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As a partition of unity method (PUM), the numerical manifold method (NMM) is capable of constructing global 

approximation by simply multiplying PU function with local approximation. In order to enhance accuracy, high 

order polynomials can be specified as local approximation. This, however, will hinder the engineering application 

of NMM by its ill conditioning of the global stiffness matrix. In this study, an improved NMM (iNMM) without 

extra degree of freedoms (DOFs) is developed. Without the extra DOFs, the resulting global stiffness becomes 

linear independent. In addition, the stresses are continuous at all nodes. Numerical studies show the iNMM’s 

excellent accuracy. 
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. Introduction 

Over the past three decades, the concept of partition of unity (PU)

pproximations has been established and a number of PU-based meth-

ds [1] were developed for solid mechanics, such as the partition of

nity method [2–5] , the generalized finite element method [6] , the ex-

ended finite element method (XFEM) [7,8] , the numerical manifold

ethod (NMM) [9,10] , the phantom-node method [11,12] and many

thers [13–16] . 

Since the advent, the NMM has attracted much interest from re-

earchers in computational solid mechanics as it possesses several ad-

antages over the FEM. For example, the local approximation function

n NMM can be freely chosen so as to obtain higher resolution of the

oundary value problem. In addition, the mathematical mesh in NMM

oes not have to match the material interface or the fracture face, in-

icating that NMM can always employ regular mesh to discretize the

roblem domain. This, however, is nearly impossible for FEM, when

ealing with problems with complicated geometric boundaries. Accord-

ng to our experience from isoparametric elements, such as four-node

soparametric quadrilateral element (Quad4) and eight-node isopara-

etric quadrilateral element (Quad8) [17] , regular mesh can generally

chieve much better accuracy than distorted mesh. Moreover, NMM is

ery suitable for simulating problems with moving boundaries, such as

rack propagation problems, while in FEM, the mesh has to be cease-

essly regenerated so as to match the evolving fracture face. Due to the

ttractive advantages, NMM has been successfully used to model static

rack propagation problems [18–23] , dynamic crack propagation prob-
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ems [24] , contact problems [25] seepage problems [26,27] and wave

ropagation problems [28] . 

Within the framework of PU-based method, high-order global ap-

roximations can be directly constructed in the NMM by simply adopt-

ng high-order polynomial local approximations. Use of smooth polyno-

ial local approximations can achieve the following purposes [29,30] :

 1 ) perform p -adaptive analysis without the addition of extra nodes; ( 2 )

void mesh grading yet obtain a same quality of approximation on a uni-

orm mesh; ( 3 ) remove global refinement constraints. However, when

oth the PU function and the local approximations are simultaneously

aken as high-order polynomials, the resulting global stiffness matrix

ill be “linear dependence ” (LD) and special equation solver is needed,

ecause traditional equation solver generally designed for positive def-

nite equations cannot solve singular equations. Here, the LD problem

eans the global stiffness matrix is still singular even after the basic

oundary condition to eliminate the rigid body displacement has been

mposed. 

The LD problem was first observed by Babu š ka and Melenk

2,3] when they designed a one-dimensional PUM approximation for

he one-dimensional Helmholtz equation. To address LD problem, great

fforts have been made in the past years by various means. An et al.

31] proposed an algorithm for predicting the rank deficiency of the

tiffness matrix by using the topological information inheriting in the

nite element mesh. Griebel and Schweitzer [32] proposed flat-top PU

unctions to avoid the linear dependence problems. The only problem

s the complexity involved in the construction of the flat-top PU func-

ions [29] . Tian et al. [33] carried out numerical experiments among

http://dx.doi.org/10.1016/j.enganabound.2017.08.011
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everal GFEMs to investigate the LD problem. Based on the numerical

xperiments, they proposed several approaches to eliminate the linear

ependence problem, such as suppressing the higher-order degrees of

reedom (DOF) and adjustment of the element geometry. However, as

iscussed in [34] , these approaches [33] cannot ensure the removal of

he LD problem and are also difficult to be implemented robustly in

ractice. In [34] , Cai et al. developed a PU-based triangular element

sing a dual local approximation scheme by treating boundary and in-

erior nodes separately. According to their report, the use of dual local

pproximation scheme can effectively remove the LD problem. Based on

verlapping polyhedral covers generated from Voronoi cells, Riker and

olzer [35] proposed a mixed-cell-complex partition of unity method

MCCPUM) to eliminate the LD problem. However, the generation of

ixed-cell-complex is very rather complicated and computationally ex-

ensive. 

In other front, a family of PU-based “FE-Meshfree ” elements was pro-

osed in [36–39] which successfully eliminates the LD problem and the

hape function possesses the desirable delta property. Although a least

quare version of point interpolation method (LSPIM) [36,37] or radial

oint interpolation method (RPIM) [40] , which is time-consuming, is

sed to construct the local approximations of the “FE-Meshfree ” ele-

ents, extra nodes or DOFs are not needed, because they just use the

ame mesh as in the FEM, and the total DOFs is the same as FEM. Nu-

erical tests carried out in [36–38] have shown that the “FE-Meshfree ”

lements are computationally more efficient than FEM. If regular mesh

s adopted, accuracy obtained through “FE-Meshfree ” elements is much

etter than that obtained through FEM. If distorted mesh is adopted,

E-Meshfree elements have much better mesh-distortion tolerance than

EM. 

