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Introduction

Numerical methods are powerful for rockmechanics and engineering
analysis. With the maturing of computing techniques, there has been
a tremendous explosion in the development and use of numerical
methods (Reddy 2004). Typical methods include finite-difference
methods (Perrone and Kao 1975), FEMs (Zienkiewicz and Taylor
2000; Goodman and John 1977; Desai et al. 1984; Katona 1983),
meshfree methods (Rabczuk and Belytschko 2004; Belytschko et al.
1996), boundary element methods (Beskos 1987, 1997), extended
FEMs (XFEMs) (Dolbow and Belytschko 1999; Areias and
Belytschko 2005), generalized FEMs (GFEM) (Strouboulis et al.
2000; Duarte et al. 2001), discrete-element methods (DEMs)
(Cundall 1971), and FEM/DEM (Munjiza 2004). These methods can
be classified into three groups (Jing 2003): continuum methods, dis-
continuummethods, and hybridmethods. FEM/DEM is a straightfor-
ward methodology that makes use of the respective advantages of
both continuum and discontinuummethods (Munjiza 2004; Sun et al.
2013). The application of FEM/DEM in practical rock mechanics
problems could be found in many journal papers and books (Ma et al.
2014; Barla et al. 2012;Munjiza 2004; Yan et al. 2016).

In 1991, Shi (1991) developed a continuum-discontinuum
method named the numerical manifoldmethod (NMM) for geotech-
nical engineering. One of the main attractive advantages of NMM
over other numerical methods is its ability to simulate continuous
and discontinuous problems in a unified manner. Having the same
basis as the partition of unity method (Babuška and Melenk 1997),
NMM is considered as the generalization of the discontinuous de-
formation analysis (DDA) (Shi 1988) that addresses the system of

distinct rock blocks. Over the past decades, NMM has been exten-
sively studied and used in various fields including p-adaptive (Chen
et al. 1998), Kirchhoff’s thin plate bending problems (Zheng et al.
2013), seepage problems (Zheng et al. 2015c), simulation of rein-
forcement of rock mass (Wei et al. 2016), and initiation and propa-
gation of cracks (Zheng et al. 2014a, b, 2015b; Wong andWu 2014;
Zhang et al. 2010; Ning et al. 2011) in rock materials. Although var-
ious problems were solved by the NMM, the previous works are
limited in two-dimensional (2D) problems. Because of the difficul-
ties in developing a complete contact theory that governs the inter-
action of three-dimensional (3D) blocks, application of the 3D
NMM (Jiang et al. 2009, 2010; He and Ma 2010; He et al. 2013,
2014) to solve engineering problems, however, is very limited. A
comprehensive review on the development of the NMM can be
found inMa et al. (2010).

Because the object analyzed by the NMM is usually a system of
blocks with a great deal of persistent or no persistent joints, the
treatment of contact between blocks or joint plains is one of the
main tasks of the NMM. In NMMs, inheriting from DDAs, the pen-
alty method is adopted to deal with contact, and Coulomb’s friction
law is used to determine the contact states (He et al. 2014). The
physical meaning of a penalty parameter is the stiffness of the con-
tact spring. Two kinds of contact springs, normal contact springs
and tangential contact springs, are fixed between the contact surfa-
ces. In each time step, the so called “open-close” iterations in NMM
(or DDA) can be considered as a process of repeatedly adding or
removing contact springs.

In the penalty method, because the contact force is calculated
according to the penetration distance, the penetration between
blocks, albeit not allowed for a real situation, is inevitable if contact
exists. Also, the penalty parameters in the penalty method, which
are hard to determine, are vital in analyses. The value of penalty pa-
rameters has a strong influence on accuracy of the solutions. A pen-
alty parameter with too small a value cannot enforce accurately the
constraint condition and may result in an unacceptable penetration
of one body into the other, and the overall response is distorted (Bao
et al. 2014). On the other hand, a penalty parameter with too big a
value may enforce accurately the constraint condition. However,
for a computer with a finite number of digits, a penalty parameter
with too big a value will make the coefficient matrix become ill-
conditioned (Bao et al. 2014).
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To avoid the introduction of the artificial springs, the Lagrange
multiplier method, which considers the Lagrange multipliers as ba-
sic unknowns, can impose the constraint conditions exactly. It has
been implemented in DDA and successfully simulated the dynamic
process of the Tangshan earthquake (Cai et al. 2000). However, it
should be pointed out that if too many inactive constraints are
enforced during the open-close iteration, the process will be inter-
rupted because the coefficient matrix is rank deficient (Jiang and
Zheng 2011). Moreover, the coefficient matrix is unsymmetrical if
any contact pair is in the slip state.

Aiming to combine the advantages of Lagrangian multiplier and
penalty methods, the augmented Lagrangian method (ALM) was
proposed to deal with contact problems (Lin et al. 1996; Simo and
Laursen 1992; Stupkiewicz et al. 2010). Detailed implementation of
the ALM for contact problems of DDA could be found in Bao et al.
(2014). Despite the attractive advantages including high accurate
solutions, low sensibility to penalty parameters, and no need to
increase the number of unknowns, ALM requires an iterative pro-
cess to obtain the convergent contact forces, which may be time-
consuming if the contact state changes during the iteration.

