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a b s t r a c t 

A novel boundary type meshless method called continuous–discontinuous hybrid boundary node method is pro- 

posed in this paper, in which the enriched discontinuous shape function is developed to solve linear elastic crack 

problems. Firstly, the whole boundary is divided into several individual segments, and variables on each one of 

those segments are interpolated, respectively. For continuous segments, radial point interpolation method is em- 

ployed. In regard to discontinuous segments, the enriched discontinuous basis functions combining with radial 

point interpolation method are developed for simulating the discontinuity of displacement and stress field on 

surfaces of crack, and the near tip asymptotic field functions are employed for simulating the high gradient of 

stress field around crack tip, so that high accuracy and discontinuity property of a crack can be easily described. 

Stress intensity factors are calculated directly using displacement extrapolation by displacement field near crack 

tip. Some numerical examples are shown that the present method is effective and can be widely applied in some 

practical engineering. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

For many structures, crack propagation is an important failure mech-

nism and requires accurate simulation essential for failure prediction.

nd stress intensity factors are important property, which are directly

elated to fracture propagation criteria. The analytical solutions of stress

ntensity factors are hardly got for many complex structures, so numer-

cal methods must be applied for many cases. 

Now many analytical and numerical methods are applied to solve

racture response and reliability of cracked structures. The most popu-

ar method recently is the finite element method (FEM). Although FEM

s useful for many engineering analysis, even for fracture analysis of

racks, the method has serious limitations in some problems character-

zed by a continuous change in geometry of the domain under analy-

is. Crack propagation is a prime example in which a large number of

emeshing is needed in the use of FEM. For FEM and some similar meth-

ds, the only viable option for dealing with moving cracks is remeshing

uring each discrete step, which is cumbersome and time-consuming.

he boundary element method (BEM) [23] and dual boundary element

ethod (DBEM) [24,25] which have certain advantages over FEM has

een also applied to solve crack problems in past decades, but the same

s FEM, element is inevitable in the calculation. 

Meshfree or meshless methods have been developed rapidly in recent

ears. A class of meshfree and meshless methods appear to demonstrate
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ignificant special for the moving boundary problems typified by crack

ropagation. Such as smooth particle hydrodynamics (SPH) [11,15] ,

iffuse element method (DEM) [19] , element-free Galerkin method

EFGM) [4,12] , meshless local Petrov–Galerkin method (MLPGM) [3] ,

ocal boundary integral method [2] , and meshless singular boundary

ethod(MSBM) [8,9] . For those methods, the elements meshing is not

sed, since only a scattered set of nodal points is required in the domain

f interest. Since no element connectivity is needed, the burdensome

emeshing required by FEM is avoided. 

Though all meshless methods do not need the element meshing for

eld variable interpolation, some of them require a background mesh-

ng for integration. For example, the EFG method [4,12] uses moving

east square (MLS) for the shape function interpolation, and it does not

equire element mesh for variable interpolation. However, background

lement is inevitable for integration. 

Appling MLS to the boundary integration equations, Mukherjee and

ukherjee proposed boundary node method (BNM) [ 16 ], which only re-

uires to discretize the boundary. Although this method does not require

n element mesh for the interpolation of the boundary variables, a back-

round element is still necessary for integration. Based on BNM, Zhang

t al. [39,40] proposed another boundary-type meshless method: hybrid

oundary node method (HBNM). It abandons background elements and

chieves a truly meshless method. Elements are required neither for in-

erpolation nor for integration. However, it has a drawback of serious

boundary layer effect ’. 

http://dx.doi.org/10.1016/j.enganabound.2017.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enganabound
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2017.05.002&domain=pdf
mailto:fyan@whrsm.ac.cn
mailto:yanfei0324@163.com
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To avoid this shortcoming, Zhang and Yao further proposed the reg-

lar hybrid boundary node method [41,42] , in which the source points

f fundamental solution are located outside of the calculating domain.

lthough this method can avoid the singular integration and boundary

ayer effect, it creates some new problems. For example, how to arrange

he positions of the source points? To overcome these problems, Wang

t al. [30] presented a meshless singular hybrid node method for 2-

 elasticity, and obtained satisfactory results by means of reasonable

reatment of nearly singular integrals. And Miao et al. [13] proposed

he rigid body motion approach to deal with singular integration and

pplied an adaptive integration scheme to solve boundary layer effect. 

Those methods, however, can only be used for solving homoge-

eous problems. For inhomogeneous problems, domain integration is

nevitable, and some methods are proposed for domain integral, for ex-

mple, novel adaptive meshfree integration techniques are developed

y Racz and Bui [26] , besides, dual reciprocity method (DRM) was first

roposed by Nardini and Brebbia [18] for elasto-dynamic problems in

982 and extended by Wrobel and Brebbia [31] to time dependent dif-

usion in 1986. Based on HBNM, DRM is first introduced into HBNM,

nd a new truly meshless method dual hybrid boundary node method

DHBNM) is proposed by Yan et al. [36,38] which can be applied to

nhomogeneous problems, dynamic problems and nonlinear problems

nd so on. Furthermore, based on radial point interpolation method and

aylor expansion, Yan et al. proposed a series of new hybrid boundary

ode methods [33,37] , and by those methods some new shape function

onstruction methods have been developed. Furthermore, combining ra-

ial point interpolation method, Yan et al. developed a new dual hybrid

oundary node methods [34,35] , later Yan et al. [32] developed a new

hape function constructing method, named Shepard and Taylor inter-

olation method (STIM), by which no inversion operation is needed in

he whole process of shape function constructing. 

Unfortunately, the above methods based on a pure continuous theory

re inadequate to describe such kinematic discontinuity of displacement

eld, and a discontinuity description in displacement field has been

hown to be the necessity to describe the excessive discontinuous gap

or two surfaces of a crack. Recently, a lot of continuous–discontinuous

pproaches have been proposed for solving those problems, for exam-

le, Simone et al. [28] and Oliver et al. [21] proposed a computational

ramework for the description of the continuous–discontinuous failure

n a regularized strain-softening continuum; Oliver [20] employed strain

oftening constitutive equations to model strong discontinuities in solid

echanics; then Moes et al. [14] and Armero and Linder [1] and Sto-

arska et al. [29] developed the extended finite element method for anal-

sis of crack growth, and so on. 

