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Based on the edge-based smoothed FEM (ES-FEM) and the partition of unity, the
first major items of Williams’ series for the displacement field near the crack tip are
incorporated in the test and trial function space, resulting in the enriched ES-FEM for-
mulation, eEF-FEM. The eES-FEM does not differentiate any shape functions, avoiding
the treatment of the 1/r singularity in computing the stiffness matrix. The complexity
of computation is accordingly reduced. Meanwhile, it is pointed out that the variational
foundation of the eES-FEM is the generalized Galerkin method. Typical numerical exam-
ples are analyzed, suggesting that the results of the eES-FEM are much better than either
FEM or ES-FEM.

Keywords: Finite element method (FEM); edge-based smoothed FEM (ES-FEM);
enriched edge-based smoothed FEM (eES-FEM); stress intensity factors (SIFs); gen-
eralized Galerkin method.

1. Introduction

The fracture behavior of cracked brittle structures, such as hard rocks, depends
greatly upon the stress and strain in the vicinity of the crack tip [Jiang et al. (2011)].
In linear elastic fracture mechanics, the stress intensity factor (SIF) characterizes
the singularity strength of the displacement and stress distribution around the crack
tip, and plays the most important role in the failure analysis [Liu et al. (2011a)].
In general, however, the analytical solutions for SIFs are difficult to obtain. There-
fore, many effective numerical methods such as the finite element methods (FEM)
[Zienkiewicz and Taylor (2000)], the boundary element methods [Yan (2007); Leonel
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et al. (2012)], the mesh-less methods [Brighenti (2005); Duflot and Nguyen-Dang
(2004)], the extended finite element method (XFEM) [Sukumar et al. (2003); Zheng
et al. (2015)], and the numerical manifold method (NMM) [Zheng and Xu (2014)]
have been proposed.

FEM is currently the most commonly used numerical method in solving prob-
lems from science and engineering. But it suffers from two obvious shortcomings.
One is overly stiff, leading to underestimation of the solution in the energy norm,
and the other is the significant loss of accuracy if heavily distorted elements exist
in the mesh [Liu et al. (2011a)].

Groups of mesh-less methods are also developed for fracture problems [Brighenti
(2005); Duflot and Nguyen-Dang (2004)], where the trial and test functions can be
constructed without reliance on element meshes. With the complex construction of
the trial and test functions, however, mesh-less methods have inherent shortcomings
in the stability and efficiency of numerical integration [Puso et al. (2008)]. In addi-
tion, extra difficulties exist in treating the essential boundary conditions due to the
absence of the Kronecker delta property of the shape functions [Zheng et al. (2010)].

The XFEM and the generalized finite element method (GFEM), which are both
within the framework of partition of unity, are versatile in the analysis of problems
characterized by discontinuities, singularities, localized deformations and complex
geometries [Sukumar et al. (2003); Belytschko et al. (2009)]. Used to describe com-
plicated crack geometry, the level set method has become an important ingredient
of XFEM (GFEM), particular in three-dimensional cases. However, it should be
mentioned that in the application of level sets to cracks, the update of level sets
still poses difficulties, see details in Belytschko et al. [2009].

Recently, a family of smoothed finite element methods (S-FEMs) [Liu and
Nguyen-Thoi (2010)] relied on the strain smoothing technique [Chen et al. (2001)]
have been developed for a wide range of practical problems, such as plates and shells
[Nguyen-Xuan et al. (2008); Nguyen-Thanh et al. (2008)], piezoelectricity [Nguyen-
Xuan et al. (2009)], fracture mechanics [Jiang et al. (2011); Liu and Nguyen-Thoi
(2010); Liu et al. (2011a,b)] and viscoelastoplasticity [Nguyen-Thoi et al. (2009)].
The S-FEM can adopt the same mesh as the standard FEM, although more flexible
meshes are allowable, to approximate the field variable of interest, but the gradient
of the field variable is computed by a smoothing process rather than differenti-
ating operations. Depending on the way that smoothing domains are created, the
S-FEMs have different features and properties. There are four modes in the S-FEM:
cell-based S-FEM (CS-FEM), node-based S-FEM (NS-FEM), edge-based S-FEM
(ES-FEM) and face-based S-FEM (FS-FEM) [Liu and Nguyen-Thoi (2010)]. Intu-
itively, applying the strain smoothing technique on smoothing domains helps soften
the over-stiffness of the standard FEM model, and hence improves the accuracy
of solutions in both displacement and stress [Nguyen-Xuan et al. (2012)]. Among
these S-FEM models, the ES-FEM has been found so far the most computationally
efficient [Liu and Nguyen-Thoi (2010)].
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In this study, the ES-FEM interpolation is augmented by the major items of
Williams’ displacement series in the vicinity of a crack tip to reflect the asymptotic
behavior of the solution near the crack tip, leading to the enriched edge-based
smoothed FEM (eES-FEM). The formulation of eES-FEM only involves the shape
functions with no need to calculate their derivatives in forming the element stiff-
ness matrix, and the 1/r singularity at the crack tip is accordingly removed.
Some typical examples are analyzed to examine the performance of the eES-
FEM, and comparisons with FEM and ES-FEM are made. The numerical results
indicate that the results from eES-FEM are far more accurate than either FEM
or ES-FEM.