In an effort to deal with the contact problems of DDA, Zheng
and Jiang (2009) removed the penalty parameter and the open-close
iteration by reformulating the DDA as a nonlinear mixed comple-
mentarity problem in which the contact conditions are expressed by
the complementarity equations and no artificial penalty parameters
are needed. Later, they expressed the contact conditions by linear
complementarity equations (Zheng and Li 2015a), which signifi-
cantly improves the solving efficiency, as compared with their early
work in Zheng and Jiang (2009), yet it cannot be comparable with
the conventional DDA. Recently, Zheng et al. (2016) proposed the
dual form of DDA, called DDA-d, which completely discards the
artificial springs and has an efficiency comparable with DDA. In
principle, the method in Zheng et al. (2016) can be extended to
NMM, but the solution efficiency would be sacrificed considerably
because a great deal of computation time has to be spent on the
inverse of numerous matrices of large dimensions.

In this study, to circumvent the introduction of penalty parame-
ters, a new technique called direct approach for contact problems is
proposed. Beyond the Lagrange multiplier method, the direct
approach can directly solve out the tangential contact force as well
as the normal contact force by directly solving a nonsymmetric sys-
tem. To save memory storage space and improve the numerical
properties, however, a symmetrization treatment can be easily
implemented.

Brief Introduction to NMM

To solve in a unified manner continuous and discontinuous prob-
lems in geotechnique, NMM uses two cover systems: the mathe-
matical cover (MC) and the physical cover (PC). In this section, the
basic concept of NMM is briefly introduced; more details can be
found in Shi (1991), Zheng and Xu (2014b), and Cai et al. (2013).

TheMC is composed of a series of mathematical patches (MPs),
Xm

i , i = 1, …, and nm, where, nm = number of all MPs. Different
MPs can partially overlap each other. The only requirement for a
MC is to be able to cover the entire problem regionX. The introduc-
tion of a MC is to generate the partition of unity subordinate to the
PC, which will be explained shortly.

Associated with each MP fXm
i g is a weight function wiðrÞ, i = 1,

…, and nm, where r = position vector, satisfying the following
properties

wiðrÞ ¼ 0; if r 62 Xm
i (1)

0 � wiðrÞ � 1; if r 2 Xm
i (2)

Xnm
i¼1

wiðrÞ ¼ 1; if r 2 X (3)

fwiðrÞg is collectively called the partition of unity subordinate to
theMC fXm

i g.
Illustrated in Fig. 1(a) is an example in which the problem do-

main X containing a bifurcation crack C with two crack tips is cov-
ered by three MPs, i.e., Xm

1 is the bigger circle, Xm
2 is the smaller

circle, and Xm
3 is the rectangle. By cutting all the MPs fXm

i g31 with
the components ofX—namely the boundary, the material interface,
and the crack—the physical patches (PPs) are obtained, as shown in
Figs. 1(b–d). One MP Xm

i might be split into several smaller
domains, Xp

j�i, j = 1,…, and npi , where X
p
j�i is referred to as the jth

PP generated from the MP Xm
i ; and npi is the number of all the PPs

that are all from the same MP Xm
i . All the PPs fXp

j�ig, are collec-
tively termed as the PC and accordingly matchX exactly.

Each PP Xp
j�i contains the local geometric features of the prob-

lem domain and can be assigned other given information. For exam-
ple, Xp

2�2 contains the crack tip of crack C [see Fig. 1(c)].
According to the geometric and mechanical features of Xp

j�i, one
can construct a good enough local approximation uj�iðrÞ over Xp

j�i
to reflect the known information of the solution. uj�iðrÞ could be
expressed as

(a)

(b) (c)

(d) (e)

P1-2

P1-1

P1-2

P1-11 1–Ω p

2 1–Ω p

P2-1

P2-2

P2-1

P2-2

1 2–Ω p

2 2–Ω p

P3-1

P3-2

P3-1

P3-2

1 3–Ω p

2 3–Ω p

M1

M3

M2M1

M3

M2
1Ωm

3Ωm

2Ωm

E1

E2

Fig. 1. Generation of manifold elements: (a) problem domain and
MC; (b) two PPs from Xm

1 ; (c) two PPs from Xm
2 ; (d) two PPs from Xm

3 ;
(e) manifold elements from the PC
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uj�iðrÞ ¼ Tj�iðrÞdj�i; r 2 Xp
j�i (4)

where vector dj�i is composed of the degrees of freedom for PP
Xp

j�i; and Tj�iðrÞ is composed of some given functions that could
reflect the local behaviors of the solution over Xp

j�i (see details in
Zheng and Xu 2014b).

By restricting wiðrÞ defined on Xm
i onto Xp

j�i, j = 1, …, and npi ,
the weight function wj�iðrÞ subordinate to Xp

j�i is obtained. wj�iðrÞ,
j = 1,…, npi , might have the same expression as wiðrÞ, but they have
totally different definition domains, Xp

j�i, j = 1, …, and npi , which
are all from the same MP Xm

i . In addition, the local approximation
uj�iðrÞ is defined over Xp

j�i, totally independent of uk�iðrÞ over
Xp

k�i, which is adjacent to Xp
j�i and also from Xm

i . This enables
NMM to simulate the solution jump across a discontinuity.