DHBNM has some advantages, such as, dimensionality reduction, no

lement meshing, high accuracy and easily performance for large defor-

ation, and it is widely used for inhomogeneous problems, nonlinear

roblems and dynamic problems, but its continuous property causes the

ifficult of application for crack propagation. Based on the boundary

ype meshless advantage property of hybrid boundary node method, a

ew continuous–discontinuous hybrid boundary node method is pro-

osed to solve strong discontinuities problems in this paper. Firstly, the

hole boundary is divided into several individual segments, and vari-

bles on each one of those segments are interpolated individually. For

ontinuous segments, radial point interpolation method is employed.

n regard to discontinuous segments, the enriched discontinuous basis

unctions combining with radial point interpolation method are devel-

ped for simulating the discontinuity of displacement and stress field

n surfaces of fracture, and the near tip asymptotic field function is em-

loyed for simulating the singularity of crack tip stress field around the

rack tip. Based on the above theory, a discontinuous hybrid boundary

ode method is proposed in this paper. And high accuracy and disconti-

uity property of a crack can be easily described in present method. This

ethod keeps the ‘boundary-only ’ and truly meshless method character

f HBNM. The present work uses directly displacement extrapolation to

alculate stress intensity factors. Besides, in order to simulate the singu-
36 
arity of stress field on the tip of fracture, and the enriched basis func-

ions combined with radial point interpolation method are used near

he tip of crack. Some numerical examples are shown that the present

ethod is effective and can be widely applied in some practical engi-

eering. 

The discussions of this method arrange as following: the hybrid

oundary node method will be discussed in Section 2 . The enriched

iscontinuous interpolation is developed in Section 3 . Some numerical

mplementation is demonstration in Section 4 . The numerical examples

or 2-D linear elastic crack problems are showed in Section 5 . Finally,

he paper will end with conclusions in Section 6 . 

. Hybrid boundary node method 

In this section, HBNM is introduced. Consider a 2D elasticity problem

n domain Ω bounded by Γ. The basic equations are 

𝑖𝑗,𝑗 = 𝑏 𝑖 (1)

𝑖𝑗 = 2 𝐺 𝜀 𝑖𝑗 + 𝜆𝜀 𝑘𝑘 𝛿𝑖𝑗 (2)

 𝑖𝑗 = 

1 
2 
(
𝑢 𝑖,𝑗 + 𝑢 𝑗,𝑖 

)
(3)

here b i is the body force, 𝜆 is the Lame constant and G is the shear

odulus. 

The boundary conditions can be given as 

 𝑖 = 𝑢̂ 𝑖 on Γ𝑢 (4)

𝑖𝑗 𝑛 𝑗 = ̂𝑡 𝑖 or Γ𝑡 (5)

here 𝑢̂ 𝑖 and ̂𝑡 𝑖 denote boundary node values and n is the unit outward

ormal to the domain boundary Γ. 

Solving the above equations, the second-order partial differential

quations for the displacement components can be obtained as [37] 

 𝑢 𝑖,𝑘𝑘 + 

𝐺 

1 − 2 𝜈
𝑢 𝑘,𝑘𝑖 = 𝑏 𝑖 (6)

Applying DRM, the solution variables u i can be divided into two

arts, i.e., the complementary solutions 𝑢 𝑐 
𝑖 

and the particular solutions

 

𝑝 

𝑖 
, that is 

 𝑖 = 𝑢 𝑐 
𝑖 
+ 𝑢 

𝑝 

𝑖 
(7)

The particular solution 𝑢 
𝑝 

𝑖 
has to satisfy the inhomogeneous equation

s 

𝑢 
𝑝 

𝑖,𝑘𝑘 
+ 

𝐺 

1 − 2 𝜈
𝑢 
𝑝 

𝑘,𝑘𝑖 
= 𝑏 𝑖 (8)

On the other hand, the complementary solution 𝑢 𝑐 
𝑖 

must satisfy the

omogeneous equation and the modified boundary conditions. It can be

ritten in the form [37] 

𝑢 𝑐 
𝑖,𝑘𝑘 

+ 

𝐺 

1 − 2 𝜈
𝑢 𝑐 
𝑘,𝑘𝑖 

= 0 (9)

 

𝑐 
𝑖 
= 𝑢̂ 𝑐 

𝑖 
= 𝑢̂ 𝑖 − 𝑢 

𝑝 

𝑖 
(10)

 

𝑐 
𝑖 
= ̂𝑡 𝑐 

𝑖 
= ̂𝑡 𝑖 − 𝑡 

𝑝 

𝑖 
(11)

here 𝑢̂ 𝑐 , ̂𝑡 𝑐 denote complementary solutions on boundary node i . 

𝑖 𝑖 
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Fig. 1. Local domain and source point corresponding to s J . 
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𝐓  
.1. Variational principle 

The total potential energy can be given as [16,39] 

= ∫Ω
1 
2 
𝑢 𝑖,𝑗 𝑐 𝑖𝑗𝑘𝑙 𝑢 𝑘𝑙 𝑑Ω − ∫Ω 𝐮 𝑇 𝐛 𝑑 Ω − ∫Γ𝑡 𝐮 

𝑇 𝐭 𝑑 Γ (12)

here u is the displacement vector, 𝐭 is the boundary traction vector,

nd the coefficients 𝑐 𝑖𝑗𝑘𝑙 = 

2 𝐺𝜈

1−2 𝜈 𝛿𝑖𝑗 𝛿𝑘𝑙 + 𝐺 𝛿𝑖𝑙 𝛿𝑗𝑘 . 

There are three independent variables in the variational principle,

amely the displacement in the domain, the displacement along the

oundary and the force acting normal to boundary. They can be writ-

en as u , ̃𝐮 and ̃𝐭 , respectively. Boundary compatibility conditions ̃𝐮 = 𝐮
nd a set of Lagrange multipliers boundary tractions are introduced into

q. (12) . 