2. Brief on Problem

Consider a 2D linear elastic problem defined on domain Ω bounded by ∂Ω = Γu ∪
Γt ∪ Γc, as shown in Fig. 1. Here, Γu is the displacement boundary; Γt the traction
boundary; and Γc the crack surface, defined by Γc = Γc+ ∪ Γc− ; with Γc+ and Γc−

the upper and lower crack surfaces, respectively. The governing equations and the
boundary conditions for this problem are as follows:

(1) the equilibrium equations

∇ · σ + b = 0 in Ω, (1)

where σ is the Cauchy stress, and b the body force per unit volume;
(2) the constitutive equation

σ = Dε in Ω, (2)

where D is the Hooke matrix of elastic constants and ε the strain;
(3) the compatibility equation

ε = ∂u in Ω, (3)

Fig. 1. A 2D linear elastic cracked body.
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where u is the displacement vector, and ∂ a matrix of differential operators

∂ =




∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x




T

; (4)

(4) and the boundary conditions

σ · n = t on Γt, (5)

σ · n = 0 on Γc, (6)

u = u on Γu, (7)

where n is the unit outward normal, t and u are the prescribed traction vector
on Γt and displacement vector on Γu, respectively.

3. The eES-FEM Formulation

3.1. The approximation of displacements based

on the partition of unity

In the partition of unity method (PUM) [Babuška and Melenk (1997); Melenk and
Babuška (1996)], we cover the problem domain Ω with a group of patches, denoted
by {ωi}. Here, each ωi is a simply connected domain. If a finite element mesh is
used to form {ωi}, ωi can be the collection of all elements sharing node-i, referred
to as the star in the literature. Over ωi, we define a function space in which the
functions can reflect the asymptotic behavior of solutions over ωi.

In this study, we stipulate that the cracks match with the mesh. Purely for the
simplicity in programming, such a stipulation avoids complicated element cutting,
but it is by no means essential and can be discarded as in XFEM or NMM [Zheng
and Xu (2014)].

If node-i is a crack tip, we select local functions over ωi having the form,

u i(x ) = P it(x ) · a it (8)

with

P it(x ) =

[
1 0 Φ1 0 Φ2 0 Φ3 0 Φ4 0

0 1 0 Φ1 0 Φ2 0 Φ3 0 Φ4

]
, (9)

where a it are the unknown coefficient vector of sixth order, referred to as the
generalized degrees of freedom vector in the finite element literature. And Φi, i =
1, . . . , 4,

[
Φ1 Φ2 Φ3 Φ4

]
=

[√
rsin

θ

2
√

rcos
θ

2
√

rsin
3θ

2
√

rcos
3θ

2

]
(10)
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are the first four items of Williams’ displacement series [Williams (1957)], where
(r, θ) is the polar coordinate in the local coordinate system with the origin at the
crack tip.

If node-i is an ordinary node, the local function over ωi are

u i(x ) = P io(x ) · a io (11)

with

P io(x ) =

[
1 0

0 1

]
(12)

and

a io = (ui vi)T (13)

in which ui and vi are the displacement components of node-i in the x-axis and
y-axis, respectively.