Although high-order global approximations can be constructed eas-

ly in “FE-Meshfree ” elements, the nodal stress is not continuous at

odes, and stress smoothing operation is needed in the post process-

ng stage. To further improve the property of “FE-Meshfree ” elements,

ang Zheng et al. [41–48] developed a series of “FE-Meshfree ” elements

ith continuous nodal stress, such as the ‘FE-Meshfree ’ three-node tri-

ngular element with continuous nodal stress using radial-polynomial

asis functions (Trig3-RPIMcns) [48] . According to their report, Trig3-

PIMcns can obtain better accuracy, higher convergence rate and higher

olerance to mesh distortion than the three-node triangular elements

Trig3) and the four-node quadrilateral element (Quad4) for linear elas-

ic, free vibration and forced vibration problems by simply using the

ame mesh as in Trig3. Since Trig3-RPIMcns has to deploy conform-

ng mesh to discretize the problem domain, the time spent in mesh

eneration for problems with complex boundaries is not negligible. If

rack propagation is involved, the burden of mesh generation is fur-

her amplified. This demerit hinders the applications of Trig3-RPIMcns

or practical problems. Since there is no need for NMM to deploy con-

orming mesh, the mesh generation should be very convenient. Be-

ides, NMM can always adopt regular mesh to discretize the prob-

em domain, and mesh distortion, which results in poor accuracy for

EM, does not exist in NMM. Therefore, developing a method which

ombines the advantages of both the Trig3-RPIMcns and the NMM is

ssential. 

In this study, an improved version of NMM (iNMM), which syner-

izes the advantages of both the Trig3-RPIMcns and the numerical man-

fold method (NMM), is developed for linear elastic problems. The prop-

rty and performance of the iNMM will be studied in great detail in the

est of this paper. The outline of this paper is as follows: Section 2 briefly

ntroduces the numerical manifold method (NMM); Section 3 presents

he formulation of iNMM and the properties of the iNMM shape func-

ions are discussed. Section 4 presents the discrete equations for linear

lastic problems in the context of iNMM; Numerical examples and dis-

ussions are subsequently presented in Section 5 . Some conclusions are

rawn in the last section. 
118 
. Basic concepts of NMM 

The background of NMM has been described in great detail in [49] .

herefore, only the basic concepts are introduced in this section. To

llustrate these concepts, an example shown in Fig. 1 is employed. 

The core and most innovative feature of the NMM is the adoption of

wo cover systems, namely the mathematical cover (MC) and the phys-

cal cover (PC), from which the nodes and elements are generated. 

The MC is the union of a series of user-defined overlapping small

omains. Each small domain is called mathematical patch (MP). In

ig. 1 , the MC is constructed by regular triangular mesh, and hence

ach MP is the union of several triangles sharing the same node such

s MP 1 . It is noticed that the MC does not have to match the material

oundaries, holes or fracture faces of the problem domain, but have to

over the problem domain completely. 

The PC is the union of all the physical patches (PPs). The PPs are

enerated by intersecting all the MPs with the physical mesh. Here, the

hysical mesh is the union of all the material interfaces, joints, fractures

nd domain boundaries, which are used to define the unique problem

omain. From a MP, at least one PP can be generated, such as PP 2 ,

P 3 , PP 4 , and PP 5 ( Fig. 1 ). It is noticed that each PP corresponds to a

NMM node ” (also named as ‘‘generalized node ’’), on which the degree

f freedoms (DOFs) are defined, such as 𝐺𝑁 

𝑝 

2 in Fig. 1 . In the rest of this

aper, the ‘‘NMM node ’’ will be simply called ‘‘node ’’ for the purpose of

escription. 

In NMM, the basic units to integrate the weak form of the problem

re manifold elements. Each manifold element is the common domains

f neighboring PPs, such as E 1 , which is the common domains of PP 3 ,

P 4 and PP 5 ( Fig. 1 ). 

. Formulation for the iNMM 

In order to synergize the advantages of both the Trig3-RPIMcns and

he numerical manifold method (NMM), an improved version of NMM

iNMM) is developed. Formulation of the iNMM will be described in

reat detail in this section. 

As a PU-based method, the global approximation of NMM in a man-

fold element is obtained by multiplying the PU function with the local

pproximation, and expressed as 

𝑢 ℎ ( 𝒙 ) = 𝑤 1 ( 𝒙 ) 𝑢 1 ( 𝒙 ) + 𝑤 2 ( 𝒙 ) 𝑢 2 ( 𝒙 ) + 𝑤 3 ( 𝒙 ) 𝑢 3 ( 𝒙 ) (1)

here w i ( x ) and u i ( x ) are the PU function and the local approximation

unction associated with physical patch i ( PP i ), respectively. 