Based on hybrid displacement variational principle, test function

 J ( Q ) is used to replace the variational part, one can get [16,39] 

Γ𝑆 + 𝐿 𝑆 
( 𝑡 𝑖 − ̃𝑡 𝑖 ) ℎ 𝐽 ( 𝑄 ) 𝑑Γ − ∫Ω𝑆 

𝜎𝑖𝑗,𝑗 ℎ 𝐽 ( 𝑄 ) 𝑑Ω = 0 (13)

Γ𝑆 + 𝐿 𝑆 
( 𝑢 𝑖 − ̃𝑢 𝑖 ) ℎ 𝐽 ( 𝑄 ) 𝑑Γ = 0 (14)

The shape and dimension of the sub-domains may be arbitrary. Ob-

iously, a circle is the simplest regularly shaped sub-domain in the 2D

pace. The sub-domain Ωs is chosen as the intersection of the domain Ω
nd a circle centered at a boundary node, s J ( Fig. 1 ) [36,38] , and the

adius of the circle is r J . 
In Eqs. (13) and (14) , the variable of 𝑢̃ 𝑖 and ̃𝑡 𝑖 on L s are not defined.

f h J ( Q ) can be selected in such a way that the integral over L s vanish,

he problem can be solved successfully. Thus test function h J ( Q ) can be

ritten in the form [16,39] 

 𝐽 ( 𝑄 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

exp [− ( 𝑑 𝐽 ∕ 𝑐 𝐽 ) 2 ] − exp [− ( 𝑟 𝐽 ∕ 𝑐 𝐽 ) 2 ] 
1 − exp [− ( 𝑟 𝐽 ∕ 𝑐 𝐽 ) 2 ] 

0 ≤ 𝑑 𝐽 < 𝑟 𝐽 

0 𝑑 𝐽 ≥ 𝑟 𝐽 

(15)

here d J is the distance between the integral point, Q, in the domain

nd the nodal point, s J . c J is a constant controlling the test function

hape, r J is the radius of the sub-domain. On L S , d J = r J , from Eq. (15) ,

t can be seen that h J ( Q ) vanishes on the boundary. 

Eqs. (13) and (14) can be rewritten as follows [16,39] 

Γ𝑆 
( 𝑡 𝑖 − ̃𝑡 𝑖 ) ℎ 𝐽 ( 𝑄 ) 𝑑Γ − ∫Ω𝑆 

𝜎𝑖𝑗,𝑗 ℎ 𝐽 ( 𝑄 ) 𝑑Ω = 0 (16)

( 𝑢 𝑖 − ̃𝑢 𝑖 ) ℎ 𝐽 ( 𝑄 ) 𝑑Γ = 0 (17)

Γ𝑆 

𝐔  

37 
.2. The domain variables interpolation 

The domain variables u and t are interpolated by the fundamental

olution and can be written as 

 = 

{ 

𝑢 1 
𝑢 2 

} 

= 

𝑁 𝑡 ∑
𝐼=1 

[ 

𝑢 𝐼 11 𝑢 𝐼 12 

𝑢 𝐼 21 𝑢 𝐼 22 

] { 

𝑥 𝐼 1 

𝑥 𝐼 2 

} 

(18)

 = 

{ 

𝑡 1 
𝑡 2 

} 

= 

𝑁 𝑡 ∑
𝐼=1 

[ 

𝑡 𝐼 11 𝑡 𝐼 12 

𝑡 𝐼 21 𝑡 𝐼 22 

] { 

𝑥 𝐼 1 

𝑥 𝐼 2 

} 

(19)

here 𝑥 𝐼 
𝑖 

is the unknown parameter, N t is the total boundary node num-

er, 𝑢 𝐼 
𝑖𝑗 

and 𝑡 𝐼 
𝑖𝑗 

are the fundamental solution with the source point of P I 

 Fig. 1 ). 

The fundamental solution of the 2-D plane strain elasticity problem

s given by 

 

𝐼 
𝑖𝑗 
= 

−1 
8 𝜋(1 − 𝜈) 𝐺 

[
( 3 − 4 𝜈) 𝛿𝑖𝑗 ln ( 𝑟 ) − 𝑟 ,𝑖 𝑟 ,𝑗 

]
(20) 

 

𝐼 
𝑖𝑗 
= 

−1 
4 𝜋(1 − 𝜈) 𝑟 

{ [
( 1 − 2 𝜈) 𝛿𝑖𝑗 + 2 𝑟 ,𝑖 𝑟 ,𝑗 

] 𝜕𝑟 
𝜕𝑛 

+ ( 1 − 2 𝜈) 
(
𝑟 ,𝑖 𝑛 𝑗 − 𝑟 ,𝑗 𝑛 𝑖 

)} 

(21) 

here 𝛿 is the Kronecker delta function, r is the distance between the

ource point and the field point, n i is the outward normal to the bound-

ry, r , i denotes 𝜕𝑟 

𝜕 𝑥 𝑖 
. 

.3. Hybrid boundary node method 

From the above description, it is obvious that the second term of

q. (16) only attributes to the principal diagonal of the matrix. Substi-

uting discontinuous shape functions into Eqs. (16) and (17) , and those

an be rewritten as [16,39] 

𝑁 𝑡 ∑
𝐼=1 

∫Γ𝑆 
[ 

𝑡 𝐼 11 𝑡 𝐼 12 

𝑡 𝐼 21 𝑡 𝐼 22 

] { 

𝑥 𝐼 1 

𝑥 𝐼 2 

} 

ℎ 𝐽 ( 𝑄 ) 𝑑Γ

= 

𝑁 𝑡 ∑
𝐼=1 

∫Γ𝑆 
[ 

Φ𝑡 
𝐼 
( 𝑠 ) 0 Φ𝑡 

𝐼 
( 𝑠 ) 𝐻( 𝜉) 0 

0 Φ𝑡 
𝐼 
( 𝑠 ) 0 Φ𝑡 

𝐼 
( 𝑠 ) 𝐻( 𝜉) 

] 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑡 𝐼 1 
𝑡 𝐼 2 
𝑏 𝐼 1 
𝑏 𝐼 2 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

ℎ 𝐽 ( 𝑄 ) 𝑑Γ

(22) 

𝑁 𝑡 ∑
𝐼=1 

∫Γ𝑆 
[ 

𝑢 𝐼 11 𝑢 𝐼 12 

𝑢 𝐼 21 𝑢 𝐼 22 

] { 

𝑥 𝐼 1 

𝑥 𝐼 2 

} 

ℎ 𝐽 ( 𝑄 ) 𝑑Γ

= 

𝑁 𝑡 ∑
𝐼=1 

∫Γ𝑆 
[ 

Φ𝑢 
𝐼 
( 𝑠 ) 0 Φ𝑢 

𝐼 
( 𝑠 ) 𝐻( 𝜉) 0 

0 Φ𝑢 
𝐼 
( 𝑠 ) 0 Φ𝑢 

𝐼 
( 𝑠 ) 𝐻( 𝜉) 

] 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑢 𝐼 1 
𝑢 𝐼 2 
𝑎 𝐼 1 
𝑎 𝐼 2 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 

ℎ 𝐽 ( 𝑄 ) 𝑑Γ

(23) 

n which Φ𝑢 
𝐼 
( 𝑠 ) , Φ𝑡 

𝐼 
( 𝑠 ) are shape functions for displacement and stress

f the present method, and when the calculating node is located on

he common calculating boundary, Φ𝑢 
𝐼 
( 𝑠 ) = Φ𝑡 

𝐼 
( 𝑠 ) , when the calculating

ode is located on crack surface, those two shape functions are con-

tructed by different basis functions, respectively, which can be seen

n next section; H ( 𝜉) is the Heaviside enrichment function, which is

mployed for describing the discontinuity of crack and can be seen in

q. (42) , and 𝑎 𝐼 1 , 𝑏 
𝐼 
1 are additional node freedoms for discontinuity. 