In eES-FEM, only the asymptotic near-tip displacement field (or first major
items of Williams’ series) which has been adopted by XFEM for the displacement
field near the crack tip are incorporated in the local approximation for the crack
tip node. However, the step function for the discontinuity of the interior of a crack
is not incorporated in the current code. We will incorporate the step function in
eES-FEM in our future work, so as to make a wide application for eES-FEM.

Associated with ωi is the weight function ϕi(x ), which composes of all shape
functions of all elements at node-i. Outside ωi, ϕi(x ) = 0. So, {ϕi(x )} constitutes
the partition of unity subordinate to {ωi}.

For the simplicity of presentation, we partition Ω with a triangular mesh. Taking
a typical element Ωeof the mesh with node indices 1, 2 and 3, the approximation to
displacement vector u(x, y) in Ωe is expressed by

u =
3∑

i=1

ϕiui =
3∑

i=1

Liui (14)

due to the compact support property of {ϕi(x )}. Here, ϕi = Li = area coordinate
of node-i of triangle Ωe, see Zienkiewicz and Taylor [2000] for details.

By substituting Eq. (8) or (11) into Eq. (14), we have the matrix form equivalent
to Eq. (14)

u = Nae , (15)

where ae = generalized degrees of freedom vector collecting generalized degrees of
freedom of three nodes of Ωe; N = [N 1 N 2 N 3 ], defined by

N i = LiP i (16)

with i = 1, 2, 3;Pi = P io if node-i is an ordinary node; or P i = P it if node-i is a
crack tip.
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In eES-FEM, only the crack tip node is enriched with the asymptotic near-tip
displacement field and no extra nodes are needed to reproduce the stress singularity
in the vicinity of the crack-tip. However, both singular FEM [Zienkiewicz and Taylor
(2000)] and singular ES-FEM [Liu et al. (2011b)] need extra nodes for the crack tip
elements to reproduce the stress singularity in the vicinity of the crack-tip. When
dealing with crack propagation problems, constantly adding extra nodes for the
crack tip elements and deleting extra nodes for none of the crack tip elements (used
to be crack tip elements) are cumbersome. The eES-FEM is free from this issue.
eES-FEM is a development of ES-FEM, and very limited change is needed on the
ES-FEM code to compose the eES-FEM code. In our future work, we will further
develop eES-FEM for crack propagation problems and compare the results with
those of singular FEM, singular ES-FEM and XFEM.

3.2. Edge-based strain smoothing

In the ES-FEM, we do not calculate the strain in elements by differentiating the dis-
placement; instead, we compute the “smoothed strain” over the smoothing domains.
Given the triangular mesh, the edge-based smoothing domains are created by con-
necting two endpoints of each edge to the centers of the adjacent elements, as shown
in Fig. 2. So, we need to label all element edges.

Now we take the smoothing domain Ωλ created from element edge-λ as an
instance. Ωλ may be a quad or a triangle depending on whether edge-λ is inside the
problem domain or on the boundary; see Fig. 3 for the two situations. The average
strain over Ωλ is referred to as the smoothing strain, defined by

ελ =
1

Aλ

∫
Ωλ

εdΩ (17)

with Aλ = area of Ωλ.

Field node Centriod of triangle smoothing domainCrack tip node

Fig. 2. An ESFEM model: triangular mesh (solid lines), triangular and quadrilateral smoothing
domains for fracture problem with an opening crack.
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λΩ

λ

λΩ

λ

(a) (b)

Fig. 3. Smoothing domain from edge-λ. (a) Inner edge and (b) Boundary edge.

By substituting Eq. (3) into Eq. (17) and applying Green’s divergence theorem,
we have

ελ =
1

Aλ

∫
∂Ωλ

LnudΓ, (18)

where ∂Ωλ = boundary of Ωλ;Ln is the matrix induced by the differential operator
∂ in Eq. (4), defined by

Ln =



nx 0

0 ny

ny nx


 (19)

in which nx and ny are x- and y-components of unit outward normal n on ∂Ωλ,
respectively.