For simplicity of exposition, all Xp
j�i, wj�iðrÞ, and uj�iðrÞ are

coded with a single subscript and represented by Xp
k , wkðrÞ and

ukðrÞ, k = 1, …, and np, respectively. Here, np is the number of all
the PPs, equal to

np ¼
Xnm
i¼1

npi

In the conventional NMM, a manifold element, denoted by
Ei, is a common domain of several neighboring PPs, which can
serve as a basic unit in integrating the weak form of the problem.
Fig. 1(e) displays all of the 12 numerical manifold elements gen-
erated from the MC shown in Fig. 1(a). Then, the global approx-
imation u(r) in a manifold element Ei could be obtained by add-
ing all the local approximations multiplied by the weight
functions

uðrÞ ¼
Xnp
k¼1

wkðrÞukðrÞ; r 2 Ei (5)

Equations of MomentumConservation
of Block System

Contact Pair Analysis

Like DDA, NMM essentially reduces contact between blocks to
angle-edge contact. The contact force analysis for a typical angle-
edge contact is shown in Fig. 2. A vertex V of a master block Xm is
in contact with an edge of a slave block Xs. The projection point of
vertex V on slave block Xs is point V

0
. Unknown contact force, a

point load pVg , is acting at vertex V, and�pVg is acting on an edge of
the slave blockXs. Point load pVg has the following decomposition

pVg ¼ pVn nþ pVs s ¼ LVpV (6)

pVg ¼ ðpVx ; pVy ÞT (7)

LV ¼ ½n s� (8)

where n = exterior unit normal vector of Xs; s is perpendicular to
n but along the counterclockwise boundary of Xs; and pVn and pVs
are components of pVg along n and s, respectively. Also, pVx and
pVy are components of pVg along the x- and y- axis direction of the
global coordinate system, respectively.

The normal relative distance gnV between V and V 0, at the end of
a time step, can be obtained by the following formula:

gnV ¼ nTðxV � xV 0 Þ ¼ nTðx0V � x0V 0 þ uV � uV 0 Þ (9)

and the tangential relative displacement gsV , at the end of a time
step, can be obtained by

gsV ¼ sTðuV � uV 0 Þ (10)

where x0V and xV are the coordinates of V, at the start and end of this
time step, respectively; x0V 0 and xV 0 are the coordinates of V 0, at the
start and end of this time step, respectively; and uV and uV 0 are the
incremental displacement of V and V 0 during this time step,
respectively.

At the end of this time step, there are two possible contact states.
For the first case, no contact occurs between the two blocks

gnV > 0

For the second case, the two blocks are in contact

gnV � 0

Force Analysis and Control Equations for a Single Block

Considering a typical block Xi, as shown in Fig. 3(a), the external
forces acting on it include the following:
1. Unknown contact force pVg is a point load that can be divided

into two types:

n

V'

Ωm

Ωs

V

s

V
sp

V
npV

gp

V
gp–

Fig. 2. Contact force analysis for a typical angle-edge contact

pVgm

f

p

Sp

Ω i

pVgs

V
gp–

V
gp

V

V
c
VS

c
VS

(a) (b)

Fig. 3. Force analysis for a (a) single block and (b) contact pair
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a. Master contact force pVgm (equivalent to pVg in Fig. 2) acted
at a vertex of block Xi.

b. Slave contact force pVgs (equivalent to �pVg in Fig. 2) acted
on an edge of block Xi.

2. Known surface traction �p acted on the boundary segment Sp of
block Xi.

3. Known point load �f acted at some point of boundary of Xi.
4. Unknown volume load �b � �r €u, where �b = volume force; �r =

density; and €u = acceleration.
The control equations are classified as

1. Equation of motion

∂rþ �b ¼ �r €u ; inXi (11)

with rT ¼ ðs x;s y; t xyÞ
2. Stress boundary

∂nr ¼ �p ; on Sp (12)

with

∂n ¼ nx 0 ny
0 ny nx

� �

3. Force equilibrium conditions of contact surface [shown in Fig.
3(b)]

∂nr ¼ P
V d VðxÞpVg ; V 2 ScV ;

∂nr ¼ �P
V d V 0 ðxÞpVg ; V 0 2 ScV 0 (13)

where d VðxÞ and d V 0 ðxÞ are the Dirac delta function along bounda-
ries ScV and ScV 0 with the singularity at points V and V 0, respectively,
because contacts are represented in NMMby point forces.

Equations of Momentum Conservation of Block System
in Discrete Form

First, for the block system at the end of a time step, the weak form
of momentum conservation is expressed asÐ

Xðd eÞTrdX ¼ Ð
Xðd uÞTð�b � �r €uÞdXþ Ð

Sp
ðd uÞT�pdX

þ
X

ðd uÞT �f þ
X
V

ðd uV � d uV 0 ÞpVg (14)

where u is the incremental displacement vector; d u is the virtual
displacement vector; and d e is the virtual strain vector.

The incremental displacement vector u can be calculated by

u ¼ Nd (15)

where N and d = shape function matrix and generalized vector of
freedom degrees, respectively.