.1. PU function of the iNMM 

The area coordinates are used to construct the PU functions of iNMM.

he transformation of the area coordinates is defined as [50] : 

 

 

 

 

1 
𝑥 

𝑦 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
1 1 1 
𝑥 1 𝑥 2 𝑥 3 
𝑦 1 𝑦 2 𝑦 3 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝐿 1 
𝐿 2 
𝐿 3 

⎤ ⎥ ⎥ ⎦ , 
⎡ ⎢ ⎢ ⎣ 
𝐿 1 
𝐿 2 
𝐿 3 

⎤ ⎥ ⎥ ⎦ = 

1 
2 𝐴 

⎡ ⎢ ⎢ ⎣ 
𝑥 2 𝑦 3 − 𝑥 3 𝑦 2 𝑦 2 − 𝑦 3 𝑥 3 − 𝑥 2 
𝑥 3 𝑦 1 − 𝑥 1 𝑦 3 𝑦 3 − 𝑦 1 𝑥 1 − 𝑥 3 
𝑥 1 𝑦 2 − 𝑥 2 𝑦 1 𝑦 1 − 𝑦 2 𝑥 2 − 𝑥 1 

⎤ ⎥ ⎥ ⎦ 
def 1 

2 𝐴 

⎡ ⎢ ⎢ ⎣ 
𝑎 1 𝑏 1 𝑐 1 
𝑎 2 𝑏 2 𝑐 2 
𝑎 3 𝑏 3 𝑐 3 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
1 
𝑥 

𝑦 

⎤ ⎥ ⎥ ⎦ , (2) 

n which 

 𝐴 = det 
⎡ ⎢ ⎢ ⎣ 
1 1 1 
𝑥 1 𝑥 2 𝑥 3 
𝑦 1 𝑦 2 𝑦 3 

⎤ ⎥ ⎥ ⎦ , 𝐿 1 + 𝐿 2 + 𝐿 3 = 1 . (3)

Unlike traditional NMM, which uses the FEM shape functions to con-

truct the PU functions, the PU functions of the iNMM are expressed as

48] 
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Fig. 1. Mathematical patches, physical patches and manifold elements in NMM. 
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 1 ( 𝒙 ) = 𝐿 1 + 𝐿 

2 
1 𝐿 2 + 𝐿 

2 
1 𝐿 3 − 𝐿 1 𝐿 

2 
2 − 𝐿 1 𝐿 

2 
3 (4.1)

 2 ( 𝒙 ) = 𝐿 2 + 𝐿 

2 
2 𝐿 3 + 𝐿 

2 
2 𝐿 1 − 𝐿 2 𝐿 

2 
3 − 𝐿 2 𝐿 

2 
1 (4.2)

 3 ( 𝒙 ) = 𝐿 3 + 𝐿 

2 
3 𝐿 1 + 𝐿 

2 
3 𝐿 2 − 𝐿 3 𝐿 

2 
1 − 𝐿 3 𝐿 

2 
2 (4.3)

There are four important properties for the PU functions of iNMM: 

(i) the PU condition: 
∑3 

𝑖 =1 𝑤 𝑖 ( 𝒙 ) = 1 , 
(ii) non-negative property, 0 ≤ w i ( x ) ≤ 1, 

(iii) the Kronecker-delta property w i ( x j ) = 𝛿ij ( i,j = 1,2,3). 

(iv) the gradient of the PU functions is continuous at all the nodes. 

.2. Local approximation of the iNMM 

There are mainly two ways to construct high order polynomial lo-

al approximations. Here, “high order ” means the order of polynomial

unction is great than or equal to one. The first way is by using explicit

olynomials ( Eqs. (6) –(9) ) to construct high order polynomial function,

uch as in standard GFEM or NMM. This, however, will not only sig-

ificantly increase the global DOFs, but also lead to a LD problem. If

he LD problem arises, traditional equation solver will fail and special

quation solver is needed to solve the system equations. The second

ay is by using a meshfree method, which has been widely used in the

FE-Meshfree ” elements [37] . In the second way, the number of global

OFs remains unchanged. Moreover, the LD problem will not arise.

SPIM [37] , reduced CO-MLS (CO-LS) [43,44] and radial-polynomial
119 
asis functions [40] , which possess the desired Kronecker-delta prop-

rty, have been employed to construct the local approximation of ‘FE-

eshfree ’ elements. 

Since the LSPIM adopts pure polynomial basis functions to construct

pproximation, the singularity problem will appear if the nodes arrange-

ent does not cooperate consistently with polynomial basis functions

51] . Therefore, the radial point interpolation method (RPIM) [40] is

mployed to construct the local approximation of the iNMM, because

t combines the advantages of both radial basis functions and PIM, and

s free from the singularity problem. The local approximation of iNMM,

an then be expressed as 

 𝑖 ( 𝒙 ) = 

𝑛 [ 𝑖 ] ∑
𝑗=1 

𝑟 𝑗 ( 𝑥, 𝑦 ) 𝑎 𝑗 + 

𝑀 ∑
𝑘 =1 

𝑝 𝑘 ( 𝑥, 𝑦 ) 𝑏 𝑘 = 𝐫( 𝑥, 𝑦 ) 𝐚 + 𝐩 ( 𝑥, 𝑦 ) 𝐛 (5)

here M is the number of polynomial terms and n [ i ] is the total number

f nodes in the domain of PP i . a and b are two vectors yet to be deter-

ined. p ( x, y ) and r ( x, y ) denote polynomial functions and radial basis

unctions. Based on the value of M , p ( x, y ) can be expressed as 

f 𝑀 = 3 , 𝒑 ( 𝒙 ) = { 1 𝑥 𝑦 } ; (6) 