Now we substitute Eq. (15) in Eq. (18), resulting in

ελ = Bλaλ. (20)

To explain Eq. (20), we denote by N [λ] the set of all nodes that are nodes of elements
sharing edge−λ. Then, aλ = generalized degrees of freedom vector of the nodes of
set N [λ]; the matrix Bλ = [B

j

λ], the superscript j ∈ N [λ], and

B
j

λ =
1

Aλ

∫
∂Ωλ

LnN jdΓ. (21)

3.3. Generalized Galerkin method and computation

of stiffness matrix

The standard Galerkin formulation of linear elasticity says that uh solves the prob-
lem of interest if and only if

a(uh, vh) = f(vh) (22)
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for any vh; where

a(uh, vh) =
∫

Ω

ε(vh) · σ(uh)dΩ, (23)

f(vh) =
∫

Ω

b · vhdΩ +
∫

Γt

t · vhdΓ. (24)

Here and subsequently, we omit the constraints on both uh and vh. In Eq. (23),
ε(vh) and σ(uh) are calculated by the relationships of ε(vh) = ∂vh and σ(uh) =
Dε(uh), respectively. This is the procedure adopted by the standard FEM. In the
ES-FEM, however, the strain is not calculated by the relationship of ε(vh) = ∂vh

but rather by Eq. (20). To establish the ES-FEM, we start from the generalized
Galerkin method [Quarteroni and Valli (1997)], which says uh solves the problem
of interest if and only if

ah(uh, vh) = fh(vh) (25)

for any vh; where ah(uh, vh) and fh(vh) should satisfy the conditions in the
first Strang lemma, see Quarteroni and Valli [1997] for details. Particular for the
ES-FEM,

ah(uh, vh) =
∫

Ω

ε(vh) · σ(uh)dΩ, (26)

where ε(vh) is calculated over the smoothing domains, see Eq. (20), and σ(uh) =
Dε(uh); and

fh(vh) = f(vh). (27)

The variational formulation given here is different from that by Liu and Nguyen-
Thoi [2010], who derived the variational formulation of S-FEM from the Hu–
Washizu principle.

By assembling the contribution of all smoothing domains to ah(uh, vh), and the
contribution of all elements to fh(vh), we have the system of linear equations for
the eES-FEM,

Ka = p, (28)

where a is the generalized degrees of freedom vector collecting the generalized
degrees of freedom of all nodes; and K is the global stiffness matrix to be explained
subsequently, and p the load vector defined by

p =
∫

Ω

N TbdΩ +
∫

Γu

N TbdΓ (29)

and can be formed as in the FEM.
Now we turn to the assemblage of K . We first consider the contribution of a

typical smoothing domain Ωλ to K , where Ωλ corresponds to edge − λ. According
to Eq. (26), a local stiffness matrix, denoted by Kλ, will be generated from Ωλ. Kλ

includes m × m sub-matrices, with m = 4 or 3 depending on the number of nodes
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of N [λ]. A typical sub-matrix in Kλ, is denoted by K ij
λ , where subscripts i and j

represent any two nodes of N [λ]. K ij
λ is calculated by

K ij
λ = Aλ(B

i

λ)TDB
j

λ (30)

with i, j ∈ N [λ]; the definition of B
i

λ and B
j

λ is given by Eq. (21).
Once Kλ is obtained, we assemble all K ij

λ onto K .
To this point we have not differentiated any shape functions whatsoever in com-

puting B
i

λ or B
j

λ, thus no singularity of 1/r is involved.

3.4. The structure of global stiffness matrix

Similar to the standard FEM, sub-matrix K ij in K is a nil matrix unless nodes
i and j are relevant. According to the way to form K , relevant nodes of node-i
consist of nodes of two element groups. The elements of group-1 constitute the star
ωi; while the elements of group-2 are those elements neighboring ωi each of which
shares at least one edge with ωi. Figure 4 gives an example, the elements of group-2
are shadowed, and all nodes marked by • are relevant to node-i. Therefore, the band
of S-FEM is in general larger than that of FEM.

3.5. Recovery of strain/stress field for ES-FEM

In FEM, the strain/stress obtained in an element is continuous, and is calculated
at the Gauss points in each element. However, this is not the case in the ES-
FEM because of the discontinuity of strain at the boundaries of smoothing domains
located inside elements [Liu and Nguyen-Thoi (2010)]. Therefore in the ES-FEM,
it is essential to create a continuous strain field in each element. The “recovery”

Fig. 4. All nodes marked by • are relevant to node-i.

1750052-9

In
t. 

