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a b s t r a c t

This paper presents a quadrilateral element formulation of lower bound theorem. The for-
mulation uses a four-noded quadrilateral element. Theweak form of the equilibrium equa-
tions is performed to linearize the equilibrium equations. By Green’s theorem, the integral
over quadrilateral element are transformed into boundary integral over the element
boundary. The major advantage of using quadrilateral element, rather than triangular ele-
ment, is that more accurate lower bound can be obtained with the same element size.

Two numerical examples are given to illustrate the capability of the new method
for computing lower bound. The accuracy of the quadrilateral element formulation is
compared with that of three-noded triangular element formulation in detail.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As an effective method to estimate the ultimate bearing capacity for structures, lower- and upper-bound limit analysis
have been extensively used in the past in a wide variety of problems, such as tunnels [1,2], slopes [3,4], foundations [5,6],
anchors [7,8], braced excavations [9,10]. Accurate assessment of the stability of those structures is an important task.

Tomake the ‘gap’ between the upper- and lower-bound limit loads smaller, some adaptivemeshing strategies have been
developed, for example, based on the deformations and on the slack in the yield condition, Christiansen et al. presented a
strategy for automaticmesh refinement in limit analysis [11]. Lyamin et al. adapted the approach of Borges and developed an
adaptive remeshing procedure for lower bound limit analysis [12]. Based on elemental and edge contributions to the bound
gap, Munoz et al. construct a new error estimate employed in an adaptive remeshing strategy which is able to reproduce
fan-type mesh patterns around points with discontinuous surface loading [13].

In displacement finite-element analysis, triangular elements and quadrilateral elements are fundamentally different.We
are aware of that general quadrilateral elements are very frequently encountered in two-dimensional analyses and linear
triangular element is less accurate compared to linear quadrilateral element, but in finite-element limit analysis, three-node
triangular element is employed exclusively for two-dimensional problems, since this leads to an optimization problemwith
linear constraints.

In this paper, we extend the quadrilateral element to lower- and upper-bound limit analysis based on the weak form of
the equilibrium equations. It is also shown that quadrilateral element is not only more accurate than triangular element,
but it converges faster than triangular element as the mesh is refined.
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Fig. 1. Three-node linear stress triangle for lower bound limit analysis.

2. Brief review of limit analysis

2.1. Lower bound theorem

Consider a body of volume V with surface area S, if the state stress inside V , σij, satisfies equilibrium equations with body
forces bi and the surface tractions Ti acting along the surface ST , and does not violate the yield criterion f (σij) at any point,
then collapse does not occur. That is to say, the applied load is definitely less than or at most equal to the true collapse load.
This problem can be reformulated to an optimization problem of the form

Max : λ

S.t.


σij,j + λbi = 0 (in V )

f

σij


≤ 0 (in V )

σijnj = λTi (on ST ) .

(1)

In this paper, the Mohr–Coulomb yield criterion is chosen to model the plastic flow in soils.

2.2. Discrete formulation of the lower bound theorem

Based on a linear three-node triangle, with the unknowns being the stresses at each node, shown in Fig. 1, the variation
of the stress throughout each element is linear and each node is associated with 3 unknown stresses σX , σY and τXY , Each
stress varies through an element according to

σX =

3
i=1

Niσ
i
x, σY =

3
i=1

Niσ
i
y, τXY =

3
i=1

Niτ
i
xy (2)

where σ i
x, σ

i
y and τ i

xy are the nodal stresses and Ni, are linear shape functions. These shape functions are

Ni =
1
2A

(ai + bix + ciy) (3)

where

ai = xjyk − xkyj, bi = yj − yk, ci = −xj + xk (4)

i, j, k are counterclockwise sequence numbers for the three nodes, respectively, and A is the element area.
The lower bound problem can then be stated as a linear programming problem of the form

Max : λ

S.t.

[A1] {σ } = λ {b1}
[A2] {σ } ≤ {b2}

(5)

in which {σ } is a global vector of unknown nodal stresses, [A1] is a matrix of all equality constraints and [A2] is a matrix of
yield constraints. The equality constraints include continuum and discontinuity equilibrium and stress boundary conditions,
the inequalities represent the linearized yield conditions.

3. Quadrilateral elements for lower bound limit analysis

3.1. Stress approximation

A four-node two-dimensional quadrilateral is shown in Fig. 2.
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(a) Element in ξ–η coordinates. (b) Element in x–y coordinates.

Fig. 2. Isoparametric map for 4-node two-dimensional quadrilateral.

A finite element approximation for stresses is given by

σ(x) ≈ σ̃ =

4
i=1

Ni(x)σi (6)

where σ = [σx, σy, τxy] and Ni are element shape functions. Alternatively, in isoparametric form the expressions are
given by

σ(ξ) ≈ σ̃ =

4
i=1

Ni(ξ)σ
i (7a)

x(ξ) =

4
i=1

Ni(ξ)xi (7b)

where xi represent nodal coordinates and ξ are the parametric coordinates for each element.
The four shape functions are bilinear functions, given as

N1 =
1
4
(1 − ξ)(1 − η)

N2 =
1
4
(1 + ξ)(1 − η)

N3 =
1
4
(1 + ξ)(1 + η)

N4 =
1
4
(1 − ξ)(1 + η).