f 𝑀 = 4 , 𝒑 ( 𝒙 ) = { 1 𝑥 𝑦 xy } ; (7) 

f 𝑀 = 6 , 𝒑 ( 𝒙 ) = 

{
1 𝑥 𝑦 xy 𝑥 2 𝑦 2 

}
. (8) 

f 𝑀 = 8 , 𝒑 ( 𝒙 ) = 

{
1 𝑥 𝑦 xy 𝑥 2 𝑦 2 𝑥 2 𝑦 𝑥𝑦 2 

}
(9) 
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Fig. 2. Comparison of the influence domain of node 12. 
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i  
In this study, the number of polynomial basis terms, M , is selected

s follows: if 4 > n [ i ] ≥ 3, M = 3; if 5 ≥ n [ i ] ≥ 4, M = 4; if 7 ≥ n [ i ] ≥ 6,

M = 6; if n [ i ] ≥ 8, M = 8. The vector r ( x, y ) is expressed as [40] 

( 𝑥, 𝑦 ) = [ 𝑟 1 ( 𝑥, 𝑦 ) 𝑟 2 ( 𝑥, 𝑦 ) ⋯ 𝑟 𝑛 [ 𝑖 ] ( 𝑥, 𝑦 )] (10)

n which r j ( x, y ) is expressed as [52] 

 𝑗 ( 𝑥, 𝑦 ) = ( 𝑑 2 
𝑗 
+ 𝑐) 𝑞 (11)

here 𝑑 𝑗 ( 𝑥, 𝑦 ) = 

√ 

( 𝑥 − 𝑥 𝑗 ) 2 + ( 𝑦 − 𝑦 𝑗 ) 2 , c and q are two parameters yet

o be specified. 

Enforcing Eq. (5) to pass through all the nodes in domain PP i , the

ollowing equations are obtained: 

 𝑖 = 𝐑𝐚 + 𝐏𝐛 (12)

here u i is a vector of corresponding nodal displacement of all the nodes

n domain PP i , the related matrix R and P are expressed as [40,52] 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑟 1 ( 𝑥 1 , 𝑦 1 ) 𝑟 2 ( 𝑥 1 , 𝑦 1 ) ⋯ 𝑟 𝑛 [ 𝑖 ] ( 𝑥 1 , 𝑦 1 ) 
𝑟 1 ( 𝑥 2 , 𝑦 2 ) 𝑟 2 ( 𝑥 2 , 𝑦 2 ) ⋯ 𝑟 𝑛 [ 𝑖 ] ( 𝑥 2 , 𝑦 2 ) 

⋯ ⋯ ⋯ ⋯ 

𝑟 1 ( 𝑥 𝑛 [ 𝑖 ] , 𝑦 𝑛 [ 𝑖 ] ) 𝑟 2 ( 𝑥 𝑛 [ 𝑖 ] , 𝑦 𝑛 [ 𝑖 ] ) ⋯ 𝑟 𝑛 [ 𝑖 ] ( 𝑥 𝑛 [ 𝑖 ] , 𝑦 𝑛 [ 𝑖 ] ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(13)

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 𝑥 1 𝑦 1 𝑥 2 1 𝑥 1 𝑦 1 𝑦 2 1 
1 𝑥 2 𝑦 2 𝑥 2 2 𝑥 2 𝑦 2 𝑦 2 2 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

1 𝑥 𝑛 [ 𝑖 ] 𝑦 𝑛 [ 𝑖 ] 𝑥 2 
𝑛 [ 𝑖 ] 

𝑥 𝑛 [ 𝑖 ] 𝑦 𝑛 [ 𝑖 ] 𝑦 2 
𝑛 [ 𝑖 ] 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
( 𝑀 = 6 , 𝑠𝑜𝑠𝑖𝑥𝑐𝑜𝑙𝑢𝑚𝑛𝑠 ) 

(14)

Obviously, there are totally ( n [ i ] + M ) parameters in Eq. (12) . How-

ver, only n [ i ] equations are available. Nevertheless, according to the

ork finished by Liu and Gu [40] and Golberg et al. [53] , vectors of a

nd b can be eliminated as proposed in their work and local approxima-

ion function in Eq. (5) is eventually expressed as [40] 

 𝑖 ( 𝑥, 𝑦 ) = 𝚽𝑖 𝐮 𝑖 , 𝑖 = 1 , 2 , 3 , 𝚽𝑖 = 𝐫( 𝑥, 𝑦 ) 𝐒 𝑎 + 𝐏 ( 𝑥, 𝑦 ) 𝐒 𝑏 (15)

here 

𝑖 = [ Φ[ 𝑖 ] 
1 Φ[ 𝑖 ] 

2 Φ[ 𝑖 ] 
3 ⋯ Φ[ 𝑖 ] 

𝑛 [ 𝑖 ] 
] (16)

 𝑖 = [ 𝑢 1 𝑢 2 𝑢 3 ⋯ 𝑢 𝑛 [ 𝑖 ] ] 𝑇 (17)

 

 

 

 

 

 

 

𝐒 𝑏 = [ 𝐏 𝑇 𝐑 

−1 𝐏 ] 
−1 
𝐏 𝑇 𝐑 

−1 , 

𝐒 𝑎 = 𝐑 

−1 [ 𝐈 − 𝐏 𝐒 𝑏 ] , 
𝐚 = 𝐒 𝑎 𝐮 𝑖 , 
𝐛 = 𝐒 𝑏 𝐮 𝑖 , 

(18)

Notice that the evidence of the existence of R 

− 1 for any scattered

odes has been given by Wendland [54] . 