J.
 C

om
pu

t. 
M

et
ho

ds
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 F

L
IN

D
E

R
S 

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n 

11
/0

2/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

October 31, 2016 8:10 WSPC/0219-8762 196-IJCM 1750052

Y. Yang, H. Zheng & X. Du

strain εR is continuous inside the element, calculated by

εR =
3∑

i=1

Liεi, (31)

where εi is the average strain at node I, defined as

εi =
1

Ans
i

ni
s∑

λ=1

Aλελ (32)

in which ni
s is the number of smoothing domains Ωλ around node i, Ans

i =
∑ni

s

λ=1 Aλ.
Substituting Eq. (31) into Eq. (2) results in the “recovery” stress

σR = DεR. (33)

4. Numerical Examples

In this section, linear fracture examples are analyzed to demonstrate the accuracy
of eES-FEM, including fracture of pure mode I, pure mode II and mixed mode.
The computation scheme for the SIFs is based on Liu and Nguyen-Thoi [2010]. For
comparison purposes, all the problems are also solved using FEM and ES-FEM with
the same mesh.

4.1. Single-edge crack suffered with tensile forces (Mode I)

The first example is a plate with single-edge crack under the action of a uniform
tension on the top surface. The sketch of the problem is shown in Fig. 5 with the
parameters W = 2.0m, 2H = 6m, a = 1 m and σ = 1.0N/m2, Young’s modules
E = 1×105 N/m2 and Poisson’s ratio v = 0.3. The plane strain condition is assumed.

The value of the mode I SIF KI as a function of the above parameters is given
by Ewalds and Wanhill [1989] as follows

KI = Cσ
√

aπ, (34)

where C is the modification factor to reflect the size effect, and if a/W ≤ 0.6,
approximated by

C = 1.12 − 0.231
( a

W

)
+ 10.55

( a

W

)2

− 21.72
( a

W

)3

+ 30.39
( a

W

)4

. (35)

Five regular grids are designed to investigate the accuracy and convergence proper-
ties of the eES-FEM, with m×n = (10×30, 20×60, 30×90, 40×120, 50×150) ele-
ments. Here, m = the number of element layers in x-direction, and n = the number
of element layers in y-direction. Figure 6 shows the grid having 341 nodes, 10 ele-
ment layers in x-direction, and 30 element layers in y-direction.

The normalized SIFs KI from different grids and different numerical methods
are shown in Fig. 7. As can be seen, the computed SIF KI converges rapidly from
below the reference value with elements increasing. In addition, for the same mesh,
the solutions of ES-FEM are much better than standard FEM, but the eES-FEM
achieves even higher accuracy than the ES-FEM.
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Fig. 5. Finite plate with an edge crack under tension.

Fig. 6. Mesh with 10 element layers in x-direction for the model in Fig. 5.

4.2. A plate with a central crack subjected to tensile forces

(Mode I)

As the second example, we consider a rectangular plate of homogeneous isotropic
material with a horizontal central crack under the action of uniform tension in
the vertical direction. The schematic diagram of the problem is in Fig. 8. Under
this setting, the fracture is of pure mode I like example given in Sec. 4.1. The
parameters are W = 15.0 cm, L = 50.0 cm, a = 5 cm and σ = 1 N/cm2, Young’s
modules E = 3×107 N/cm2 and Poisson’s ratio v = 0.25. The plane strain condition
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Fig. 7. The normalized SIF KI with different mesh density for single-edge crack suffered with
tensile forces.

a
2L

a

2W

σ

A B

Fig. 8. A rectangular plate with a central crack subjected to tension.

is assumed. The analytical solution of SIFs for such a structure is given by [Tada
et al. (2000)],

KI = Cσ
√

aπ, (36)

where C is the modification factor to reflect the size effect, approximated by

C =
[
1 − 0.025

( a

W

)2

− 0.06
( a

W

)4
] (

sec
( πa

2W

))0.5

. (37)

For the same purpose as example given in Sec. 4.1, six regular grids are concerned
in this analysis with m × n = (15 × 50, 18× 60, 21× 70, 24× 80, 27× 90, 30× 100).
Figure 9 shows the grid having 816 nodes, 15 element layers in x-direction, and 50
element layers in y-direction.