Using the above equations for all nodes, the system equations can be

ritten in the form 

𝐱 = 𝐇 𝑡 𝐭 𝐜 + 𝐂 𝑡 𝐛 (24)

𝐱 = 𝐇 𝐮 𝐜 + 𝐂 𝐚 (25)
𝑢 𝑢 
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Fig. 2. Interpolating segments model. 

i  

b

a  

∫  

f

3

 

c  

i  

i  

r

 

i  

c  

t  

b  

t

i  

t

𝜈  

w  

r  

b  

t  

(  

i

 

t  

p

𝜈  

w

𝜈  

w

𝜈  

𝐑  

𝐏  

 

n

𝐏  

 

c

𝝂  

w  

𝐆

𝜈  

i  

Φ
 

b

𝚽  

 

c

𝑢  

𝑡  

 

b

 

p  

t  

m  

i  

t  

w  

p  

b

𝐩  

𝐩  

 

n  

v  

f  

d  

w

𝑢  
n which C t = C u = 0 when calculating nodes are located on common

oundary, and matrix T, H, U can be referred in [16,39] , and t c , u 

c 

re boundary variable values, and 𝐶 

𝐼𝐽 
𝑡 

= ∫Γ𝑆 Φ𝑡 
𝐼 
( 𝑠 ) 𝐻( 𝜉) ℎ 𝐽 ( 𝑄 ) 𝑑Γ, 𝐶 

𝐼𝐽 
𝑢 

=

Γ𝑆 
Φ𝑢 

𝐼 
( 𝑠 ) 𝐻( 𝜉) ℎ 𝐽 ( 𝑄 ) 𝑑Γ when calculating nodes are located on crack sur-

aces. 

. The enriched discontinuous interpolation 

In order to overcome the discontinuity of corner and improve the cal-

ulation efficiency, the common outer boundary of the model is divided

nto several segments, which can be seen in Fig. 2 , the outer boundary

s divided into Γ1 , Γ2 , Γ3 and Γ4 , and each segment is interpolated by

adial point interpolation method(RPIM). 

Firstly, the variable interpolation for continuous boundary is stud-

ed, and RPIM is developed to construct shape function for the common

ontinuous boundaries. Unlike the traditional HBNM, the shape func-

ion obtained by the present method has the delta function property, so

oundary conditions can be applied easily and directly, and computa-

ional expense can be greatly reduced. For simplification, the variable 𝜈

s employed to represent the variables of displacement u and boundary

raction t , which can be expressed as [37] 

( 𝑠 ) ≈ 𝜈ℎ ( 𝑠 ) = 

𝑁 𝑆 ∑
𝑖 =1 

𝑅 𝑖 ( 𝑟 ) 𝑎 𝑖 + 

𝑚 ∑
𝑗=1 

𝑃 𝑗 ( 𝑠 ) 𝑏 𝑗 = 𝐑 

𝑇 ( 𝐫) 𝐚 + 𝐏 𝑇 ( 𝐬 ) 𝐛 (26)

here N S is the node number of interpolation segment, s denotes pa-

ameter coordinate of boundary curve; and m ( m < N S ) is the num-

er of monomials basis; a i , b j are interpolation coefficient; R i ( r ) is

he RBF, for example: Multi-quadrics (MQ) 𝑅 𝑖 ( 𝑟 ) = ( 𝑟 2 
𝑖 
+ 𝑐 2 ) 𝑞 ; Gaussian

EXP) 𝑅 𝑖 ( 𝑟 ) = exp [− 𝑏𝑟 2 
𝑖 
] ; Thin plate spline (TPS) 𝑅 𝑖 ( 𝑟 ) = 𝑟 𝑛 

𝑖 
ln ( 𝑟 

𝑖 
) and P j ( s )

s the monomial basis P 

T ( s ) = [1, s, s 2 ]. 
In order to get the constants coefficient a i and b j , Eq. (35) is enforced

o be satisfied at N S nodes at interpolation segments, which can be ex-

ressed as 

( 𝑠 𝑘 ) = 

𝑁 𝑆 ∑
𝑖 =1 

𝑎 𝑖 𝑅 𝑖 ( 𝑟 𝑘 ) + 

𝑚 ∑
𝑗=1 

𝑏 𝑗 𝑃 𝑗 ( 𝑠 𝑘 ) 𝑘 = 1 , 2 , ..., 𝑁 𝑆 (27)

hich can be expressed as matrix form 

𝟎 = 𝐑 0 𝐚 + 𝐏 0 𝐛 (28)

here the vector of variables is 

𝑇 
0 = [ 𝜈( 𝑠 1 ) , 𝜈( 𝑠 2 ) , ..., 𝜈( 𝑠 𝑁 𝑆 

)] (29)
38 
The moment matrix of RBFs is [37] 

 0 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑅 1 ( 𝑟 1 ) 𝑅 2 ( 𝑟 1 ) ⋯ 𝑅 𝑁 𝑆 

( 𝑟 1 ) 
𝑅 1 ( 𝑟 2 ) 𝑅 2 ( 𝑟 2 ) ⋯ 𝑅 𝑁 𝑆 

( 𝑟 2 ) 
⋮ ⋮ ⋱ ⋮ 

𝑅 1 ( 𝑟 𝑁 𝑆 
) 𝑅 2 ( 𝑟 𝑁 𝑆 

) ⋯ 𝑅 𝑁 𝑆 
( 𝑟 𝑁 𝑆 

) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(30)

The monomial moment matrix is 

 0 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 𝑠 1 𝑠 2 1 

1 𝑠 2 𝑠 2 2 

⋮ ⋮ ⋮ 

1 𝑠 𝑁 𝑆 
𝑠 2 
𝑁 𝑆 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(31)