Strain vector e can be calculated by

e ¼ Ldu ¼ ðLdNÞd ¼ Bd (16)

where

Ld ¼
∂
∂x

0
∂
∂y

0
∂
∂y

∂
∂x

2
664

3
775
T

(17)

Stress vector r can be expressed by strain vector e through the
constitutive relation

r ¼ Deþ r0 (18)

where rT0 ¼ ðs0
x s 0

y t 0xy Þ is the initial stress vector; and D is the
elastic matrix with

D ¼ E
1� �2

1 � 0
� 1 0
0 0 ð1� �Þ=2

2
4

3
5 (19)

for the plane stress problem

D ¼ E 1� �ð Þ
1þ �ð Þ 1� 2�ð Þ

1
�

1� �ð Þ 0

�

1� �ð Þ 1 0

0 0 1� 2�ð Þ= 2 1� �ð Þ½ �

2
6664

3
7775

(20)

for the plane strain problem.
Substituting Eqs. (15)–(18) into Eq. (14), the global system of

equations can be written as

M€d þ Ed � CTp ¼ f 0 þ q0 (21)

whereM denotes the mass matrix

M ¼
ð
X
�rNTNdX (22)

E denotes the stiffness matrix

E ¼
ð
X
BTDBdX (23)

C denotes contact matrix

CT ¼ ½CT
V1
; � � � ;CT

Vc
� (24)

in which subscript c is the number of contact pairs

CVi ¼ LT
Vi
ðNVi � NV 0

i
Þ (25)

The contact force vector is defined in the local coordinate system
of contact edge, expressed as

pT ¼ ½pV1
n ; pV1

s ; � � � ; pVc
n ; sVc

p � (26)

pVi
¼ ½pVi

n ; p
Vi
s �T (27)

The global force vector can be written as

f 0 ¼
ð
X
NT�bdXþ

ð
Sp

NT�pdSþ
X

NT�f (28a)

and

q0 ¼ �
ð
X
BTr0dX (28b)

© ASCE E4016012-4 Int. J. Geomech.
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There are twoways to solve Eq. (21), namely, the direct integration
method and the modal superposition method (Yang et al. 2014). In the
present work, the Newmark direct integrationmethod is adopted.

According to the Newmark integration scheme of constant
acceleration, at time t ¼ t0 þ Dt, with t0 a selected initial time and
Dt the time elapsed, d can be calculated by

d ¼ _d0Dt þ Dt2

2
€d (29)

with _d0 = initial time change rate of d. It is noticed that more sophisti-
catedNewmark integration schemescanbe found in Jianget al. (2009).

Solving Eq. (29) for €d leads to

€d ¼ 2
Dt2

d � 2
Dt

_d0 (30)

Substituting Eq. (30) into Eq. (21) yields

K0d� CTp ¼ ~f 0 (31)

in which the generalized stiffness matrix K0 and generalized load
vector ~f 0 are defined as

K0 ¼ 2
Dt2

M þ E (32)

and

~f 0 ¼ f 0 þ q0 þ
2
Dt

M _d0 (33)

respectively.
Once d is obtained, €d can be calculated immediately; then the

time change rate of d is computed by

_d ¼ _d0 þ €dDt

which will be the initial time change rate of nextDt.
As in DDA, the time integration used by both the conventional

NMM and the present direct approach contain inherent algorithm
damping, which is dependent on the size of the time step (Doolin
and Sitar 2004). Therefore, the time step size has an important influ-
ence on the accuracy and convergence rate of the numerical solution
(Jiang et al. 2013). Jiang et al. (2013) have studied the influence of
time step on the accuracy of DDA in great detail and concluded that
the algorithmic-damping ratio is proportional to the size of the time
step. Because the mechanism of algorithm damping for both NMM
and DDA are the same, the impact of the size of the time step on the
solution precision will not be discussed in this paper.

Formulations of the Direct Approach

Contact Equations

To solve Eq. (31), 2c more equations named contact equations
should be complemented, where c = number of contact pairs in the
system. Because the contact detection technology in NMM is inher-
ited from the DDA, the procedures for finding the contact pairs for
NMM will not be discussed in this section. The contact state for a
contact pair, at the end of a time step, should be among one of the
three cases, namely, sticky state, slip state, and open state. Each
contact state has two additional equations.

Sticky State

At the end of the time step, if the contact pair is in sticky state, the
normal relative distance gnV between V and V 0, should satisfy

gnV ¼ nTðxV � xV 0 Þ ¼ nTðNV � NV 0 Þd þ g0n ¼ 0 (34)

with

g0n ¼ nTðx0V � x0V 0 Þ (35)

being the initial normal gap of the contact pair.
The tangential relative displacement, gsV , defined by

gsV ¼ sTðNV � NV 0 Þd (36)

is set at zero if the contact pair is not in the open state at the end of
the last time step. However, if the contact pair is in the open state at
the end of the last step, gsV is indeterminate after it becomes the
sticky state. In this case, gsV is set as

gsV ¼ ~gsV (37)

where ~gsV was determined when the open contact pair overlapped
during a past iteration within this time step, reading

~gsV ¼ g0n
g0n � �gVn

�gsV (38)

where �gnV = the overlapping distance (negative); and �gsV = tangential
displacement, as shown in Fig. 4.