.3. Properties of shape function 

The global approximation, u h ( x ), of iNMM presented in Eq. (1) can

e rewritten in a simpler form: 

 

ℎ ( 𝒙 ) = 

𝑁 ∑
𝑘 =1 

𝜑 𝑘 ( 𝒙 ) 𝑎 𝑘 , (19)

n which 𝜙k ( x ) is the shape function, a k is the displacement parameter

orresponding to node k and N ( 𝑁 = 

∑3 
𝑖 =1 𝑛 

[ 𝑖 ] ) is the total number of the

odes in the three PPs corresponding to the manifold element. 

The shape function of iNMM has the following important properties:

(1) Kronecker-delta property 
𝜑 𝑖 ( 𝒙 𝑗 ) = 𝛿𝑖𝑗 . (20) d

120 
(2) Inter-element compatibility property. 

(3) Higher order completeness properties i.e., reproducibility of all

the monomial terms appearing in the assumed basis ( Eqs. (6) –

(9) ). 

(4) Derivatives of u h ( x ) are continuous at the nodes. 

Shown in Fig. 2 (a) is node 12 and its neighboring elements. It is

oticed that the influence domain of node 12 in the iNMM is actually

arger than that in the Trig3(NMM), as shown in Fig. 2 (b) and (c). For the

urpose of comparison, the plots of the PU functions and shape functions

or the Trig3(NMM) and iNMM are all presented in Fig. 3 . As can be seen

rom Fig. 3 , the shape function of iNMM is much smoother than that of

rig3(NMM). 

. Discrete equations for iNMM 

In the proposed iNMM, the displacement boundary conditions can-

ot be imposed directly as in FEM, because mathematical cover (MC)

ay not conform to the problem domain boundaries. Therefore, the

isplacement boundary conditions should be included into the poten-

ial energy by the Lagrange multiplier method or the penalty function

ethod. For convenience, the developed iNMM adopts the penalty func-

ion method to impose the displacement boundary conditions, and the

otential energy is expressed as 

 𝐼 ( 𝒖 ) = ∫Ω
1 
2 
𝜺 𝑇 𝝈𝑑Ω− ∫Ω 𝒖 𝑇 𝒃 𝑑Ω− ∫Γ𝑠 

𝒖 𝑇 �̄� 𝑑𝑆 + ∫Γ𝑑 

1 
2 
𝒌 ( 𝒖 − ̄𝒖 ) 𝑇 ( 𝒖 − ̄𝒖 ) 𝑑𝑆 

(21) 

here Γs is the stress boundary, Γd is the displacement boundary, �̄� is

he given displacement on Γd , �̄� is the given traction on Γs , k is the

ser-specified penalty, which can be set as 10 6 E to obtain satisfactory

ccuracy. Here, E is the Young’s modulus of the material closing to the

isplacement boundary. 

The global displacement approximations expressed in Eq. (19) can

e rewritten as 

 = 𝑵 𝒉 (22) 

n which N is the shape function matrix, h is the vector including the

egrees of freedom. 
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Fig. 3. Comparison of the PU and shape functions of Trig3(NMM) and iNMM. 

Fig. 4. Manifold elements divided into triangles to conduct Gaussian quadrature. 
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Substitution of the global displacement approximations ( Eq. (22) )

nto Eq. (21) , the system of equilibrium equations can then be expressed

ith the following matrix form: 

 𝒑 = 𝒒 (23) 

n which K is the global stiffness matrix, p is the vector including all the

egrees of freedom, q is the force vector. The global stiffness matrix K

nd force vector q will be formed by assembling all the element stiffness

atrices K 

e and element load vector q e , which are obtained by 

 

𝑒 = ∫Ω𝑒 

𝑩 

𝑇 𝑫 𝑩 𝑑Ω + 𝒌 ∫Γ𝑒 
𝑑 

𝑵 

𝑇 𝑵 𝑑𝑆 (24)

 

𝑒 = ∫𝛀𝑒 

𝑵 

𝑇 𝒃 𝑑Ω + ∫Γ𝑒 
𝑠 

𝑵 

𝑇 �̄� 𝑑𝑆 + 𝒌 ∫Γ𝑒 
𝑑 

𝑵 

𝑇 �̄� 𝑑𝑆 (25) 

espectively. 