In order to ensure unique solutions, the following constraints are

ecessary for the present approximation 

 

𝑇 
0 𝐚 = 0 (32)

Combining Eqs. (28) and (32) and expressing in matrix form, one

an get 

̃ 0 = 

{ 

𝝂0 
0 

} 

= 

[ 
𝐑 0 𝐏 0 
𝐏 𝑇 0 𝟎 

] { 

𝐚 
𝐛 

} 

= 𝐆 𝐚 0 (33)

here 𝐚 𝑇 0 = [ 𝑎 1 , 𝑎 2 , ..., 𝑎 𝑁 𝑆 
, 𝑏 1 , 𝑏 2 ... 𝑏 𝑚 ] , ̃𝝂𝑇 

0 = [ 𝜈( 𝑠 1 ) , 𝜈( 𝑠 2 ) , ..., 𝜈( 𝑠 𝑁 𝑆 
) , 0 , 0 , 0] ,

 = 

[ 
𝐑 0 𝐏 0 
𝐏 𝑇 0 𝟎 

] 
. 

Then we can get [37] 

( 𝑠 ) = [ 𝐑 

𝑇 ( 𝐫) 𝐏 𝑇 ( 𝐬 ) ] 𝐆 

−1 
𝝂̃0 = 𝚽̃( 𝐬 ) ̃𝝂0 (34)

n which 𝚽̃𝑇 ( 𝐬 ) = [ 𝐑 

𝑇 ( 𝐫) 𝐏 𝑇 ( 𝐬 ) ] 𝐆 

−1 = [ Φ1 ( 𝑠 ) , Φ2 ( 𝑠 ) , ..., Φ𝑁 𝑆 
( 𝑠 ) , ...,

𝑁 𝑆 + 𝑚 ( 𝑠 )] . 
Finally, the shape function of the present method, which is obtained

y RPIM, is given as 

𝑇 ( 𝐬 ) = [ Φ1 ( 𝑠 ) , Φ2 ( 𝑠 ) , ..., Φ𝑁 𝑆 
( 𝑠 )] (35)

So the displacement and normal traction of boundary nodes on the

ommon continuous boundary can be obtained as 

̃ ( 𝑠 ) = 𝚽𝑇 ( 𝐬 ) 𝐮 = 

𝑁 𝑆 ∑
𝑖 =1 

Φ𝑖 ( 𝑠 ) 𝑢 𝑖 (36)

 ̃( 𝑠 ) = 𝚽𝑇 ( 𝐬 ) 𝐭 = 

𝑁 𝑆 ∑
𝑖 =1 

Φ𝑖 ( 𝑠 ) 𝑡 𝑖 (37)

In which 𝐮 𝑇 = [ 𝑢 1 , 𝑢 2 , ..., 𝑢 𝑁 𝑆 
] , 𝐭 𝑇 = [ 𝑡 1 , 𝑡 2 , ..., 𝑡 𝑁 𝑆 

] are nodes values of

oundary nodes. 

For discontinuous crack segment Γ5 , crack Γ5 is consist with the up-

er crack surface Γs and the bottom crack surface Γt , an enriched discon-

inuous interpolation is developed in this method. As we know, displace-

ent field and stress field around crack tip are singular or nonlinear. Us-

ng the traditional RPIM, we can hardly get the accurate results. In order

o accurately simulate the high gradient displacements near crack tip,

e use the enriched basis functions combining with RPIM when the ap-

roximating nodes are near enough to crack tip, and the fully enriched

asis functions for boundary displacement variable are given as [27] 

 

𝐓 ( 𝐬 ) = 

[
1 , 𝑠, 𝑠 2 , 

√
𝑟 cos 𝜃

2 
, 
√
𝑟 sin 𝜃

2 
, 
√
𝑟 sin 𝜃

2 
sin 𝜃, 

√
𝑟 cos 𝜃

2 
sin 𝜃

]
(38)

For simplification, the radial basis function can be given as 

 

𝐓 ( 𝐬 ) = [1 , 𝑠, 𝑠 2 , 
√
𝑟 ] (39)

In this method, hybrid basis function is used, when nodes are located

earby crack tip, the enriched basis function is used to approximate the

ariables, and for nodes far away from crack tip the quadratic basis

unction is used. Substituting Eq. (39) into Eq. (28) , one can get the tra-

itional continuous part of shape function for boundary displacement,

hich is 

̃ Γ5 ( 𝑠 ) = 

𝑁 𝑆 ∑
𝑖 =1 

Φ𝑢 
𝑖 
( 𝑠 ) 𝑢 𝑖 (40)
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In which Φ𝑢 
𝑖 
( 𝑠 ) is the continuous part of shape function related to Eq.

39) . 

As we know, displacement and stress on segment Γ5 are discontin-

ous. Based on partition of unity, the shape function of boundary dis-

lacement for discontinuous boundary can be given as 

̃ ( 𝑠 ) = 

𝑁 𝑆 ∑
𝑖 =1 

Φ𝑢 
𝑖 
( 𝑠 ) 𝑢 𝑖 + 

𝑁 𝑆 ∑
𝑗=1 

Φ𝑢 
𝑗 
( 𝑠 ) 𝐻( 𝜉) a 𝑗 (41)

In which a j is the additional degree of nodal freedom for modeling

trong discontinuity. 

It is known to us that the displacements on the nodes of the upper

nd bottom surfaces of crack are different, in order to model the strong

iscontinuity caused by crack, the signed function is chosen as the Heav-

side enrichment function, which is given as 

( 𝜉) = 

{ 

1 ∀𝜉 ∈ Γ𝑠 

−1 ∀𝜉 ∈ Γ𝑡 

(42)

In which 𝜉 is the location function of calculation node. 