Figures 10 and 11 show the normalized SIFs KI for the two crack tips from
different grids and different numerical methods. The conclusions drawn in the first
example hold as well.
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Fig. 9. Mesh with 15 element layers in x-direction for the model in Fig. 8.
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Fig. 10. The normalized SIF KI at crack-tip A with different mesh density for the rectangular
plate with a central crack subjected to tension (mode I).
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Fig. 11. The normalized SIF KI at crack-tip B with different mesh density for the rectangular
plate with a central crack subjected to tension (mode I).
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2W

τ

2L
a

A B

a

τ

Fig. 12. A rectangular plate with a central crack subjected to shear.

Fig. 13. Mesh (zooming near the crack) for the model in Fig. 12.

4.3. A plate with a central crack subjected to shear forces

(Mode II)

This example concerns a plate with a horizontal central crack subjected to shear
force τ = 1 N/cm2 that gives a pure mode II state, as shown in Fig. 12. The
parameters for this problem are W = 21.0 cm, L = 22.0 cm and a = 2 cm, Young’s
modules E = 3×107 N/cm2 and Poisson’s ratio v = 0.25. The plane strain condition
is assumed. With W/a ≥ 10, the analytical solution of SIF for such a structure is
[Tada et al. (2000)]

KII = τ
√

aπ. (38)

For the purpose of testing the accuracy and convergence of the eES-FEM, three
regular grids (105×110, 126×132, 147×154) are designed in this analysis. Figure 13
shows the zooming grid near the crack tip for the 105× 110 grid.

Figures 14 and 15 show the normalized SIFs KII for the two crack tips from
different grids and different numerical methods. Again, the same conclusions as the
first two examples can be drawn.

4.4. A plate with a central inclined crack (Mixed Mode)

As the last example, a square plate of homogeneous isotropic material with an
inclined crack subjected to a unit tension is considered. The schematic diagram of
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Fig. 14. The normalized SIF KII at crack-tip A with different mesh density for the rectangular
plate with a central crack subjected to shear (mode II).
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Fig. 15. The normalized SIF KII at crack-tip B with different mesh density for the rectangular
plate with a central crack subjected to shear (mode II).

the problem is shown in Fig. 16. Under this setting, the fracture is of mixed mode.
The parameters for this problems are L = 20m, a = 1m, σ = 1N/m2, Young’s
modules E = 200MPa and Poisson’s ratio v = 0.3. The plane strain condition is
assumed. With L/a ≥ 20, the analytical solution of SIFs as a function of the angle
β for this setting are available as [Aliabadi et al. (1987)]{

KI = σcos2β
√

aπ

KII = σsinβcosβ
√

aπ
. (39)

Four grids with varying β, namely β = 30◦(331 nodes), 40◦(320 nodes), 50◦(331
nodes), 60◦(315 nodes) are designed in this analysis. Figure 17 shows the grid of
β = 60◦ and 315 nodes.

The normalized mode I and mode II SIFs by different numerical methods are
presented in Figs. 18 to 21. It is observed that best agreement with the reference
solution is obtained by the eES-FEM.
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Fig. 16. A square plate with an inclined crack subjected to tension.

Fig. 17. Mesh used for the square plate with an inclined crack (β = 60◦).
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Fig. 18. The normalized SIF KI at crack-tip A with different crack angle for the rectangular plate
with a inclined crack subjected to tension (mixed mode).
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Fig. 19. The normalized SIF KII at crack-tip A with different crack angle for the rectangular plate
with a inclined crack subjected to tension (mixed mode).
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Fig. 20. The normalized SIF KI at crack-tip B with different crack angle for the rectangular plate
with a inclined crack subjected to tension (mixed mode).
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Fig. 21. The normalized SIF KII at crack-tip B with different crack angle for the rectangular plate
with a inclined crack subjected to tension (mixed mode).
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5. Discussions and Conclusions

The eES-FEM has been developed for linear elastic fracture problems, based on
the ES-FEM with triangular meshes. The major items of Williams’ displacement
series are incorporated to reflect the asymptotic behavior of the solution near the
crack tip. The proposed formulation does not differentiate the shape functions in
computing the element stiffness matrix. As a result, there is no need to treat the
1/r singularity. The complexity of computation is accordingly reduced significantly.
Numerical examples indicate that the proposed method converges faster than either
ES-FEM or FEM.

To enhance the computational efficiency of the proposed method, the recov-
ery procedure [Nguyen-Xuan et al. (2013)] for estimating errors and self-adaptive
analysis will be conducted in our coming works.
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