The displacement constraint equations of Eqs. (34)–(36) could
be rewritten in matrix form

CVd ¼ gF (39)

in which

CV ¼ LT
VðNV � NV 0 Þ (40)

gF ¼ �g0n
~gsV

� �
(41)

Slip State

At the end of this time step, if the contact pair is in slip state, the nor-
mal relative distance gnV between V and V 0 should satisfy

gnV ¼ nTðNV � NV 0 Þd þ g0n ¼ 0 (42)

V

V

0
ng

V
ng– s

Vg~

s
Vg

Fig. 4. Calculation diagram of ~gsV
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the same as the sticky state, namely Eq. (34).
The tangential contact force should satisfy the Colombian fric-

tion law, that is

pVs ¼ �msignðgsVÞpVn (43)

Although Eq. (43) can serve as a constraint in the direct
approach, and pVs can be directly solved out, to keep symmetry of
the system matrix, nevertheless, Eq. (43) is replaced with the fol-
lowing form

pVs ¼ msignð�pVs Þ�pVn (44)

where �pVs and �pVn = normal and tangential contact forces of last itera-
tion (sticky state or slip state), respectively; and m denotes friction
factor.

The replacement of Eq. (43) by Eq. (44) is justified because
the equilibrium in the normal direction has actually been reached
at the end of the last iteration, that is, the normal contact force pVn
has been calculated exact enough at the end of the last iteration.
Katona (1983) used such a replacement to make a symmetric ma-
trix, but in the framework of static analysis, as the author admit-
ted, the symmetrization sacrifices convergence. Later, therefore,
Zheng et al. (2004) gave up this replacement; instead, the authors
proposed to directly use Eq. (43) and a new decision matrix. In
the framework of dynamic analysis, the open-close iteration is
always convergent due to the introduction of inertia matrices. As
a result, here the symmetrization is still adopted, with little impact
to convergence.

As an aside, if the Lagrange multiple method is used, the tangen-
tial contact force pVs cannot be solved out directly, and Eq. (44) is
compulsory.

Based on the previous description, only one additional displace-
ment constraint equation is needed for the slip state

Cn
Vd ¼ �g0n (45)

whereCn
V is the first line ofCV defined in Eq. (40), namely

Cn
V ¼ nTðNV � NV 0 Þ (46)

In this case, cross out the column elements of CT related to pVs
and superpose initial stress vector q0 with �pVs ðCs

VÞT, where Cs
V is

the second row ofCV , that is

Cs
V ¼ sTðNV � NV 0 Þ (47)

Open State

At the end of this time step, if the contact pair is in the open state,
the values of normal and tangential contact forces both vanish, lead-
ing to

pVn ¼ 0 (48)

pVs ¼ 0 (49)

For this case, no additional equations are needed, only the two
column elements of CT related to pVn and pVs are needed to be
crossed out.

Solving the System Equations

When contact states of all the contact pairs are given, the system
matrix is finally rewritten as

K0
~C
T

~C 0

" #
Dd
�~p

� �
¼ f 0 þ f 1 þ ~q0

~g

� �
(50)

To improve the property of the system matrix, Eq. (50) is scaled
such that all variables have approximate magnitude order

K0 a~C
T

a~C 0

" #
Dd
~p

0

� �
¼ f0 þ f 1 þ ~q0

a~g

� �
(51)

where ~p ¼ �ap
0
, q0 ¼ q0 � pVs ðCs

VÞT; and a is a parameter propor-
tional to the diagonal elements of K0, and is set as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0min � K0max

p
in this study, whereK0min is the minimum value of the diagonal ele-
ments of K0, and K0max is the maximum value of the diagonal ele-
ments of K0. ~C and g are composed of CV and gF of all the contact
pairs, respectively.

Obviously, Eq. (51) is a KKT equation. The detailed solving pro-
cedure for Eq. (51) could be found in Zheng and Li (2007).

It should be pointed out that after the contact detection is per-
formed by the original NMM code, the redundant contact pairs
might be picked out. These redundant contact pairs would not bring
troubles to the penalty method–based procedures, because a redun-
dant contact pair actually corresponds to fixing a redundant couple
of normal and tangential contact springs. In the direct approach,
however, a redundant contact pair might cause the coefficient ma-
trix in Eq. (51) to be rank deficient. Consequently, after the contact
pairs are picked out, those redundant contact pairs must be removed
if the direct approach is used.

Contact State Update

During the open-close iteration process, the update of the contact
state for each contact pair is determined by the state variables at the
beginning and end of this iteration (Table 1). According to the con-
tact state at the beginning of this iteration, three cases are divided,
namely,
1. The contact state at the beginning of this iteration is in the

sticky state (see Table 1). Check the state variables at the end
of this iteration, if

Table 1. Update Mode of Contact State for Contact Pair during Open-
Close Iteration

i − 1 C& R

i

Sticky Slip Open

Sticky Check pVn � 0 and jpVs j � ½pVs � pVn � 0 and jpVs j> ½pVs � pVn < 0
RS− i gnV ¼ 0 gnV ¼ 0 with pVn ¼ 0

gsV invariant pVs ¼ signðpVs Þ½pVs � pVs ¼ 0
Slip Check pVn � 0 and pVs g

s
V > 0 pVn � 0 and pVs g

s
V � 0 pVn < 0

RS− i gnV ¼ 0 gnV ¼ 0 with pVn ¼ 0
gsV ¼ 0 pVs ¼ signðpVs Þ½pVs � pVs ¼ 0

Open Check gnV < 0 and j~gsV j< jg0nj gnV < 0 and j~gsV j � jg0nj gnV � 0
RS− i gnV ¼ 0 gnV ¼ 0 with pVn ¼ 0

gsV ¼ ~gsV pVs ¼ fj pVs ¼ 0

Note: i − 1 and i = (i− 1)th and the ith iteration, respectively; RS− i = the
right-side items in the contact constraint conditions at the ith iteration;
C & R = “Check the contact state followed by setting the right side items
in the contact constraint conditions at the ith iteration.”