As we know, the boundary displacement and traction in the present

ethod are interpolated, respectively, so for high gradient stress near

rack tip for mixed mode crack can be given as [7] 

𝑥𝑥 = 

𝐾 𝐼 √
2 𝜋𝑟 

cos 𝜃
2 

(
1 − sin 𝜃

2 
sin 3 𝜃

2 

)
+ 

𝐾 𝐼𝐼 √
2 𝜋𝑟 

sin 𝜃
2 

(
2 + cos 𝜃

2 
cos 3 𝜃

2 

)
(43) 

𝑦𝑦 = 

𝐾 𝐼 √
2 𝜋𝑟 

cos 𝜃
2 

(
1 + sin 𝜃

2 
sin 3 𝜃

2 

)
+ 

𝐾 𝐼𝐼 √
2 𝜋𝑟 

sin 𝜃
2 
cos 𝜃

2 
cos 3 𝜃

2 
(44)

Based on Eqs. (43) and (44) , the fully enriched basis function for

oundary traction variable can be given as 

 

𝐓 ( 𝐬 ) = 

[
1 , 𝑠, 𝑠 2 , cos 𝜃

2 
∕ 
√
𝑟 , sin 𝜃

2 
∕ 
√
𝑟 , sin 3 𝜃

2 
sin 𝜃∕ 

√
𝑟 , 
√
𝑟 cos 3 𝜃

2 
sin 𝜃∕ 

√
𝑟 

]
(45) 

Substituting Eq. (45) into Eq. (28) , one can get the traditional con-

inuous part of shape function for boundary traction, which is 

 ̃Γ5 ( 𝑠 ) = 

𝑁 𝑆 ∑
𝑖 =1 

Φ𝑡 
𝑖 
( 𝑠 ) 𝑡 𝑖 (46)

In which Φ𝑡 
𝑖 
( 𝑠 ) is the continuous part of shape function related to

q. (45) . 

As we know, the displacement and stress on segment Γ5 is discon-

inuous. Based on partition of unity, the shape function of boundary

raction for discontinuous boundary can be given as 

 ̃( 𝑠 ) = 

𝑁 𝑆 ∑
𝑖 =1 

Φ𝑡 
𝑖 
( 𝑠 ) 𝑡 𝑖 + 

𝑁 𝑆 ∑
𝑗=1 

Φ𝑡 
𝑗 
( 𝑠 ) 𝐻( 𝜉) b 𝑗 (47)

In which b j is the additional degree of nodal freedom for modeling

trong discontinuity of boundary tractions. 

. Numerical implementation 

In the above section, the complementary solution has been solved

uccessfully. Now the particular solution will be developed by dual

eciprocity method. Actually, the particular solution is the solution of

q. (8) . 

.1. Dual reciprocity method 

DRM can be used in elasticity to transform the domain integral aris-

ng from the application of body force into equivalent boundary inte-

rals. According to the interpolation, the approximation of the term

 k ( k = 1,2) can be proposed as [37] 

 𝑘 ≈
𝑁+ 𝐿 ∑
𝑗=1 

𝑓 𝑗 𝛼
𝑗 

𝑘 
(48) 
39 
here, 𝛼
𝑗 

𝑘 
are a set of unknown coefficients, f j are the approximation

unctions, N and L are the total numbers of boundary nodes and interior

odes, respectively. 

Eq. (48) can be rewritten as 

= 𝐅 − 𝟏 𝐛 (49) 

here vector b is the values of body force term on each calculation

odes, and matrix F is the values of approximating function on each

odes pairs. 

Also, the particular solutions of the displacement can be interpolated

y the particular solution of basis form [37] 

 

𝑝 

𝑘 
≈

𝑁+ 𝐿 ∑
𝑗=1 

𝛼
𝑗 

𝑙 ̄
𝑢 
𝑗 

𝑙𝑘 
(50) 

here 𝑢̄ 
𝑗 

𝑙𝑘 
is the basis form of particular solution. 

If 𝑢 
𝑝 

𝑘 
satisfies Eq. (8) , the following equation can be obtained 

 ̄𝑢 
𝑗 

𝑚𝑘,𝑙𝑙 
+ 

𝐺 

1 − 2 𝜈
𝑢̄ 
𝑗 

𝑙 𝑘,𝑙 𝑚 
= 𝛿𝑚𝑘 𝑓 

𝑗 (51)

The approximating function, f , can be chosen as, f j = 1 + r . So the

asis form of particular solution 𝑢̄ 𝑘𝑚 satisfying Eq. (51) is given by [37] 

̄ 𝑘𝑚 = 

1 − 2 𝜈
(5 − 4 𝜈) 𝐺 

𝑟 ,𝑚 𝑟 ,𝑘 𝑟 
2 + 

1 
30(1 − 𝜈) 𝐺 

[(
3 − 

10 𝜈
3 

)
𝛿𝑚𝑘 − 𝑟 ,𝑚 𝑟 ,𝑘 

]
𝑟 3 (52)

The corresponding expression for the traction ̄𝑡 𝑘𝑚 is 

̄
 𝑘𝑚 = 

2 ( 1 − 2 𝜈) 
( 5 − 4 𝜈) 

[ 1 + 𝜈

1 − 2 𝜈
𝑟 ,𝑚 𝑛 𝑘 + 

1 
2 
𝑟 ,𝑘 𝑛 𝑚 + 

1 
2 
𝛿𝑚𝑘 

𝜕𝑟 

𝜕𝑛 

]
𝑟 

+ 

1 
15 ( 1 − 𝜈) 

[
( 4 − 5 𝜈) 𝑟 ,𝑘 𝑛 𝑚 − ( 1 − 5 𝜈) 𝑟 ,𝑚 𝑛 𝑘 

+ 

[
( 4 − 5 𝜈) 𝛿𝑚𝑘 − 𝑟 ,𝑚 𝑟 ,𝑘 

] 𝜕𝑟 
𝜕𝑛 

]
𝑟 2 (53) 

Solving Eqs. (49) and (50) , the particular solutions can be written as

 

𝑝 

𝑖 
= 

𝑁+ 𝐿 ∑
𝐼=1 

[ 

𝑢̄ 𝐼 11 𝑢̄ 𝐼 12 

𝑢̄ 𝐼 21 𝑢̄ 𝐼 22 

] { 

𝛼𝐼 
1 

𝛼𝐼 
2 

} 

(54) 

 

𝑝 

𝑖 
= 

𝑁+ 𝐿 ∑
𝐼=1 

[ 

𝑡 𝐼 11 𝑡 𝐼 12 

𝑡 𝐼 21 𝑡 𝐼 22 

] { 

𝛼𝐼 
1 

𝛼𝐼 
2 

} 

(55) 

Substituting Eq. (49) into Eqs. (54) and (55) , one can obtain the

articular solution in matrix form as 

 

𝐩 = 𝐕 𝐅 − 𝟏 𝐛 (56)

 

𝐩 = 𝐐 𝐅 − 𝟏 𝐛 (57)

here V and Q are the matrices of the basic form of particular solution.