Since the manifold element ( Fig. 1 ) in iNMM can be in arbitrary

hape, the manifold element should be firstly divided into a number of

riangles ( Fig. 4 ) and then Gauss quadrature rule is performed over each

riangle. 
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. Numerical examples 

A set of numerical examples are carried out to assess the accuracy

btained through the iNMM. Since iNMM can always adopt regular

esh without considering the problem domain boundary to construct

he global approximation, regular mathematical mesh for iNMM will al-

ays be used in the rest of this paper to conduct these tests. The physical

nits used in the present work are based on the international standard

nit system. Here, n defines the total number of the nodes in the com-

utational model. To assess accuracy and convergence, the relative L 2 

rrors in the displacement norm and in the energy norm are defined,

espectively, as follows: 

𝑒 𝑑 = 

√ √ √ √ 

∫Ω ( 𝒖 𝑒𝑥 − 𝒖 𝑛𝑢𝑚 ) 2 𝑑Ω

∫Ω ( 𝒖 𝑒𝑥 ) 2 𝑑Ω
, (26) 

𝑒 𝑒 = 

√ √ √ √ √ 

1 
2 ∫Ω ( 𝜀 𝑒𝑥 − 𝜀 𝑛𝑢𝑚 ) 𝑇 𝑫 ( 𝜀 𝑒𝑥 − 𝜀 𝑛𝑢𝑚 ) 𝑑Ω

1 
2 ∫Ω ( 𝜀 𝑒𝑥 ) 𝑇 𝑫 ( 𝜀 𝑒𝑥 ) 𝑑Ω

, (27) 

here the superscript ‘‘ex ’’ represents the exact or analytical solution

nd the superscript ‘‘num ’’ denotes a numerical solution. 

Apart from iNMM, the following examples will also be calculated by

sing the following numerical models, which are 

(1) Quad4: Four-node isoparametric quadrilateral element. 

(2) Quad8: Eight-node isoparametric quadrilateral element. 

(3) NS-FEM: Node-based S-FEM based on triangular mesh [55] . 

(4) ES-FEM: Edge-based S-FEM based on triangular mesh [55] . 

(5) Trig3(NMM): Triangular mesh is employed to construct the MC,

while the shape function of Trig3 is used to construct the PU, and

constant for local approximation. 

(6) Quad4(NMM): Quadrilateral mesh is employed to construct the

MC, while the shape function of Quad4 is used to construct the

PU, and constant for local approximation. 

.1. Linear dependence test 

This example is employed to test whether the proposed iNMM suffers

rom the LD problem [33] . The material parameters employed for this

xample are Young’s modulus E = 1.0 and Poisson’s ratio v = 0.25. The

lane stress condition is assumed. Fig. 5 shows all the meshes used for

his example. Table 1 lists the number of computed zero eigenvalues ob-

ained through the Trig3(NMM) and the proposed iNMM. According to

he result from Table 1 , before applying boundary condition, three zero

igenvalues (corresponding to the three rigid body modes) are found for

ll the meshes in both Trig3(NMM) and the iNMM. The number of zero

igenvalues is also found to be invariant with respect to the mesh geom-

try and mesh refinement. Furthermore, after applying the displacement

oundary condition to eliminate the rigid body displacement, there are

o more zero eigenvalues left, suggesting that the proposed iNMM is

ree of LD problem. 

.2. Cantilever beam subject to a tip-shear force 

A 2D cantilever beam with length L , height D , and unit thickness is

tudied for the various behaviors of iNMM as a benchmark problem. As

hown in Fig. 6 , the cantilever beam is fixed at the left end and sub-

ected to a parabolic traction P at the right end. The analytical solution

s available in [56] , and expressed as 

 𝑥 = 

𝑃 𝑦 

6 𝐸𝐼 

[ 
(6 𝐿 − 3 𝑥 ) 𝑥 + (2 + 𝜈)( 𝑦 2 − 

𝐷 

2 

4 
) 
] 
, (28) 

 𝑦 = − 

𝑃 

6 𝐸𝐼 

[ 
3 𝜈𝑦 2 ( 𝐿 − 𝑥 ) + (4 + 5 𝜈) 𝐷 

2 𝑥 

4 
+ (3 𝐿 − 𝑥 ) 𝑥 2 

] 
, (29)

here I is the moment of inertia for the beam with rectangular cross

ection and unit thickness. 
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Fig. 5. Meshes employed in iNMM to test the LD issue ( △-constrains in both the x - and y -directions, ○-constrains in the y -direction). 

Table 1 

Nullity of stiffness matrices of Trig3(NMM) and iNMM, see Fig. 5 for the meshes. 

Mesh Total DOfs Trig3(NMM) iNMM 

Nullity DOfs (without essential 

boundary treatment) 

Nullity DOfs (apply essential 

boundary treatment) 

Nullity DOfs (without essential 

boundary treatment) 

Nullity DOfs (apply essential 

boundary treatment) 

(a) 6 3 0 3 0 

(b) 8 3 0 3 0 

(c) 12 3 0 3 0 

(d) 18 3 0 3 0 

(e) 24 3 0 3 0 

(f) 32 3 0 3 0 

Fig. 6. A cantilever beam subjected to a tip-shear force on the right end. 
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The stress corresponding to the displacements are 

𝑥𝑥 ( 𝑥, 𝑦 ) = 

𝑃 ( 𝐿 − 𝑥 ) 𝑦 
𝐼 

, 𝜎𝑦𝑦 ( 𝑥, 𝑦 ) = 0 , 𝜏𝑥𝑦 ( 𝑥, 𝑦 ) = − 

𝑃 

2 𝐼 

( 

𝐷 

2 

4 
− 𝑦 2 

) 

. (30)

