.9941 0.9976
RD 0 0
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nodes. A reference solution is calculated by four-node iso-
parametric quadrilateral element using this fined mesh. The refer-
ence solution for the horizontal displacement of point B and the ver-
tical displacement of point A are�0.4209 and�1.6068 respectively
[48]. The numerical results are shown in Tables 8 and 9 respectively.
Obviously, nearly the same precision as above is observed.
6.6. An edge crack under tensile load

In this example, a finite rectangular plate with an edge crack
subjected to a uniform tensile force r ¼ 1:0 on the top of the plate
is discussed. The geometry of the test specimen is schematically
depicted in Fig. 15. The geometric parameters are set as follows:
height 2H ¼ 6, width W ¼ 2:0, and crack length a ¼ 1:0. The refer-
ence solution is given by Ewalds and Wanhill [49]

K I ¼ Cr
ffiffiffiffiffiffi
ap

p
; ð65Þ

where C is the correction factor related with the size of the plate,
and it can be represented as follows when a=W 6 0:6

C ¼ 1:12� 0:231
a
W

� �
þ 10:55

a
W

� �2
� 21:72

a
W

� �3
þ 30:39

a
W

� �4
: ð66Þ

As shown in Table 10, for T3-0 and Quad-0, they still have the
errors of 4.6% and 3.28% respectively even if the finest mesh,
Mesh-33, is used, while other meshes have a very high precision
even when the mesh density takes the minimum value of 9. Simi-
5 Mesh-21 Mesh-27 Mesh-33

1266 2064 2952
0.9367 0.9555 0.9678

3734 6128 8792
0.9981 0.9992 0.9994

1308 2068 2956
0.9579 0.9697 0.9794

3860 6140 8804
1.0002 1.0004 1.0008

3860 6140 8804
0.9994 0.9952 0.9974
0 0 0



Table 13
Stress intensity factors MI at crack tip A for the crack from a circular hole.

Element type Mesh types

Mesh-9 Mesh-1

T3-0 DOFs 392 848
MII 0.9728 0.9896

T3-1 DOFs 1064 2432
MII 1.0264 0.9915

Quad-0 DOFs 432 848
MII 0.9659 0.9683

Quad-1 DOFs 1168 2416
MII 1.0114 1.0072

Quad-P DOFs 1168 2416
MII 0.9989 1.0062
RD 0 0

2a

b b

h

h

r

A

B

Fig. 17. Two cracks emanating from a circular hole.

Table 12
Stress intensity factors MII for the edge crack under shear force.

Element type Mesh types

Mesh-9 Mesh-15 Mesh-21 Mesh-27 Mesh-33

T3-0 0.9951 0.9685 0.9718 0.9632 0.9467
T3-1 1.0007 0.9997 1.0018 0.9928 0.9922
Quad-0 0.9938 1.0008 1.0045 1.0057 1.0068
Quad-1 0.9992 0.9989 0.9993 0.9982 0.9969
Quad-P 1.0039 0.9955 1.0069 0.9923 0.9935

Table 14
Stress intensity factors MII at crack tip A for the crack from a circular hole.

Element type Mesh types

Mesh-9 Mesh-15

T3-0 0.9841 0.9768
T3-1 1.0086 0.9938
Quad-0 0.9854 0.9943
Quad-1 1.0025 1.0010
Quad-P 0.9900 1.0046
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larly, both Quad-1 and Quad-P have high precisions. While RD of
the latter is 0, so it is still linearly independent even for the linear
elastic fracture problems.
6.7. An edge crack under shear force

In this case, a mixed-mode crack is analyzed. Similarly, there is
a finite rectangular plate with an edge crack but subjected to a uni-
form shear force s ¼ 1:0 on the top of the plate, as shown in Fig. 16.
The bottom boundary is completely fixed. The geometric parame-
ters are as follows: height 2H ¼ 16, width W ¼ 7:0, and crack
length a ¼ 1:0. The analytical solutions [3] of the mixed-mode SIFs
for this case are KI ¼ 34:0 and KII ¼ 4:55.

The same conclusions can be made for the mixed-mode crack
according to the numerical results in Tables 11 and 12.
6.8. Two cracks emanating from a circular hole

A finite plate with two cracks emanating from a hole subjected
to a uniform tensile force r ¼ 1:0 is investigated in this section, as
shown in Fig. 17. The following dimensions are taken: width
2b ¼ 2, height 2h ¼ 4 and hole radius r ¼ 0:25. The reference solu-
tions can be found in Ref. [50].

Comparisons of K I and K II at tip A when a ¼ 0:7 and h ¼ 45� are
shown in Tables 13 and 14. Similarly, both Quad-1 and Quad-P
have high precisions and the latter is linearly independent. For dif-
ferent combinations of a and h, the results by Quad-P are shown in
Tables 15 and 16. The maximum error is within 1%. High precision
is verified again.
5 Mesh-21 Mesh-27 Mesh-33

1596 2364 3428
0.9713 0.9790 0.9815

4676 6980 10,172
0.9989 0.9977 0.9996

1660 2468 3404
0.9827 0.9946 0.9927

4852 7276 10,084
1.0009 1.0007 1.0004

4852 7276 10,084
0.9990 0.9984 0.9981
0 0 0

Mesh-21 Mesh-27 Mesh-33

0.9970 0.9956 0.9978
0.9993 1.0043 0.9995
0.9901 0.9904 0.9908
1.0001 1.0015 1.0011
1.0032 1.0029 1.0026



Table 15
Stress intensity factors at crack tip A for different parameter combinations.

h 0.5 0.6 0.7 0.8

0� DOFs 9790 9814 9838 9886
MI 1.0001 1.0008 1.0002 1.0031
MII – – – –
RD 0 0 0 0

15� DOFs 9814 9862 9886 6958
MI 1.0024 0.9993 0.9979 1.0075
MII 0.9993 0.9929 0.9942 1.0052
RD 0 0 0 0

30� DOFs 12,904 9886 9934 9958
MI 0.9985 0.9974 0.9985 0.9969
MII 0.9940 0.9984 0.9910 0.9966
RD 0 0 0 0

45� DOFs 9838 9886 9934 9982
MI 1.0007 0.9991 0.9981 0.9990
MII 0.9956 0.9978 1.0026 1.0009
RD 0 0 0 0

Table 16
Stress intensity factors at crack tip B for different parameter combinations.

h 0.5 0.6 0.7 0.8

0� MI 0.9974 1.0019 1.0060 0.9977
MII – – – —

15� MI 1.0020 0.9989 0.9972 1.0031
MII 1.0067 0.9913 1.0004 0.9999

30� MI 0.9970 0.9960 0.9966 0.9952
MII 1.0028 0.9990 0.9971 1.0005

45� MI 1.0056 0.9970 0.9960 0.9989
MII 1.0034 0.9939 0.9902 0.9997
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7. Conclusions

With the same number of degrees of freedom as Quad-1, the
proposed Quad-P has very high precision for both elastic problems
and linear elastic fracture problems, but has no linear dependency
issue. In addition, Quad-P is more advantageous than Quad-1 in the
following aspects: the degrees of freedom of Quad-P are physically
meaningful; stresses at nodes are continuous; the smoothing oper-
ation is no longer required in the post-processing process.
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