Substituting Eqs. (56) and (57) into Eqs. (10) and (11) , one can ob-

ain the complementary solution in matrix form 

 

𝐜 = 𝐮 − 𝐮 𝐩 = 𝐮 − 𝐕 𝐅 − 𝟏 𝐛 (58)

 

𝐜 = 𝐭 − 𝐭 𝐩 = 𝐭 − 𝐐 𝐅 − 𝟏 𝐛 (59)

Appling dual reciprocity method, the domain integral of body force

erm can be transferred into the boundary integral. Using Eqs. (58) and

59) for the common calculating boundary, Eqs. (24) and (25) become

𝐱 = 𝐇 

(
𝐭 − 𝐭 𝐩 

)
(60) 

𝐱 = 𝐇 

(
𝐮 − 𝐮 𝐩 

)
(61) 

In this paper, we assume that the crack is always opening, then on

rack surface, we get the following relation 

 𝑛 = 𝑡 𝑡 = 0 𝑜𝑛 Γ𝑠 , Γ𝑡 (62)
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Fig. 3. Local coordinate system of crack tip. 
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Fig. 4. A unidirectional plate with a crack under uniform loading. 

Fig. 5. 𝜎x at the tip of the crack. 
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a  
n which the subscript n, t represent the normal direction and tangential

irection, respectively. On boundary Γ5 , we can get 

𝐱 = 𝐇 𝑡 

(
𝐭 − 𝐭 𝐩 

)
+ 𝐂 𝑡 𝐛 (63)

𝐱 = 𝐇 𝑢 

(
𝐮 − 𝐮 𝐩 

)
+ 𝐂 𝑢 𝐚 (64)

n which H t , H u are matrix related to shape function of Eqs. (47) and

41) , respectively. 

Based on the additional boundary condition of Eq. (62) and system

quations of Eqs. (63) and (64) , we get some additional equations, then

dditional freedom a j and b j can be solved. 

.2. Stress intensity factor solving 

There are many methods for calculating stress intensity factor for

rack problems, and the simplest one is two point displacement formu-

ation, and one of the most accurate one is the J-integral. In this paper,

he directly displacement extrapolation around crack tip is used to cal-

ulate stress intensity factors K I and K II . According to elastic fracture

echanics, the displacement field around crack tip is given as [7] 

 𝑥 = 

𝐾 𝐼 

4 𝜇

√ 

𝑟 1 
2 𝜋

[ 
(2 𝜅 − 1) cos 

𝜃1 
2 

− cos 
3 𝜃1 
2 

] 
+ 

𝐾 𝐼𝐼 

4 𝜇

√ 

𝑟 1 
2 𝜋

[ 
(2 𝜅 + 3) sin 

𝜃1 
2 

+ sin 
3 𝜃1 
2 

] 
(65)

 𝑦 = 

𝐾 𝐼 

4 𝜇

√ 

𝑟 1 
2 𝜋

[ 
(2 𝜅 + 1) sin 

𝜃1 
2 

− sin 
3 𝜃1 
2 

] 
− 

𝐾 𝐼𝐼 

4 𝜇

√ 

𝑟 1 
2 𝜋

[ 
(2 𝜅 − 3) cos 

𝜃1 
2 

+ cos 
3 𝜃1 
2 

] 
(66)

In which 𝜅= 3 − 4 𝜈 for plane strain problems and 𝜅= 3 − 4 𝜈 for plane

tress problems, and and 𝜃1 is the local coordinate around crack tip,

hich is shown in Fig. 3 . 

Via DHBNM, the displacement of crack tip nodes can be got. Accord-

ng to the numerical results u x ( r 1 , 𝜋) and u y ( r 1 , 𝜋), in which r 1 satisfies

 . 008 ≤ 

𝑟 1 
𝑎 

≤ 0 . 013 (67)

Using extrapolation method, we can get the stress intensity factors

ia Eq. (67) when r 1 →0. 

. Numerical examples 

A number of examples are presented to illustrate the effectiveness

f this method for linear elastic crack problems analysis. The results of

he present method are compared with both the analytical solutions and

hose obtained by some other methods and some published results. 

In these examples, the support size for the weight function d I is taken

o be 3.5 h , the radius of the sub-domain r J is chosen as 0.85 h , with h
eing the average distance of the adjacent nodes. The parameter c I is
aken to be d I / c I =0.5, and the parameter c J is taken to be r J / c J =1.2,

nd the influence of those parameters can be seen in the previous work

f author ( [36,38] , 2010, [33] ). 
40 
.1. An edge-cracked plate under pure tension 

Consider an edge-cracked plate under pure tension as shown in

ig. 4 [10] , which has the length, 2 D = 20 mm, width, L = 52 mm, and

rack length a = 12 mm. The far field tensile stress, 𝜎= 0.2 GPa. The

lane stress problem is considered, and the material property are given

s: E = 76 GPa, 𝜇= 0.286. Due to symmetry, only half of the plate was

nalyzed. In the present calculation, 100 boundary nodes are used, and

he results obtained by different basis functions are used for comparison.

For convenience, the regulated stress intensity factor is used, which

s given as 𝐾̃ 𝐼 = 𝐾 𝐼 ∕( 𝜎
√
𝑎𝜋) . For the same number of boundary nodes,

he regulated stress intensity factors which obtained by different basis

unction is given as Table 1 , in which the results obtained by reference

10] are used for comparison and the analytical result is 1.44. It is shown

hat the results obtained by fully enriched basis function and hybrid

nriched basis function are much more close to the analytical results

nd published results. 

The 𝜎x , 𝜎y near crack tip by different basis function are given in

igs. 5 and 6 , in which the analytical results and those obtained by nu-

erical manifold method (NMM) [10] are given for comparison. It is

hown in those figures that a good agreement is achieved between those

esults, especial for the results that enriched basis function is used. 

.2. A central inclined cracked plate under tension 

It is shown in Fig. 7 , a angle-cracked plate with the length 2 b = 20 m

nd the width 2 h = 30 m. There is an inclined crack in the center of the
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Table 1 

Mode –Ⅰ stress intensity factor using different basis functions. 

Type of basis function The present method 𝐾̃ I Relative error (%) NMM [10] 𝐾̃ I Relative error (%) 

Quadratic 1.37 4.9 1.32 8.2 

Fully enriched 1.428 0.83 1.41 1.5 

Radial enriched 1.416 1.66 1.41 1.5 

Hybrid enriched 1.430 0.69 1.41 1.5 

Fig. 6. 𝜎y at the tip of the crack. 