The geometric and mechanical parameters for this example are

 = 48, D = 12, E = 3.0 × 10 7 and v = 0.3. The load P = 1000, and

he plane stress condition is assumed. In the computation, the points on

he boundary of x = 0 are constrained using the exact displacements

iven from the analytical solutions, and the traction is specified on the

oundary at x = L using the analytical solutions. 
Fig. 7. Mesh for cantilever beam s

122 
.2.1. Effect of parameters c and q 

The values of c and q will affect the performance of RPIM [40,52] ,

nd hence obtaining the optimal values for c and q in terms of iNMM

s very important. In Dinis’s work [57,58] , it was found that higher ac-

uracy is obtained if c →0.0 and q →1.0. In Liu’s work [40] , good results

re obtained when c = 1.0 and q = 1.03 for the free vibration problem,

hile in Xu and Rajendran’s work [59] , good results are obtained when

 = 0.0001 and q = 2.01 for the static problems. 

In this study, various values of parameters c and q are used to test

heir influence on the accuracy of the proposed method. The discrete

odel presented in Fig. 7 (a) is adopted. Results obtained through iNMM

n both displacement norm and energy norm are plotted in Fig. 8 . In

ddition, deflection of point A versus q is also plotted, as shown in Fig.

 . As can be seen from Figs. 8 and 9 , good results are obtained when

 = 0.0001 and q = 2.01. For all the computations hereon, the optimal

arameter combination, with c = 0.0001, q = 2.01, will be used. 

.2.2. Convergence study 

In order to investigate the convergence of solution by iNMM,

our discrete models with regular grids are constructed as shown in

ig. 7 . The convergence curves are plotted in Fig. 10 . Accuracy ob-
ubjected to a tip-shear force. 
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Fig. 8. Relative error in displacement and energy norms versus q in the cantilever beam problem subjected to a tip-shear force. 

Fig. 9. Deflection of point A versus q in the cantilever beam problem subjected to a tip- 

shear force. 
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Fig. 11. Contour plot of 𝜎x for the cantilever beam subjected to a tip-shear force (see Fig. 

7 (c) for the mesh). 
ained through iNMM in both displacement norm and energy norm are

ompared to that obtained through Trig3(NMM) and Quad4(NMM). As

an be seen from Fig. 10 , the numerical results obtained through the

roposed iNMM are significantly better than those obtained through

rig3(NMM) and Quad4(NMM) in both displacement norm and energy

orm. 

The contour plot of 𝜎x on the regular mesh for Trig3(NMM),

uad4(NMM) and iNMM is plotted in Fig. 11 . It can be found that the
Fig. 10. Comparison of accuracy for cantilever beam problem subjected to a tip-shear force. 
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Fig. 12. A 2D cantilever beam subjected to a tip-moment. 
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Fig. 14. Contour plot of 𝜎x for cantilever beam subjected to a tip-moment (see Fig. 7 (c) 

for the mesh). 

Table 2 

Vertical displacement v A for point A for Cook’s skew beam. 

Element type Mesh 

4 × 4 8 × 8 16 × 16 32 × 32 

Quad4 n 25 81 289 1089 

V A 18.29 22.08 23.43 23.82 

ES-FEM n 25 81 289 1089 

V A 19.72 22.74 23.65 23.88 

NS-FEM n 25 81 289 1089 

V A 26.41 24.85 24.24 24.05 

Quad8 n 65 225 833 3201 

V A 23.71 23.88 23.93 23.96 

Trig3(NMM) n 22 60 183 622 

V A 16.93 21.20 23.07 23.70 

Quad4(NMM) n 22 60 183 622 

V A 19.72 22.56 23.54 23.85 

iNMM n 22 60 183 622 

V A 22.42 23.80 23.93 23.96 

Reference 23.96 
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lobal stress field obtained through iNMM is much smoother than that

btained through Trig3(NMM) and Quad4(NMM). 

.3. Cantilever beam subject to a tip-moment 

A cantilever beam subjected a tip-moment is considered in this sec-

ion, as shown in Fig. 12 . The geometric and mechanical parameters for

his example are D = 12, L = 48, Young’s modulus E = 3.0 × 10 7 and Pois-

on’s ratio v = 0.3. The bending moment M = 2.4 × 10 4 , and the plane

tress condition is assumed. The analytical solution for this example can

e found in [56] . 

For the purpose of studying the convergence of solution by iNMM,

his example also adopts the four discrete models ( Fig. 7 ) presented in

ection 5.2 . The convergence curves in terms of displacement norm and

nergy norm are plotted in Fig. 13 . As can be seen from Fig. 13 , the

umerical results obtained through the proposed iNMM are significantly

etter than those obtained through Trig3(NMM) and Quad4(NMM) in

oth displacement norm and energy norm. 

In addition, the contour plot of 𝜎x obtained through Trig3(NMM) and

NMM is plotted in Fig. 14 . It can be found that the global stress field

btained through the proposed iNMM is smoother than that obtained

hrough Trig3(NMM). 

.4. Cook’s skew beam 

As shown in Fig. 15 (a), Cook’s skew beam [59] is taken as an example

n this section. Fig. 15 (b) gives an example mesh for Trig3(NMM) and

NMM with 4 × 4 layers (Part of the mathematical mesh which will not

e used has been discarded) and 22 nodes for this problem, while Fig.