(8)

Since |ξ | ≤ 1 and |η| ≤ 1,
Ni ≥ 0, i = 1–4 (9)

is true.
Notice that

4
i=1

Ni = 1, (10)

which means that shape functions are partitions of unity.

3.2. Element equilibrium

The stress throughout each element must obey the following equations
∂σx

∂x
+

∂τxy

∂y
= 0

∂τxy

∂x
+

∂σy

∂y
= γ

(11)

where γ is the soil unit weight and tensile stresses are taken as positive.
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Substituting (6) into (11) gives

Be
eqσ

e
= be (12)

where

σe
=


σ1 σ2 σ3 σ4T (13)

be
=


0 γ

T (14)

Be
eq =


B1 B2 B3 B4 . (15)

Bi
=


∂Ni

∂x
0

∂Ni

∂y

0
∂Ni

∂y
∂Ni

∂x

 , i = 1–4. (16)


∂Ni

∂x
∂Ni

∂y

 = [J]−1


∂Ni

∂ξ

∂Ni

∂η

 (17)

[J] =


∂N1

∂ξ

∂N2

∂ξ

∂N3

∂ξ

∂N4

∂ξ

∂N1

∂η

∂N2

∂η

∂N3

∂η

∂N4

∂η


x1 y1
x2 y2
x3 y3
x4 y4

 . (18)

Unlike the element equilibrium for triangular element, Eq. (12) cannot be true everywhere in the element, since shape
function is not a linear function of coordinates.

Fortunately, by integral over the element, Eq. (12) can be satisfied in an average sense (weak form),

B̄e
eqσ

e
= be (19)

where

B̄e
eq =


B̄1 B̄2 B̄3 B̄4


(20)

and

B̄i =
1
Ae


e


∂Ni

∂x
0

∂Ni

∂y

0
∂Ni

∂y
∂Ni

∂x

 dA, i = 1–4. (21)

Obviously, B̄e
eq is constant for element e.

By Green’s theorem, Eq. (21) can be rewritten as

B̄i =
1
Ae




Nidy 0 −


Nidx

0 −


Nidx


Nidy

 . (22)

By the linearity of Ni on boundary, we have


Nidy =
1
2
(yiMod4+1 − y(i−2)Mod4+1)

Nidx =
1
2
(xiMod4+1 − x(i−2)Mod4+1)

(23)

in whichMod is the modulo operator.
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3.3. Yield condition

For plane strain conditions, the Mohr–Coulomb yield criterion can be expressed as

f (σx, σy, τxy) =


σx − σy

2
+


2τxy

2
+


σx + σy


sinϕ − 2c cosϕ ≤ 0. (24)

The Hessian matrix H of f is a square 3×3 matrix, arranged as follows:

H =
4τ 2

xy
σx − σy

2
+


2τxy

23/2

1 −1 −a
−1 1 a
−a a a2

 (25)

where a =
σx−σy

τxy
.

The eigenvalues ofH are 4


σx − σy
2

+ 2τ 2
xy


/


σx − σy
2

+

2τxy

23/2
and0 (repeated). Since all eigenvalues ofH are

greater than or equal to 0, H is a positive-semidefinite matrix, and the Mohr–Coulomb yield function f is a convex function.
From the view of Mohr–Coulomb yield surface in σx − σy − τxy space, as shown in Fig. 3, we know that the Mohr–Coulomb
yield surface is a cone and

c(σ) =

(σ)| f (σ) ≤ 0, σ ∈ R3 (26)

is a convex set.
For any point x in a quadrilateral element, the stress σ at point x in element e can be represented by

σ(x) =

4
i=1

Ni(x)σi, x ∈ e. (27)

Since
4

i=1 Ni = 1 and Ni ≥ 0, σ(x) is a convex combination of σ1, σ2, σ3 and σ4. Provided

f (σi) ≤ 0, i = 1–4 (28)

this means that σi(i = 1–4) are all in the convex set c(σ), therefore σ(x) is also in the set c(σ) for any point x in the element
e, that is to say,

f (σ(x)) ≤ 0, ∀x ∈ e. (29)

In order that the yield condition is satisfied throughout the element, it is sufficient to enforce this yield constraint at each
nodal point of each quadrilateral element. Using the linear approximation of the yield surface [14], the stresses at all nodes
in the finite element model must satisfy the following inequality

[A2] {σ } ≤ {b2} . (30)

4. Finite element formulation of the lower bound method

With theMohr–Coulomb yield function approximated by an interior polygon, alongwith discontinuities equilibrium and
boundary conditions [14], the discrete form of the lower bound theory can be expressed as:

max : [c]T {σ }

s.t. : [A1]{σ } = b1
[A2]{σ } ≤ b2

(31)

where c is the vector of objective function coefficients, σ is the vector of unknown node stresses A1 is the matrix of
equality constraints derived from elements equilibrium, boundary conditions, and discontinuities equilibrium, b1 is the
corresponding right-hand vector of equality equations. A2 is the matrix of inequality constraints derived from the yield
criterion, and b2 is the corresponding right-hand vector of inequality constraints.