Fig. 7. A central inclined cracked plate under tensile. 
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Table 2 

Stress intensity factors of central inclined plate under tensile. 

Angle 𝛼 𝐾̃ I 𝐾̃ II 

The present method XFEM [6] The present method XFEM [6] 

15 1.021 1.034 1.013 0.979 

30 1.009 1.011 1.005 1.006 

45 1.007 0.991 1.028 0.922 

60 1.011 1.017 1.007 1.013 

75 1.014 1.019 1.020 1.033 

Fig. 8. Stress intensity factors of central inclined plate on different angles. 
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t

late with the length is 2 a = 3 m, and the angle between crack direction

nd vertical direction is 𝛼. The far field tensile is 𝜎=1 Pa. The analytical

olutions are [6] 

 I = 𝜎
√
𝜋 𝑎 sin 2 𝛼 (68) 

 II = 𝜎
√
𝜋 𝑎 sin 𝛼 cos 𝛼 (69) 

The same as example 5.1, 60 boundary nodes are arranged on the

oundary and 30 nodes on the crack. The results on different inclined

ngles are given in Table 2 , in which 𝐾̃ I = 𝐾 I ∕ 𝐾 

A 
I , where 𝐾 

A 
I is the
41 
nalytical results which given as Eq. (68) . For comparison, the results

hich are obtained by extended finite element method [6] are also given

n Table 2 . It is shown that a great agreement can be achieve between

he present method, those of extended finite element method (XFEM)

nd analytical results. 

The stress intensity factors obtained by different inclined angles by

he present method, those of analytical results and those obtained by

FEM [6] are shown in Fig 8 , in which we can see that the results ob-

ained by those methods are close to each other. 

.3. Panel with doubly cracked hole 

In order to further illustrate the effectiveness of this method, we

xamine the uniaxial stressing of a panel which contains a doubly-

racked hole as shown in Fig. 9 , which is subjected to an uniaxial ten-

ion 𝜎. The geometry of this problem satisfies the following equations,

 h / w = a / r = 1, 2( 𝑟 + 𝑎 ) = 

1 
2 𝑤 . Chang and Mear [5] and Pan [22] solved

his problem by forming a single-domain BEM. 

For this problem, we use 60 outer boundary nodes, 30 nodes on hole

oundary and 30 nodes on crack. The solutions obtained by the present

ethod and those determined by Chang and Mear [5] and Pan [22] are

iven in Table 3 , which again shows excellent agreement between those

hree methods. 
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Fig. 9. Double edge cracks emanating from a hole in a rectangular. 

Table 3 

SIF 𝐾 I ∕ 𝜎
√
𝜋( 𝑟 + 𝑎 ) of double edge cracks. 

Method 𝐾 I ∕ 𝜎
√
𝜋( 𝑟 + 𝑎 ) 

DHBNM with Quadratic basis 1.6029 

DHBNM with enriched basis 1.5632 

Chang and Mear [5] 1.5627 

Pan [22] 1.5636 

Fig. 10. Model of circular-arc crack plate. 
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Fig. 11. Normalized stress intensity factors for arc crack on different angles. 

Table 4 

Normalized stress intensity factors for arc crack on 𝛼=45°. 

Crack element or nodes The present method BEM [17] 

𝐾 I ∕ 𝐾 𝑒𝑥𝑎 I 𝐾 II ∕ 𝐾 𝑒𝑥𝑎 II 𝐾 I ∕ 𝐾 𝑒𝑥𝑎 I 𝐾 II ∕ 𝐾 𝑒𝑥𝑎 II 

20 1.028 1.012 1.045 1.011 

40 1.016 1.009 1.017 1.012 

50 1.009 1.007 1.010 1.009 

60 1.007 1.008 1.007 1.007 
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.4. Arc crack 

Consider a circular-arc crack of radius r embedded in an infinite do-

ain, which is shown in Fig. 10 . The center of the circular arc is the

rigin of the coordinate system, and the midpoint of the crack is located

n the x-axis, and the angle of the arc is 2 𝛼. For this model, a uniaxial

ensile is applied in the x-direction. At this time, the mode one and mode

wo stress intensity factors are functions of 𝛼. 

In the present calculation, 60 nodes are used on arc crack. The results

or different angles of the present method and exact solutions [17] are

hown in Fig. 11 , in which 𝐹 = 

𝐾 

𝜎
√
𝜋𝑟 sin 𝛼

. It is shown that the results

btained by those two methods are close to each other. 

In Table 4 , the stress intensity factors are compared with exact values

or particular angle 𝛼=45 ○. It can be see that an excellent agreement

s achieved between those methods. 

. Conclusions 

A new boundary node meshless method named as discontinuous

ual hybrid boundary node method is proposed. It combines the hy-

rid boundary node method, dual reciprocity method and discontin-

ous shape function constructing method. HBNM is used to solve the
42 
omplementary solution of homogeneous equation, and DRM is used to

eal with the inhomogeneous terms. The boundary integral equation

s discretized using the meshless shape functions based on a group of

rbitrarily distributed points on the boundary. It does not require any

lement connectivity for constructing the shape function, and thus pos-

esses the dimensionality reduction advantage. The present work uses

irectly displacement extrapolation to calculate stress intensity factors.

esides, the boundary is divided into several individual segments, and

ach one of those segments is interpolated, respectively. For continuous

egments, radial point interpolation method is employed. In regard to

iscontinuous segments, the enriched discontinuous basis functions in

adial point interpolation method are presented for simulating discon-

inuity of displacement and stress field on surfaces of fracture, and the

ear tip asymptotic field function is employed for simulating the sin-

ularity of the crack tip stress field around the crack tip. So that high

ccuracy and discontinuity property of the crack can be easily described

n the present method. 

Both single mode and mixed mode problems can be solved by this

ethod. A number of examples are presented to evaluate the accuracy

f the stress intensity factors calculated by this method, and compar-

sons are made between the results obtained by this method and some

ublished results. The numerical examples are shown that the present

ethod is effective and can be widely applied in practical engineering. 

The main advantage of the present method compared to the tradi-

ional DHBNM is that a discontinuous structure can be considered and

o extra remeshing and integral technique are needed, then the present

ethod can be easily used for crack propagation, contact problem and

xcavation for rock engineering, and the present method will be em-

loyed in crack propagation for rock and concrete engineering, exca-

ation and interface problems for rock engineering and crack contact,

ohesive problem in practical engineering. 
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