© ASCE E4016012-6 Int. J. Geomech.
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a) Normal contact force pVn � 0 and the absolute value of tan-
gential contact force pVs is less than or equal to the maximum
frictional force, namely, jpVs j � ½pVs � (½pVs � ¼ fj þ m jpVn j,
where fj denotes the contribution of cohesion), then the con-
tact state at the end of this iteration is set to be sticky, the nor-
mal relative distance gnV ¼ 0, and the tangential relative
displacement gsV keeps invariant;

b) Normal contact force pVn � 0 and the absolute value of
tangential contact force pVs is greater than the maximum
frictional force, namely, jpVs j > ½pVs �, then the contact state
at the end of this iteration is set to be slip, the normal rela-
tive distance gnV ¼ 0, and tangential contact force
pVs ¼ signðpVs Þ½pVs �; and

c) Normal contact force pVn < 0, then the contact state at the
end of this iteration is set to be open, normal contact force
pVn ¼ 0, and tangential contact force pVs ¼ 0.

2. The contact state at the beginning of this iteration is in the slip
state (Table 1), check the state variables at the end of this itera-
tion, if
a) Normal contact force pVn � 0, and tangential contact

force pVs and tangential relative displacement gsV are in
the same direction, namely, pVs g

s
V > 0, then the contact

state at the end of this iteration is set to be sticky, the
normal relative distance gnV ¼ 0, and tangential relative
displacement gsV ¼ 0;

b) Normal contact force pVn � 0, and tangential contact
force pVs and tangential relative displacement gsV are in
opposite direction, namely, pVs g

s
V � 0, then the contact

state at the end of this iteration is set to be in the slip
state, the normal relative distance gnV ¼ 0, tangential con-
tact force pVs ¼ signðpVs Þ½pVs �; and

c) Normal contact force pVn < 0, then the contact state at the
end of this iteration is set to be open, normal contact force
pVn ¼ 0, and tangential contact force pVs ¼ 0.

3. The contact state at the beginning of this iteration is in the open
state (Table 1), check the state variables at the end of this itera-
tion, if
a) Normal relative distance gnV < 0 , calculate ~gsV according

Eq. (38); if j~gsV j < jg0nj (see Fig. 4 for the definition of ~gsV
and g0n), then the contact state at the end of this iteration is
set to be sticky, the normal relative distance gnV ¼ 0, and
tangential relative displacement gsV ¼ ~gsV ;

b) Normal relative distance gnV < 0 , and j~gsV j � jg0nj, then the
contact state at the end of this iteration is set to be in the
slip state, the normal relative distance gnV ¼ 0, tangential
contact force pVs ¼ fj; and

c) Normal relative distance gnV � 0, then the contact state at
the end of this iteration is set to be open, normal contact
force pVn ¼ 0, and tangential contact force pVs ¼ 0.

Numerical Examples

Typical numerical tests with the present direct approach for contact
problems in NMM were performed, and results were compared
with those of the penalty method. The physical units used in the
present work are based on the international standard unit system
without specifying.

Momentum Conservation Test

On a rigid and frictionless slide, shown in Fig. 5, the left-side block
(Block 1) with initial horizontal speed V0, moves toward and finally
collides with the right-side stationary block (Block 2). The

parameters for Block 1 are listed as V0 = 1, width w = 2, height h =
2, Young’s modulus E = 200� 109, Poisson’s ratio y = 0.25, and
density r = 1,000. For Block 2, two cases are considered, namely,
(1) the material and dimension parameters are the same as those of
Block 1, as shown in Fig. 5(a); and (2) the parameters are listed as
width w = 1, height h = 1, Young’s modulus E = 200� 109,
Poisson’s ratio y = 0.25, and density r = 2,000, as shown in Fig. 5
(b). The bottom, left, and right sides of the slide are all fixed by stiff
springs with stiffness of 100E in both horizontal and vertical direc-
tions. Theoretically, the block system should satisfy the law of hori-
zontal momentum conservation. In other words, the global horizon-
tal momentum should always be 4,000 even after Block 1 collides
with Block 2.

Shown in Fig. 6 are the discrete models for this momentum con-
servation test. The time step length Dt and number of time steps are
taken as 0.01 and 100, respectively. To study the influence of pen-
alty parameter value p on accuracy of this contact problem, three
cases, namely, NMM1 with p = E, NMM2 with p = 10E, and
NMM3with p = 100E, are considered for the purpose.

The total horizontal momentum, momentums of Blocks 1 and 2
versus time step, are plotted in Fig. 7. It is shown that the values of
total horizontal momentum are almost identical to the theoretical
values, which means the proposed direct approach could pass this
momentum conversation test.