5 (c) gives an example mesh for node-based S-FEM (NS-FEM) and edge-

ased S-FEM (ES-FEM) [55] with 4 × 4 layers and 25 nodes, Fig. 15 (d)

ives an example mesh for Quad4 (25 nodes) and Quad8 (65 nodes) with

 × 4 layers, and Fig. 15 (e) gives an example mesh for Quad4(NMM)

ith 4 × 4 layers (part of mathematical mesh which will not be used

as been discarded) and 22 nodes. 
Fig. 13. Comparison of accuracy for cantilever 

124 
The numerical results of 4 types of mesh obtained through the

roposed iNMM and other numerical models including Trig3(NMM),

uad4(NMM), Quad4, Quad8, NS-FEM and ES-FEM, are listed together

n Table 2 . For the purpose of observation, the calculated displace-

ents versus n (the number of nodes) from Table 2 are also plotted in

ig. 16 . 
beam problem subjected to a tip-moment. 
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Fig. 15. Cook’s skew beam. 

Fig. 16. Displacement of Cook’s skew beam. 

Fig. 17. Dimensions of slope model [41] . 
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As can be seen in Fig. 16 , the results obtained through the pro-

osed iNMM are much better than those obtained through Trig3(NMM),

uad4(NMM), Quad4, NS-FEM and ES-FEM. In addition, the iNMM

ives results comparable to those obtained through Quad8. It is noticed

hat Quad8 is very sensitive to mesh quality [41] . Often in practice, it is

ery difficult to generate high quality mesh for problems with complex

eometry. But, the proposed iNMM is free from this problem, because

t can always adopt regular mathematical mesh without considering the

roblem domain boundary to discretize the problem domain. 

.5. Slope 

In this section, a homogeneous slope [41] subjected to self-weight

s considered, as shown in Fig. 17 . The bottom of the slope is fixed,
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Fig. 18. Discretized models of a slope. 

Fig. 19. Vertical displacement errors of point A . 
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Fig. 20. Dimensions of a rectangular plate with two holes. 
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hile the left and right sides are subjected to normal constraint. In the

omputation, the material parameters are assumed as Young’s modulus

 = 8 × 10 7 , Poisson’s ratio v = 0.43 and unit weight 𝛾 = 1.962 × 10 4 .

he discretized models for this example are shown in Fig. 18 . The ref-

rence solution for the vertical displacement of point A is − 1.6068

41] . 

The vertical displacement errors of point A versus n obtained by

rig3(NMM), Quad4(NMM) and the proposed iNMM are plotted in

ig. 19 . As can be seen from Fig. 19 , the proposed iNMM obtained much

etter results than Trig3(NMM) and Quad4(NMM). 

.6. A rectangular plate with two holes 

A rectangular plate with two holes is considered in this example,

s shown in Fig. 20 . The bottom of the plate is constrained in normal

irection. Only the midpoint of the bottom is fixed. The upside of the

late is subjected to a uniformly distributed load. In the computation,

he material parameters are assumed as Young’s modulus E = 3 × 10 7 ,

oisson’s ratio v = 0.3 and P = 1. The plane stress condition is as-

umed. The discretized models for Trig3(NMM) and iNMM are shown in

ig. 21 (a)–(c), while the discretized models for Quad4(NMM) are shown

n Fig. 21 (d)–(f). Due to the lack of theoretical solution, the problem do-

ain is discretized with very fine mesh with 18,147 nodes, as shown in

ig. 22 . A reference solution is calculated by Quad4(NMM) using this

iscretized model. The reference solution for the vertical displacement

f point A is 1.064 × 10 − 6 . 
126 
The vertical displacement errors of point A versus n obtained by

rig3(NMM), Quad4(NMM) and the proposed iNMM are plotted in

ig. 23 . As can be seen from Fig. 23 , the proposed iNMM obtained much

etter results than Trig3(NMM) and Quad4(NMM). 

. Discussions and conclusions 

In this study, an improved version of numerical manifold method

iNMM) has been proposed. The proposed iNMM performs excellently

or linear elastic problems of two dimensional solid. Some important

bservations from this work are as follows: 

(1) In the iNMM, high-order global approximation can be con-

structed without extra nodes or DOFs. The shape function of
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Fig. 21. Discretized models of the plate with two holes. 
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Fig. 22. Discretized model of the plate with two holes to obtain reference solution (18,147 

nodes). 

Fig. 23. Vertical displacement errors of point A for the rectangular plate with two holes. 
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iNMM processes the much desired Kronecker-delta property.

Moreover, the proposed iNMM is free from the LD problem. 

(2) The stress field obtained through iNMM is continuous at the

nodes. With this advantage, the nodal stress can be conveniently

obtained without any smoothing operation. 

(3) Inheriting all the advantage from numerical manifold method

(NMM), the iNMM can always adopt regular mesh without con-

sidering the problem domain boundary to discretize the problem

domain. 

(4) Accuracy obtained through the proposed iNMM is significantly

better than that obtained through Trig3(NMM), Quad4(NMM),

Quad4, NS-FEM and ES-FEM. 

In view of the advantages of the iNMM, it is worth to further study

nd apply it to other fields. It is noticed the present work is still very

reliminary. In the following work, we will apply the present iNMM to

imulate multiple crack propagation problems. 
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