5. Numerical examples

In this section, we select two classical examples from the tests published by Australian Association for Computer Aided
Design (ACADS) to verify themethod proposed in this paper. One slope is homogeneous and the other is a non-homogeneous
slope.

To compare the accuracy of quadrilateral element versus triangular element, the slopes are meshed with a uniform
element size varying from 1.0 to 2.5 m, and the number of sides in the linearized Mohr–Coulomb yield function is assumed
24 in all the following examples.
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Fig. 3. View of Mohr–Coulomb yield surface in σx − σy − τxy space.

Fig. 4. ACADS referenced slope example EX1(a). (Unit: m).

Fig. 5. Typical uniform mesh for homogeneous slope with element size is 1.0 m.

5.1. Homogeneous slope

The first example, named as Ex1(a), is a simple homogeneous slope, whose the geometry is shown in Fig. 4. The slope
length and height are 20 m and 10 m, respectively. The material properties of the homogeneous slope are γ = 20 kN/m3,
c = 3 kPa, and ϕ = 19.6°. The accepted referee solution for the factor of safety is 1.00, thus the slope is at the point of
failure.

The slope is meshed uniformly with global element size specified as 1.0 m, 1.5 m, 2.0 m, 2.5 m, respectively, and the
typical mesh with element size is 1.0 m is shown in Fig. 5. By the way, the next example is also meshed uniformly with the
same element sizes.

The lower bound of the safety factors with different element sizes are summarized in Table 1.
Fig. 6 depicts the safety factor–element size curves by using triangular element and quadrilateral element. As expected,

the safety factor by using triangular element is lower than the one corresponding to quadrilateral element, and they are all
less than the reference solution 1.0. Moreover, the results in Fig. 6 clearly indicate that safety factor by using quadrilateral
element is more close to the reference solution than that by using triangular element (see Table 2).
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Fig. 6. A comparison of strength reduction factor between triangular element and quadrilateral element with different element sizes.

Fig. 7. ACADS referenced slope example EX1(c). (Unit: m).

Table 1
Strength reduction factor using triangular element and quadrilateral element with different
element sizes.

Element size (m) Triangular element Quadrilateral element

2.5 0.9141 0.9751
2.0 0.9069 0.9765
1.5 0.9369 0.9756
1.0 0.9606 0.9768

Table 2
The material property of the nonhomogeneous slope.

No. of soil c (kPa) ϕ (°) γ (kN/m3)

I 0 38.0 19.5
II 5.3 23.0 19.5
II 7.2 20.0 19.5

5.2. Nonhomogeneous slope

Example 2, named as Ex1(c), is a study from ACADS of a non-homogeneous slope with three significantly different
material parameters, whose property parameters are shown in Table 2. The geometry of the problem is shown in Fig. 7.

The recommended solution from ACADS (1989) is 1.359.
Table 3 and Fig. 8 show the comparison of safety factor obtained using triangular element and quadrilateral element for

the nonhomogeneous slope. As can be seen from the table the safety factors using quadrilateral element are in relatively good
agreement with the referee value on a coarse mesh. This can be explained by noting that the basis functions of triangular
element are in the space of basis function of quadrilateral element, which leads to a higher accuracy of solution.

6. Conclusions

A lower bound analysis by using quadrilateral element is presented in this paper. The proposed approach is different
from the method by using triangular element in that the equilibrium equation is no longer a linear equation. To linearize
the equilibrium equation, the weak form of the equilibrium equations is performed, along with other equations, the finite
element formulation of the lower bound method can be expressed as a linear programming. Two slope examples with
homogeneous and nonhomogeneous materials have been solved in order to demonstrate the capabilities of the numerical
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Table 3
Strength reduction factor using triangular element and quadrilateral element with different
element sizes for the nonhomogeneous slope.

Element size (m) Triangular element Quadrilateral element

2.5 1.252 1.349
2.0 1.289 1.352
1.5 1.279 1.353
1.0 1.333 1.347

Fig. 8. A comparison of strength reduction factor between triangular element and quadrilateral element with different element sizes for the
nonhomogeneous slope.

procedure. The obtained results are shown to be in good agreement with reference solution. The following remarks can be
addressed as:

As expected, the safety factor by using quadrilateral element is more accurate than the one corresponding to triangular
element when the element sizes are the same.

With the same element size, both the number of unknown variables and equations in the proposed method are less than
that of triangular element method, that is to say, the scale of the proposedmethod is smaller than that of triangular element
method.

Finally, it should be noted that the proposedmethod is not a rigorous method, since the weak form is used, but the result
will converge to a stable state when the element size goes to zero.
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