The values of momentum and velocity for Blocks 1 and 2
are also listed in Tables 2–5. It is shown that accuracy for the pen-
alty method could be improved by increasing the value of the pen-
alty parameter. However, as discussed in the previous section,
penalty parameters that are too big will make the governing equa-
tions become ill-conditioned. Overall, accuracy of the proposed
direct approach exceeds the penalty method with different values
of the penalty parameter. Moreover, the proposed method is free
from the penalty parameter, which is very difficult to be deter-
mined for different problems.

Sliding Problem

Using this classical example, accuracy of the present direct
approach is compared with the penalty method with different val-
ues of the penalty parameter. Shown in Fig. 8 is a sliding rectan-
gle block that is 2� 1 m on a ramp with a slope angle of a. The

Fig. 5. Block 1 moves toward Block 2: (a) a big block collides with
another big block; (b) a big block collides with another small block

(a) (b)

Fig. 6. Discrete models for the momentum conservation test: (a) a big
block collides with another big block; (b) a big block collides with
another small block

© ASCE E4016012-7 Int. J. Geomech.
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block and the ramp have the same material parameters: Young’s
modulus E = 200MPa, Poisson’s ratio y = 0.25, and density r =
2,750 kg/m3. The bottom and right sides of the ramp are all fixed

by stiff springs with stiffness of 100E in both horizontal and verti-
cal directions.

It is easy to derive the exact sliding displacement of the block

s ¼ 1
2

sina� m cosað Þgt2 (52)

Table 2. Computed Momentum of the Two Blocks: A Big Block Collides
with Another Big Block

Methods

Before collision After collision

Block 1 Block 2 Total Block 1 Block 2 Total

Direct
approach

4000.000 0.000 4000.000 0.448 3999.552 4000.000

NMM1 4000.000 0.000 4000.000 0.848 3999.153 4000.001
NMM2 4000.000 0.000 4000.000 0.489 3999.511 4000.000
NMM3 4000.000 0.000 4000.000 0.453 3999.547 4000.000
Theoretical
value

4000.000 0.000 4000.000 0.000 4000.000 4000.000

Table 3. Computed Velocity of the Two Blocks: A Big Block Collides
with Another Big Block

Methods

Before collision After collision

Block 1 Block 2 Block 1 Block 2

Direct approach 1.00000 0.00000 0.00011 0.99989
NMM1 1.00000 0.00000 0.00021 0.99979
NMM2 1.00000 0.00000 0.00012 0.99988
NMM3 1.00000 0.00000 0.00011 0.99989
Theoretical value 1.00000 0.00000 0.00000 1.00000

Table 4. Computed Momentum of the Two Blocks: A Big Block Collides
with Another Small Block

Methods

Before collision After collision

Block 1 Block 2 Total Block 1 Block 2 Total

Direct
approach

4000.000 0.000 4000.000 1405.311 2595.779 4001.088

NMM1 4000.000 0.000 4000.000 1406.104 2595.475 4001.579
NMM2 4000.000 0.000 4000.000 1405.921 2595.655 4001.576
NMM3 4000.000 0.000 4000.000 1405.313 2595.777 4001.088
Theoretical
value

4000.000 0.000 4000.000 1333.333 2666.667 4000.000

Table 5. Computed Velocity of the Two Blocks: A Big Block Collides
with Another Small Block

Methods

Before collision After collision

Block 1 Block 2 Block 1 Block 2

Direct method 1.00000 0.00000 0.35133 1.29789
NMM1 1.00000 0.00000 0.35153 1.29774
NMM2 1.00000 0.00000 0.35148 1.29783
NMM3 1.00000 0.00000 0.35133 1.29789
Theoretical value 1.00000 0.00000 0.33333 1.33333

(a) (b)

Fig. 8. Block slides along a ramp: (a) slope angle a = 30°; (b) slope
angle a = 45°

(a) (b)

Fig. 9. Discrete models for the block and ramp: (a) slope angle a =
30°; (b) slope angle a = 45°
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Fig. 7. Computed momentum versus time step: (a) a big block collides
with another big block; (b) a big block collides with another small
block
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at time t (s); where s = sliding distance of the block center point (in
meters); g = gravity speed (9.8 m/s2); m ¼ tan w ; and w the friction
angle.

The discrete models with different slope angles for this problem
are shown in Fig. 9. Let the time step length Dt = 0.01 s and total
computation time = 2 s, with a set of combinations of slope angles
and friction angles assumed. Fig. 10 displays the relative error dis-
tributions from the direct and penalty methods during sliding. From
all these results, it is observed that the proposed direct approach is
more accurate than the penalty method with different values of the
penalty parameters.

Arch Dam Problem

In the design of an arch dam, the pure arch method is often used to
analyze the stress state of the arch dam. The pure arch method
assumes that the arch dam consists of a series of independent hor-
izontal arches that will bear all the load acting on the dam, and
each arch is simplified as an elastic arch whose end sides are fixed
for calculation. Fig. 11 shows an arch dam with a layer of arch,
and a point load f ¼ 1:5 acts at the upstream side of the dam. The
downstream side of the bedrock is fixed. The bedrock and the
dam have the same material parameters: density r = 0.3, unit
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Fig. 10. Comparisons between the proposed direct method and penalty method under different slope angles a and friction angles w :
(a) a ¼ 30	; w ¼ 0	; (b) a ¼ 30	; w ¼ 5	; (c) a ¼ 30	; w ¼ 10	; (d) a ¼ 30	; w ¼ 15	; (e) a ¼ 30	; w ¼ 20	; (f) a ¼ 45	; w ¼ 0	;
(g) a ¼ 45	; w ¼ 5	; (h) a ¼ 45	; w ¼ 10	; (i) a ¼ 45	; w ¼ 15	; (j) a ¼ 45	; w ¼ 20	
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weight g ¼ 0:5, Young’s modulus E = 1.5, and Poisson’s ratio y
= 0.24. Let the time step length Dt = 0.01 s and total computation
time = 0.5 s.

The discrete model for this problem is shown in Fig. 12. The
final deformation and principal stress plots obtained with the pen-
alty method and direct approach are shown in Figs. 13–15. In addi-
tion, the displacement of the loading point versus the time is also

plotted in Fig. 16. The results obtained with the proposed direct
approach are very similar to those of penalty method.

Slope with Circular Sliding Surface

Fig. 17 shows a slope with a circular sliding surface. The left,
right, and bottom boundaries of the model are all fixed. The slid-
ing blocks and the slope have the same material parameters:
Young’s modulus E = 5 MPa, Poisson’s ratio y = 0.3, density r =
5 � 103 kg/m3, and unit weight 5 � 104 kg/(m2s2). Let the time
step length Dt = 0.002 s and total computation time = 0.202 s. The
discrete model for this problem is shown in Fig. 18. The final de-
formation plots obtained with the penalty method and direct
approach are shown in Fig. 19. In addition, the displacement of a
character Point A versus the time is also plotted in Fig. 20. The
result obtained with the proposed direct approach is very similar
to that of the penalty method.
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Fig. 10. (Continued.)

Fig. 11. Arch dam subjected to a point load F

Fig. 12. Discrete model for the arch dam

(a) (b)

Fig. 13. Final deformation plots of the arch dam: (a) penalty method;
(b) direct method
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Layers of Thin Beams Subjected Point Load

Fig. 21 shows layers of stacking thin beams subjected to a point
load. The bottom boundaries of the model are all fixed. The thin
beams have the same material parameters: Young’s modulus E =
10, Poisson’s ratio y = 0.24, density r = 0.3, and unit weight −0.5.

Let the time step length Dt = 0.002 and total computation time =
0.354. The final deformation and principal stress plots obtained
with the proposed direct approach are shown in Figs. 22 and 23,
respectively. The final deformation and stress distribution for this
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Fig. 14. Plots of the maximum principal stress (compressive stress is
taken as positive): (a) penalty method; (b) direct method

-0.1

-0.05

0

0.05

0.1

(a)

(b)
-0.1

-0.05

0

0.05

0.1

Fig. 15. Plots of the minor principal stress (compressive stress is taken
as positive): (a) penalty method; (b) direct method
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Fig. 16. Displacements of the measured point for the arch dam

Fig. 17. Slope with circular sliding surface

Fig. 18. Discrete model for the slope with circular sliding surface

(a) (b)

Fig. 19. Final deformation plots of the slope with circular sliding sur-
face: (a) penalty method; (b) direct method

© ASCE E4016012-11 Int. J. Geomech.

 Int. J. Geomech., E4016012 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
B

ir
m

in
gh

am
 o

n 
08

/1
0/

16
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



symmetric structure is symmetrical, which could, to some extent,
confirm the correctness of the proposed direct approach. In addition,
the displacement of the loading point versus the time is also plotted
in Fig. 24.

Conclusions

The performance of direct treatment of contact problems of NMM
is investigated in the present work. The present method seems
attractive for the following reasons:
1. Compared with the Lagrange multiplier method, the direct

approach can solve out tangential contact forces directly by
solving a nonsymmetric system. After a symmetrization treat-
ment to the direct approach can derive a symmetrical system
matrix, which could save storage space.

2. Compared with the penalty method, the proposed method has
better accuracy. Moreover, it is free from the penalty parame-
ter, which is very difficult to determine.

3. Implementation of the proposed method is easy, which could
be achieved through very limited modification of the original
NMM codes provided by Shi (1991).

4. The proposed direct approach could be applied in DDA without
any handicap.
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Fig. 20. Displacements of the measured point for the slope with
circular sliding surface: (a) horizontal displacement; (b) vertical
displacement

Fig. 21. Layers of thin beams subjected to a point load with F = −1

Fig. 22. Final deformation plot of the beams
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Recently Shi (2015) proposed a 3D contact theory, which is a
particularly exciting news. This theory will be fully utilized to
extend the proposed method to its 3D version to solve more realistic
engineering problems.

Although the proposed direct approach has more attractive
advantages than the conventional penalty method, it introduces the
contact force and increases the number of unknowns and consumes
more memory space than the penalty method. If very complex engi-
neering problems are involved, the contact pairs will be signifi-
cantly increased, and the memory space consumption for the direct
approach will be greater than the penalty method. As a result, more
efficient solution algorithms are vital to solve those problems with a
huge number of unknowns.
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